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Abstract. We discuss the Euler Characteristic and some of the consequences of its topo-
logical invariance. We start by following the path of history that motivated the study
of this characteristic. Several equivalent definitions are given, along with some advan-
tages of each. We then discuss how the Euler Characteristic is related to graph coloring
in the Heawood coloring theorem, continuous tangent vector fields on a manifold in the
Poincaré�Hopf index theorem, and differential geometry in the Gauss�Bonnet theorem.

1. Introduction. In 1736 Leonhard Euler wrote a paper called �The Seven Bridges of
Königsberg,� in which he introduced the geometry of position, now known as topology.
In particular he introduced the notion of a graph, which will lead to our first definition
of the Euler Characteristic. The problem he solved is stated as follows: �In the town
of Königsberg (now Kaliningrad) in Prussia there is an island, called ‘Kneiphof,’ with
the two branches of the river (Pregel) flowing around it, as shown in Figure 1-1. There
are seven bridges crossing the two branches. The question is whether a person can plan
a walk in such a way that he will cross each of these bridges once but not more than
once.� The impossibility of such a walk had been suspected for some time, but nobody
had managed to prove it before Euler.

Figure 1-1. The seven bridges of Königsberg.

The method Euler used was quite simple in retrospect. He represented the situation
as a graph, that is, a collection of points (vertices) and lines (edges) where each edge
connects exactly two vertices. In particular, we make the land regions vertices and the
bridges edges to get Figure 1-2. He then proved that for a graph to have a walk that
uses each edge exactly once there can be at most two vertices with an odd number of
edges touching them. The number of edges connected to a vertex is called the degree
of that vertex. The graph above has four vertices of odd degree, thus our problem is
solved.
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Figure 1-2. The seven bridges as a graph.

What Euler noticed was that one could look at geometric problems without any
notion of distance. A collection of points and lines was a sufficient model of the bridges
to solve the problem. Since graphs will turn out to be useful in other situations, we
would like to learn more about them.

The graph above can be drawn in the plane with no edge crossings. Do all graphs
have that property? A graph that does is called planar, and the answer is that not all
graphs are planar. Equivalently, a graph is planar if and only if it can be drawn on a
sphere with no edge crossings. One example of a nonplanar graph is the utility graph
shown in Figure 1-3. It gets its name from a puzzle invented by Henry Ernest Dudeney,
in which three houses and three utility companies are drawn on a sheet of paper and the
task is to connect each house to each utility company by lines that never cross (this is a
rather frustrating puzzle since the task is impossible). In fact, a theorem of Kuratowski
says that any nonplanar graph is basically built from one of two small graphs, namely,
the utility graph below, and a pentagon with all of its diagonals. For a more thorough
introduction to basic graph theory, see Trudeau [7].

Figure 1-3. The utility graph.

In looking at polyhedra, Euler once again turned to graph theory. He noticed that
adding the number of vertices and faces of a polyhedron, then subtracting the number
of edges, always yielded 2. He mentioned this formula in a letter to Goldbach in 1750,
then proved it for convex polyhedra in 1752 by dissecting the solid into tetrahedral
slices. This invariance allows one to prove that there are at most five Platonic solids
(regular polyhedra), which we will prove as Corollary 2-4.

In Section 2 we will define the Euler Characteristic and explore some of its con-
sequences for planar graphs. We will then extend the definition to higher dimensions
in two ways and discuss why each definition is useful. Sections 3 to 5 each contain a
discussion of one theorem, whose statement involves the Euler Characteristic. Sections
4 and 5 assume some familiarity with differential geometry of curves and surfaces, for
which the reader is referred to Do Carmo [1, Ch. 1�4]. The reader is also assumed to be
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familiar with triangulations, as defined in Munkres [6, p. 118], and winding numbers, as
defined in Henle [4, p. 48].

2. Definitions. First we must formalize the ideas in Section 1 so we can give our first
definition of the Euler Characteristic.

Definition 2-1. A graph is a finite set, whose elements are called vertices, and a
collection of distinct two element subsets, called edges.

Geometrically, we can picture a graph as a set of points in R3 and of continuous
curves joining some pairs of them. If the graph is planar, then we can think of the points
as being in R2 or on S2, and choose the curves so that they do not intersect and hence
divide the plane or sphere into some number of regions. If the graph is nonplanar, then
there exists some orientable surface on which it can be drawn without edge crossings
and hence divides that surface into some number of regions. These regions are called
faces, and we will take it for granted that the number of faces of any graph is well
defined. These facts are provable, but we will not demonstrate them.

Let G be a planar graph with V vertices, E edges, and F faces. Since we are
requiring that each pair of vertices is connected by at most one edge, Figure 1-2 is no
longer considered a graph, though it shares many nice properties with graphs.

Definition 2-2. The Euler Characteristic χ(G) is V − E + F .

Theorem 2-3 (Euler’s formula). If G is planar and connected, then χ(G) = 2.

The proof will not be given here, but can be found in Trudeau [7, pp. 97�104].

Corollary 2-4. There are at most five Platonic solids.

Proof: A polyhedron naturally has vertices, edges, and faces, so we can think of it as
a graph. This graph is planar since we can draw it on a sphere, and each face is a regular
polygon. Let n be the number of edges and vertices on each face, let d be the degree of
each vertex, then nF = 2E = dV . Rearranging, we get e = dV/2 and f = dV/n, thus
by Euler’s formula, we have V + dV/n − dV/2 = 2, or V (2n + 2d − nd) = 4n. Now, n
and V are positive, and hence 2n − 2d − nd > 0, or (n − 2)(d − 2) < 4. Thus we have
only five possibilities for (d, n), namely, (3,3), (3,4), (3,5), (4,3), and (5,3). 2

Before moving on to higher dimensions, let us examine another use for this char-
acteristic. In Section 1 we mentioned that not all graphs are planar. Although it is
possible to prove a graph isn’t planar by using the Jordan Curve Theorem, this can
hardly be called an elementary method. With Euler’s formula, we can place bounds on
V , E, and F so that any connected graph violating these bounds is nonplanar.

Theorem 2-5. If G is planar and connected with V ≥ 3, then 3
2F ≤ E ≤ 3V −6.

Proof: If G has a face bounded by fewer than three edges, then the assertion is
trivial since, by Euler’s formula, the only possibility is V = 3, E = 2, F = 1. Otherwise,
we have each face bounded by at least 3 edges. So 3F is less than or equal to the sum of
the number of edges bounding each face, which is at most 2E since each edge is counted
at most twice. Thus 3F ≤ 2E. Dividing this inequality by 2 yields the first half of the
theorem. To get the other inequality, we start with 3

2F ≤ E, add V − E to both sides
and apply Euler’s formula to the left-hand side to get 2 ≤ V − E/3, or E ≤ 3V − 6. 2

The inequality 3F ≤ 2E will show up several times in later sections. Note that
equality holds if and only if every face is a triangle.
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Corollary 2-6. A pentagon with all of its diagonals is nonplanar.

Proof: We have V = 5, E = 10, so 3V − 6 = 9 < E. The graph is connected, and
hence by Theorem 2-5, cannot be planar. 2

If we repeat the argument with the added assumption that no face is a triangle, then
we get 2F ≤ E ≤ 2V − 6. This inequality is violated by the utility graph, thus showing
it is nonplanar. If, instead of looking at the number of edges per face, we look at the
number of edges per vertex, then we get another nontrivial result.

Theorem 2-7. If G is planar, then G has a vertex of degree 5 or less.

Proof: If G is not connected, then just look at one of its connected components.
If G has fewer than three vertices, then the assertion is trivial. Otherwise, assume
each vertex has degree at least 6. Then 6V is less than or equal to the sum of the
degrees of the vertices, which is exactly 2E, or 3V ≤ E. Now, by Theorem 2-5, we have
E ≤ 3V − 6, or 3V ≤ 3V − 6, which is absurd, and the result follows. 2

The next best thing to a graph in higher dimensions is a simplicial complex. We start
with some number of 0-simplices, or points (vertices), connect some pairs of them with
1-simplices, or lines (edges), and so on up to n-simplices, where the (k − 1)-simplices
making up the boundary of a new k-simplex are called its faces. This concept can be
made more precise with a similar definition to that of a graph.

Definition 2-8. A simplicial complex S is a finite collection of nonempty subsets
of a finite set with the property that, if σ ∈ S and τ is a nonempty subset of σ, then
τ ∈ S. An element of S of cardinality n+ 1 is called an n-simplex.

Since S contains only finitely many simplices, there is a largest n for which n con-
tains n-simplices. This value of n is called the dimension of S. For a more thorough
introduction to simplicial complexes see Munkres [6, pp. 2�19].

Definition 2-9. Given an n-dimensional simplicial complex S, let Sk be the number
of k-simplices in S. The Euler Characteristic is the number,

χ(S) = S0 − S1 + S2 −+ . . .+ (−1)nSn.

It is not hard to see that this definition agrees with our previous definition if we
think of a planar graph as a 2-dimensional simplicial complex, so S0 = V , S1 = E, and
S2 = F . The nice thing about this definition is that it is simple to compute for a given
simplicial complex since all we have to do is count. Thus to find the Euler Characteristic
of a surface we need only triangulate it, and think of the vertices, edges, and faces as
forming a simplicial complex.

Proving that the Euler Characteristic is a topological invariant, however, is not so
easy, so we turn to our second definition. Let bk be the rank of the kth homology group
of S. A basic fact from homology theory is that bk = 0 if k exceeds the dimension of S.
For an introduction to homology theory, see Munkres [6], Henle [4], or Vick [8].

Definition 2-10. Given an n-dimensional simplicial complex S, the Euler Charac-
teristic is the number,

χ(S) = b0 − b1 + b2 −+ . . .+ (−1)nbn.

The advantage of this definition is that it is not too difficult to prove that the
homology groups are topological invariants, thus so is the Euler Characteristic. This
definition is equivalent to the first one because of the Hopf trace theorem, which is
proved in Munkres [6, pp. 122�24].
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3. Graph Coloring. We will now see how the Euler Characteristic shows up in several
theorems. Since we started with graphs, let us first look at the problem of coloring
graphs.

Definition 3-1. A graph is colored if a color has been assigned to each vertex in
such a way that no two vertices joined by an edge are given the same color.

The problem we consider is to find the minimum number of colors necessary to color
a graph. The four-color theorem asserts that any planar graph can be colored with at
most four colors. Although the only known proof of this theorem is so complicated it
requires a computer, it turns out the problem is actually easier for nonplanar graphs.

To study nonplanar graphs in any detail, we must first find a surface on which the
graph can be drawn without edge crossings. For example, the utility graph mentioned
earlier can be drawn on a torus without edge crossings, but not on a sphere. We will
always assume a graph has been drawn without edge crossings on some surface. It
turns out that it is easier to talk about coloring faces than vertices. Since that is how
the problem started (how many colors does a map maker need to give every country a
different color from its neighbors?), it seems justifiable to add one more restriction to
make the two problems equivalent.

Definition 3-2. The dual of a graph is obtained by replacing each face with a vertex,
and connecting the vertices that correspond to faces that share an edge in the original
graph.

From now on, we will assume that all graphs have duals that are also graphs so as
to avoid some trivial cases. For example, two vertices joined by an edge, whose dual
is one vertex with an edge connecting it to itself, will no longer be considered. With
this assumption, coloring the vertices of a graph is equivalent to coloring the faces of
its dual graph, so for our proofs we will talk about coloring faces. The main result of
this section was obtained by Heawood in 1890.

Theorem 3-3 (Heawood). Let S be any surface of characteristic χ ≤ 0. Then
any graph on S can be colored by Nχ colors, where

Nχ =

⌈

7 +
√
49− 24χ

2

⌉

.

Heawood also conjectured that Nχ was the minimum number of colors needed to
color any graph on S (still assuming χ ≤ 0). Alas, in 1934 Franklin proved that only
six colors are needed to color every graph on the Klein bottle, not seven as conjectured.
After much hard work, the conjecture was settled in 1968 by Ringel and Youngs: it
holds in every case except the Klein bottle. It also happens to be true for positive χ,
although the case of the sphere, which is equivalent to the four-color theorem, remained
unsettled until 1976 when it was proved by Appel and Haken. For a history of the proof,
see Harary [3, pp. 118�19].

The proof of the Heawood coloring theorem is long, difficult, technical, and will not
be reproduced here in its entirety. We will, however, see some of the theorems and
lemmas that come into play. For starters, we need to know what kinds of surfaces exist.

Theorem 3-4 (Classification Theorem). Every compact, connected surface is ho-
meomorphic to a sphere, a connected sum of tori, or a connected sum of projective
planes.
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This theorem is quite remarkable since it allows us to form a list of all surfaces.
There is no known analogous theorem for manifolds in higher dimensions. A proof can
be given in six relatively simple steps, and can be found in Massey [5, pp. 18�28] or
Henle [4, pp. 122�27].

Getting back to the theorem at hand, observe that 2E/F is the average number of
edges per face of a graph since each edge borders exactly two faces. For proving that
Nχ colors are sufficient, we can use a technical lemma.

Lemma 3-5. Given the positive integer N , suppose 2E/F < N for all graphs
G on S. Then N colors are sufficient to color all graphs on S.

Proof: The proof is by induction on the number of faces of G. If F < N , then the
assertion is trivial. Suppose it is true for F = k, and consider a graph G with k + 1
faces. Since the average number of edges per face is strictly less than N , there must be
a face with fewer than N edges. We can shrink this face to a point by connecting each of
its vertices to a point in its interior, then erasing the original edges and vertices of that
face. We can now color this k-faced graph with N colors by the induction hypothesis,
and fewer than N of them are used on the faces adjacent to the one we removed. Thus
G can be colored with N colors, and the result follows by induction. 2

If a vertex is adjacent to exactly two others, then removing it and making its two
neighbors adjacent does not affect the colorability of the graph, nor does it affect the
Euler Characteristic. Thus without loss of generality we can assume all vertices have
degree at least 3 (in fact, the requirement that the dual be a graph also implies all
vertices have degree at least 3), so V ≤ 2E/3. Replacing V with χ − F + E and
isolating E, we get E ≤ 3(F −χ), or 2E/F ≤ 6(1−χ/F ). We can apply this inequality
immediately to the projective plane, which is the only surface other than the sphere
with positive Euler Characteristic.

Theorem 3-6. Any graph on the projective plane can be colored with six or
fewer colors.

The proof that Nχ colors suffices to color any graph on S now requires just a page
of simple algebraic manipulation that will not be reproduced here. The details can
be found in Henle [4, pp. 172�74]. Proving that we actually need this many colors is
significantly harder. The key step, which was not completed until 1968, was to prove
that a graph with V vertices, where V > 2, that has every pair of vertices adjacent, can
be drawn without edge crossings on an n-holed torus, where

n =

⌈

(V − 3)(V − 4)

12

⌉

.

4. Vector Fields. One of the most amazing facts about the Euler Characteristic is
that it shows up in studies of things that are not related in any obvious way. We now
turn our attention to vector fields on a differentiable manifold, as defined in Guillemin
and Pollack [2].

Definition 4-1. A tangent vector field V on a manifold S is a continuous function
assigning to each point p of S a vector V (p) in the tangent space Tp(S).

To make life easier we will assume that all our tangent vector fields have only critical
points (that is, points p such that V (p) = 0) that are isolated. Not all critical points
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are the same; Figure 4-1 shows a circulation and a focus, Figure 4-2 shows other things
that can happen.

We could ask whether it is possible to have a vector field with a given collection of
critical points and no others, such as a sphere with no critical points or just one spiral.
Most students of mathematics are probably familiar with the fact that we cannot comb
a hairy sphere; in other words, that there is no continuous nonzero tangent vector field
on S2, but the fact that it cannot be done with a single circulation is less intuitive.

On the other hand, we can comb a hairy torus rather easily, but for a two-holed
torus, intuition doesn’t seem to help much. In higher dimensions, visualization simply
isn’t always possible; so we need something more to see what is going on. To study
critical points, we will need some way to tell them apart, and the index is a very effective
tool for doing so.

Figure 4-1. A circulation and a stable focus.

Definition 4-2. Let M be a manifold of dimension k, and V a tangent vector field
on M . For each point p of M , the index of V at p, denoted I(p), is the degree of the
map V

|V | : Sε → Sk−1 for ε arbitrarily small.

As luck would have it, the Euler Characteristic tells us what kinds of vector fields
we can put on a surface. Note that the index of a noncritical point is just 0; so we will
only discuss the index of a critical point.

Theorem 4-3 (Poincaré�Hopf). If V is a continuous tangent vector field with
isolated singularities on the compact, connected, orientable manifold M , then the
sum of the indices of the critical points of V is χ(M).

Any proof of this theorem requires the development of some machinery to deal with
it in higher dimensions (see Vick [8] or Guillemin and Pollack [2]), but for surfaces we
can use more elementary methods. Also, Poincaré only stated the theorem for surfaces.
So we will be content to prove only that case here.

By a surface we mean a 2-manifold in R3. In particular, the tangent space at a
point is the plane tangent to the surface at that point, and we have the induced metric.

First let us take advantage of the fact that our tangent space is always a plane so
we can actually visualize the vector field. We now define the index to be the winding
number of the vector field on the boundary of a small neighborhood of the critical point,
which agrees with our previous definition. We assume that a small circular neighborhood
of a critical point can be divided into finitely many sectors, which can be classified as
elliptic, parabolic, or hyperbolic as shown in Figure 4-2. An elliptic sector is one in
which all paths start and end at the critical point if we follow the vector field. If all the
vectors in a sector point toward or away from the critical point, then it is parabolic. If
there is only one path through the critical point, then the sector is hyperbolic.
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Figure 4-2. Examples of elliptic, parabolic, and hyperbolic sectors.

Observe that, as a point q moves through a sector of angle θ, the vector V (q) changes
by an angle of θ+π if elliptic, θ if parabolic, and θ−π if hyperbolic. Thus I(p) = 1+ e−h

2
where e is the number of elliptic sectors and h is the number of hyperbolic sectors at p.
With this handy tool and two simple combinatorial lemmas, we will be ready to take
on the Poincaré index theorem.

In the following discussion we have a set of vertices, each of which is assigned a label
A, B, or C. An edge whose endpoints are labeled A and B is called AB. In the case of
an oriented surface we have a beginning and ending point of the edge, so BA is not the
same as AB. If the vertices of a triangle are labeled A, B, and C in any order, then the
triangle is called complete.

Lemma 4-4 (Sperner). If a triangle with vertices labeled A, B, and C is divided
into smaller triangles, and if the vertices of the smaller triangles are each given
a label A, B, or C, with the restriction that vertices on AB must be labeled A
or B, and similarly for the other two sides, then at least one of the subtriangles
receives all three labels.

Proof: In fact, we will see that we get an odd number of complete triangles. First
consider the side AB of the original triangle. Let a be the number of segments AA,
let b be the number of edges AB, and let c be the number of vertices labeled A on the
interior of the side. Counting yields 2a + b = 2c + 1, thus b is odd. Now, we look at
subtriangles of the original triangle. Let d be the number of triangles ABA or BAB,
let e be the number of triangles ABC, and let f be the number of edges AB (excluding
those on the boundary). Counting yields 2d + e = 2f + b, thus e is odd and hence
positive, as desired. 2

Lemma 4-5. Let S′ be an oriented surface with boundary. If S′ has a trian-
gulation with vertices labeled A, B, or C, then the number of complete triangles
counted with orientation equals the number of edges AB on the boundary counted
with orientation.

Proof: Count a+1 for each positively oriented edge AB, and −1 for each negatively
oriented one, and similarly for the complete triangles. Then the sum of the edges AB
on the boundary is equal to the sum of all edges AB since those in the interior are
counted both +1 and −1. The latter sum is equal to the sum of the complete triangles
since every triangle ABA or BAB contributes +1 and −1 to the count of edges AB,
and other triangles do not contain an edge AB. 2

Theorem 4-6 (Poincaré). If V is a continuous tangent vector field with isolated
singularities on the compact, connected, orientable surface S, then the sum of the
indices of the critical points of V is χ(S).
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Proof: The idea is to construct another vector field for which we can easily calculate
the indices, then show that the sum of its indices is the same as for V . With this idea in
mind we turn our attention to a very special type of vector field, namely, the gradient of
the function that assigns to each point of S the distance from that point to a fixed plane
not intersecting S. Note that this vector field gives the direction in which we would run
on the surface to get away from the plane as quickly as possible. In this case we have
no elliptic sectors, since running away from a fixed object never brings us back to the
same point, so I(p) = 1 − h/2. Consider a small circle on S around a critical point p.
It intersects the tangent plane exactly h times. Although this result is not trivial, it is
believable enough that we will just assume it.

We choose our fixed plane to give us a gradient field U such that no critical point
of V is a critical point of U , which we can do since S is compact and the critical points
are isolated; hence, there are only finitely many. We now triangulate S, including the
critical points of U among the vertices, in such a way that no triangle has two vertices
the same distance from the fixed plane. Since we have only finitely many vertices to
worry about, this triangulation can always be accomplished, perhaps by distorting the
surface slightly, without changing the Euler Characteristic. The latter condition makes
one vertex of each triangle the middle vertex. So if a point q has h hyperbolic sectors
(a noncritical point has h = 2), then for a sufficiently fine triangulation h is also equal
to the number of triangles with q as the middle vertex. Let X be the set of critical
points of U . Then

∑

q∈X I(q) is equal to the sum over X of 1 minus half the number
of triangles with that vertex as the middle. The latter sum is equal to the sum over all
vertices of the triangulation of the same quantity, but that’s just V − F/2. Since we
have a triangulation, 3F = 2E, or F = 2E − 2F . Thus the sum of the indices of U is
V − E + F = χ(S), as desired.

We remove a small neighborhood of each critical point of U or V to obtain a new
surface S′, on which U and V are nonzero. Triangulate S′, and for each vertex p of
this triangulation, assign a label A, B, or C depending on how V (p) relates to U(p), as
shown in Figure 4-3 with U(p) in the direction of the positive y axis. The positive and
negative x axis are part of the C region, the positive y axis is part of the A region, and
we need not worry about the origin since we are on S′. Note that the orientability of S
allows us to do this labeling consistently.

V(p)

U(p)

AB

C

Figure 4-3. How to label: p is assigned A.

If we had any complete triangles, then we could subdivide to get smaller complete
triangles by Sperner’s lemma. The intersection of such a sequence of nested closed sets
is nonempty since S′ is compact, so by the continuity of V we would get a point p in
S′ for which V (p) = 0, contradicting the construction of S′. Thus we have no complete
triangles, so the sum of the oriented edges AB on the boundary of S′ is 0 by Lemma 4-5.
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Remember we cut out a small neighborhood of each critical point, and the boundary of
that neighborhood is part of the boundary of S′. For a sufficiently fine triangulation,
the sum of the edges AB around a critical point p of V is the index of p, since we
are just calculating the winding number (since U remains essentially constant in this
neighborhood).

If we had done our labeling by switching the roles of U and V , then looking at
Figure 4-3 we see without difficulty that the labels A and B are switched, but C is left
unchanged. Thus the sum of the edges AB around a critical point q of U is the negative
of the index of q. In other words, the sum of the indices of the critical points of V
minus the sum of the indices of the critical points of U is the sum of the edges AB on
the boundary of S′, which is 0. Thus the sum of the indices of the critical points of V
is equal to the sum of the indices of the critical points of U , which is χ(S). 2

The condition of orientability is necessary for this proof to make any sense. Fortu-
nately we can use covering spaces to see that all is not lost if we look at a sufficiently
nice nonorientable surface, namely, the projective plane.

Corollary 4-7. Let V be a continuous tangent vector field with isolated singu-
larities on the projective plane. Then the sum of the indices of the critical points
of V is 1.

Proof: The sphere S2 is the universal covering space of the projective plane, and is
a two-sheeted covering. Thus, given a vector field on the projective plane, we can use
two copies of it to put a vector field on S2. Now, the sum of the indices of the vector
field on S2 is 2 by the Poincaré index theorem. Hence, by the Poincaré index theorem,
the sum of the indices of Vmust be 1, which is the Euler Characteristic of the projective
plane. 2

5. Curvature. We now turn our attention to one more, apparently unrelated, place
where the Euler Characteristic appears, namely, the study of curvature of an orientable
surface S in R2. The Gauss map of S is the map from S to the sphere S2 that sends
a point p of S to the unit normal vector of S at p. The Gaussian curvature K(p) of S
at p can be defined as the limit as ε approaches 0 of the ratio of the area of the image
under the Gauss map of an ε-neighborhood of p, counted positive or negative depending
on whether the Gauss map preserves or reverses orientation, to the area of the original
neighborhood. Alternatively, we can define K(p) to be the product of the minimum and
maximum values of the second fundamental form on the unit circle in Tp(S). If γ is a
path on S, then its curvature vector γ′′ at a point p has a component in the direction
of N × γ′, where N is the normal vector to S at p. The magnitude of this component
is called the geodesic curvature, denoted kg(p), of γ.

A triangle on S consists of three paths, γ1, γ2, and γ3, each of which shares each
endpoint with one of the other two. Define θ1 to be the angle between γ′1 and γ′2 at
their common point (note this angle is well defined since these vectors lie in the same
tangent plane) and similarly define θ2 and θ3.

Theorem 5-1 (Local Gauss�Bonnet). Let Sbe a regular, oriented surface and T
a triangle on S whose edges are parametrized by arc length and agree with the
orientation of S. Then the integral of kg along the boundary of T plus the sum of
θ1, θ2, and θ3, plus the integral over the interior of T of the Gaussian curvature
of S is 2π.

For a proof of this theorem, see do Carmo [1, pp. 269�70].
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If we triangulate S and apply the local Gauss�Bonnet theorem to each triangle, then
the integrals of the geodesic curvature will cancel when added together since they are
counted once in each direction. Each θi is an external angle of a triangle, corresponding
to the interior angle ψi, where ψi = π − θi, and each vertex is surrounded by ψi’s that
add up to 2π. So replacing θ1 with π − ψi, moving everything but the integral of K to
the right-hand side, and summing over all triangles, we get that the integral over S of
K is −πF + 2πV . Next, using the fact that we have a triangulation, so 2E = 3F , or
F/2 = E−F , we can rearrange this expression to include the Euler Characteristic once
again. Thus we get our final result.

Theorem 5-2 (Global Gauss�Bonnet). Let S be an oriented, closed, compact,
connected, regular surface. Then the global integral of the Gaussian curvature of
S is 2πχ(S).
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