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Color Spaces and Digital Imaging†

Nicholas J. Higham

1 Vector Space Model of Color

The human retina contains photoreceptors called cones
and rods that act as sensors for the human imaging
system. The cones come in three types, with responses
that peak at wavelengths corresponding to red, green,
and blue light, respectively; see figure 1. Rods are of
a single type and produce only monochromatic vision;
they are used mainly for night vision. Because there are
three types of cones, color theory is replete with terms
having the prefix “tri”. In particular, trichromacy, devel-
oped by Young, Grassmann, Maxwell, and Helmholtz,
is the theory that shows how to match any color with
an appropriate mixture of just three suitably chosen
primary colors.

We can model the responses of the three types of
cones to light by the integrals

ci(f ) =
∫ λmax

λmin

si(λ)f(λ)dλ, i = 1: 3, (1)

where f describes the spectral distribution of the light
hitting the retina, si describes the sensitivity of the
ith cone to different wavelengths, and [λmin, λmax] ≈
[400 nm,700 nm] is the interval of wavelengths of the
visible spectrum. Note that this model is linear (ci(f +
g) = ci(f ) + ci(g)) and it projects the spectrum onto
the space spanned by the si(λ)—the “human visual
subspace.”

For computational purposes a grid of n equally
spaced points λi on the interval [λmin, λmax] is intro-
duced and the repeated rectangle (or midpoint) quadra-
ture rule is applied to (1), yielding

c = STf , c ∈ R3, S ∈ Rn×3, f ∈ Rn,
where the ith column of the matrix S has samples of
si at the grid points, the vector f contains the values
of f(λ) at the grid points, and the vector c absorbs
constants from the numerical integration. In practice,
a value of n around 40 is typically used.

Let the columns of P = [p1 p2 p3 ] ∈ Rn×3 rep-
resent color primaries, defined by the property that
the 3 × 3 matrix STP is nonsingular. For example,
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Figure 1 Response curves for the cones and
the rods (dotted line). S, M, and L denote the
cones most sensitive to short (blue), medium
(green) and long (red) wavelengths, respectively.
Figure from (Wikimedia Commons)

http://en.wikipedia.org/wiki/File:Cone-response.svg

p1, p2, and p3 could represent red, blue, and green,
respectively. We can write

STf = STP(STP)−1STf ≡ STPa(f), (2)

where a(f) = (STP)−1STf ∈ R3. This equation shows
that the color of any spectrum f (or more precisely the
response of the cones to that spectrum) can be matched
by a linear combination, Pa(f), of the primaries. A
complication is that we need all the components of a
to be nonnegative for this argument, as negative inten-
sities of primaries cannot be produced. A way around
this problem is to write a(f) = a1 − a2, where a1 con-
tains the nonnegative components of a(f) and a2 has
positive components, and rewrite (2) as

ST (f + Pa2) = STPa1.

This equation says that Pa1 matches f with appro-
priate amounts of some of the primaries added. This
rearrangement is a standard trick in colorimetry, which
is the science of color measurement and description.

To summarize, the color of a visible spectrum f
can be matched by tristimulus values a(f) = ATf ,
where AT = (STP)−1ST , because STf = STPa(f). The
columns of A ∈ R3×n are called (samples of) color
matching functions for the given primaries.

To determine A a human observer is asked to match
light of single wavelengths λi by twiddling knobs to
mix light sources comprising the three primaries until
a match is obtained. Light of a single wavelength cor-
responds to a vector f = ei, where ei has a 1 in the
ith position and zeros everywhere else, and the vec-
tor a(f) = ATf that gives the match is therefore the

http://www.ma.man.ac.uk/~higham/pcam/index.php
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ith column of AT . In this way we can determine the

color matching matrix A corresponding to the given

primaries.

This vector space model of color is powerful. For

example, since the 3 × n matrix ST has a nontrivial

null space it tells us that there exist spectra f and g
with f 6= g such that STf = STg. Hence two colors can

look the same to a human observer but have a different

spectral decomposition, which is the phenomenon of

metamerism. This is a good thing in the sense that color

output systems (such as computer monitors) exploit

metamerism to reproduce color. There is another form

of metamerism that is not so welcome: when two col-

ors appear to match under one light source but do not

match under a different light source. An example is

when you put on socks in the bedroom with the room

lights on and they appear black, but when you view

them in daylight one sock turns out to be blue.

The use of linear algebra in understanding color

was taken further by Jozef Cohen (1921–1995), whose

work is summarized in the posthumous book Visual

Color and Color Mixture: The Fundamental Color Space

(2001). Cohen stresses the importance of what he calls

the “matrix R”, defined by

R = S(STS)−1ST = SS+,

where S+ is the Moore–Penrose pseudoinverse of S.

Mathematically, R is the orthogonal projector onto

range(S). Cohen noted that R is independent of the

choice of primaries used for color matching, that is,R is

unchanged under transformations S ← SZ for nonsin-

gular Z ∈ R3×3, and so is an invariant. He also showed

how in the factorization S = QL, where Q ∈ Rn×3 has

orthonormal columns and L ∈ R3×3 is lower triangu-

lar, the factor Q (which he called F ) plays an impor-

tant role in color theory through the use of “tricolor

coordinates” QTf .

We do not all see color in the same way: about 8% of

males and 0.5% of females are affected by color blind-

ness. The first investigation into color vision deficien-

cies was by Manchester chemist John Dalton (1766–

1844), who described his own color blindness in a lec-

ture to the Manchester Literary and Philosophical Soci-

ety. He thought that his vitreous humor was tinted

blue and instructed that his eyes be dissected after his

death. No blue coloring was found but his eyes were

preserved. A DNA analysis in 1985 concluded that Dal-

ton was a deuteranope, meaning that he lacked cones

sensitive to the medium wavelengths (green). The color

model and analogues of figure 1 for different cone
deficiencies help us to understand color blindness.

Given the emphasis in this section on trichromacy,
one might wonder why printing is usually done with a
four color CMYK model when three colors should be
enough. CMYK stands for cyan-magenta-yellow-black,
and cyan, magenta, and yellow are complementary col-
ors to red, green, and blue, respectively. Trichromatic
theory says that a CMY system is entirely adequate for
color matching, so the K component is redundant. The
reason for using K is pragmatic. Producing black in a
printing process by overlaying C, M, and Y color plates
uses a lot of ink, makes the paper very wet, and does not
produce a true, deep black due to imperfections in the
inks. In CMYK printing gray component replacement
is used to replace proportions of the CMY components
that produce gray with corresponding amounts of K.
(A naive algorithm to convert from CMY to CMYK is
K = min(C,M,Y), C ← C − K, M ← M − K, Y ← Y − K,
though in practice slightly different amounts of C , M ,
and Y are required to produce black.)

2 Standardization

The Commission Internationale de l’Éclairage (CIE) is
responsible for standardization of color metrics and
terminology. Figure 2 shows the standard RGB color
matching functions produced by the CIE (1931, 1964).
They are based on color matching experiments and cor-
respond to primaries at 700 nm (red), 546.1 nm (green),
and 435.8 nm (blue). The red curve takes negative val-
ues as shown in the figure, but nonnegative functions
were preferred for calculations in the pre-computer era
as they avoided the need for subtractions. So a CIE XYZ
space was defined that has nonnegative color matching
functions (see figure 3), and which is obtained via the
linear mapping1XY

Z

 =
 0.49 0.31 0.20

0.17697 0.81240 0.01063
0 0.01 0.99


RG
B

 .
Two of the choices made by the CIE that led to this
transformation are that the Y component approxi-
mates the perceived brightness, called the luminance,
and that R = G = B = 1 corresponds to X = Y = Z = 1,
which requires that the rows of the matrix sum to 1.

Because the XYZ space is three-dimensional it is not
easy to visualize the subset of it corresponding to

1. The coefficients of the matrix are written here in a way that indi-
cates their known precision. Thus, for example, the (1,1) element is
known to two significant digits but the (2,1) element is known to five
significant digits.
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Figure 2 CIE RGB color matching functions from
the 1931 standard. Figure from (Wikimedia Commons)

http://en.wikipedia.org/wiki/File:CIE1931_RGBCMF.svg

Figure 3 CIE XYZ color matching functions from
the 1931 standard. Figure from (Wikimedia Commons)

http://en.wikipedia.org/wiki/File:CIE1931_XYZCMF.png

the visible spectrum. It is common practice to use a
projective transformation

x = X
X + Y + Z , y = Y

X + Y + Z (z = 1−x−y)

to produce a chromaticity diagram in terms of the
(x,y) coordinates; see figure 4. The visible spectrum
forms a convex set in the shape of a horseshoe. The
curved boundary of the horseshoe is generated by light
of a single wavelength (pure color) as it varies across the
visible spectrum, while at the bottom the “purple line”
is generated by combinations of red and blue light. The
diagram represents color and not luminance, which is
why there is no brown (a dark yellow). White is at ( 1

3 ,
1
3 )

Figure 4 CIE 1931 color space chromaticity diagram, with
the gamut of sRGB shown. Figure from (Wikimedia Commons)

http://en.wikipedia.org/wiki/File:CIExy1931.png

and pure colors lying at opposite ends of a line passing
through the white point are complementary: a combi-
nation of them produces white. Any point outside this
region represents an “imaginary color”: a distribution
of light that is not visible to us.

A common use of the chromaticity diagram is in
reviews of cameras, scanners, displays, and printers,
where the gamut of the device (the range of producible
colors) is overlaid on the diagram. Generally the closer
the gamut is to the visible spectrum the better, but
since images are passed along a chain of devices start-
ing with a camera or scanner a key question is how
the gamuts of the devices compare and whether col-
ors are faithfully translated from one device to another.
Color management deals with these issues, through
the use of International Color Consortium (ICC) pro-
files that describe the color attributes of each device by
defining a mapping between the device space and the
CIE XYZ reference space. Calibrating a device involves
solving nonlinear equations, which is typically done by
Newton’s method.

3 Nonlinearities

So far, basic linear algebra and a projective transforma-
tion have been all that we need to develop color theory,
and one might hope that by using more sophisticated
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techniques from matrix analysis one can go further. To
some extent, this is possible; for example, the Binet–
Cauchy theorem on determinants finds application in
several problems in colorimetry. But nonlinearities can-
not be avoided for long, because human eyes respond
to light nonlinearly, in contrast to a digital camera’s
sensor, which has a linear response. The relative dif-
ference in brightness that we see between a dark cellar
and bright sunlight is far smaller than the relative dif-
ference in the respective number of photons reaching
our eyes, and this needs to be incorporated into the
model. One way of doing this is described in the next
section.

4 LAB Space

A problem with the CIE XYZ and RGB spaces is that they
are far from being perceptually uniform, which means
that there is not a linear relation between distances in
the tristimulus space and perceptual differences. This
led the CIE to search for nonlinear transformations that
give more uniform color spaces, and in 1976 they came
up with two standardized systems, L*u*v* and L*a*b*
(or LAB, pronounced “ell-A-B”). In the LAB space the L
coordinate represents lightness, the A coordinate is on
a green–magenta axis, and the B coordinate is on a blue–
yellow axis. For a precise definition in terms of the XYZ
space, if Xn, Yn, and Zn are the tristimuli of white then

L = 116f(Y/Yn)− 16,

A = 500 [f (X/Xn)− f(Y/Yn)] ,

B = 200 [f (Y/Yn)− f(Z/Zn)] ,

where

f(x) =

x1/3, x > 0.008856,

7.787x + 16
116 , x 6 0.008856.

The cube root term tries to capture the nonlinear per-
ceptual response of human vision to brightness. The
two cases in the formula for f bring in a different for-
mula for low tristimulus values, i.e., low light. The light-
ness coordinate L ranges from 0 to 100. The A and
B coordinates are typically in the range −128 to 128
(though not explicitly constrained) and A = B = 0
denotes lack of color, i.e., a shade of gray from black
(L = 0) to white (L = 100). In colorimetry, color dif-
ferences are expressed as Euclidean distances between
LAB coordinates and are denoted ∆E.

An interesting application of LAB space is to the
construction of color maps, which are used to map

numbers to colors when plotting data. The most com-
monly used color map is the rainbow color map, which
starts at dark blue and progresses through cyan, green,
yellow, orange, and red, through colors of increasing
wavelength. In recent years the rainbow color map has
been heavily criticized for a number of reasons, which
include

• it is not perceptually uniform, in that the colors
appear to change at different rates in different
regions (faster in the yellow, slower in the green),

• it is confusing, because people do not always
remember the ordering of the colors, making inter-
pretation of an image harder,

• it loses information when printed on a
monochrome printer, since high and low values
map to similar shades of gray.

These particular criticisms can be addressed by using a
color map constructed in LAB space with colors having
monotonically increasing L values and linearly spaced
A and B values. Color maps based on such ideas have
supplanted the once ubiquitous rainbow color map
as the default in MATLAB and in some visualization
software.

For image manipulation there are some obvious
advantages to working in LAB space, as luminosity
and color can easily be independently adjusted, which
is not the case in RGB space. However, LAB space
has some strange properties. For example, (L,A, B) =
(0,128,−128) represents a brilliant magenta as black
as a cellar! LAB space contains many such imaginary
colors that cannot exist and are not representable in
RGB. For many years LAB was regarded as a rather eso-
teric color space of use only for intermediate represen-
tations in color management and the like, though it is
supported in high end software such as Adobe Photo-
shop and the MATLAB Image Processing Toolbox. How-
ever, in recent years this view has changed, as photog-
raphers and retouchers have realized that LAB space,
when used correctly, is a very powerful tool for manip-
ulating digital images. The book Photoshop LAB Color
(2006) by Dan Margulis describes the relevant tech-
niques, which include ways to reduce noise (blur the
A and B channels), massively increase color contrast
(stretch the A and B channels), and change the color
of colorful objects in a scene while leaving the less col-
orful objects apparently unchanged (linear transforma-
tions of the A and B channels). As an example of the lat-
ter technique, figure 5 shows at the top an RGB image of
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Figure 5 Top: original image. Bottom: image converted to
LAB space and A channel negated ((L,A, B, )← (L,−A,B)).

a building at the University of Manchester. At the bot-
tom is the result of converting the image to LAB, flip-
ping the sign of the A channel, then converting back to
RGB. The effect is to change the turquoise paint to pink
without, apparently, significantly changing any other
color in the image including the blue sky. In truth, all
the colors have changed, but mostly by such a small
amount that the changes are not visible, due to the
colors having small A components in LAB coordinates.

5 JPEG

JPEG is a compression scheme for RGB images that can
greatly reduce file size, though it is lossy (throws infor-
mation away). The JPEG process first converts from RGB
to the YCbCr color space, where Y represents luminance
and Cb and Cr represent blue and red chrominances,
respectively, using the linear transformation YCb

Cr

 =
 0.299 0.587 0.114
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813


RG
B

 .
The motivation for this transformation is that human
vision has a poor response to spatial detail in colored
areas of the same luminance, so the Cb and Cr compo-
nents can take greater compression than the Y compo-
nent. The image is then broken up into 8×8 blocks and
for each block a two-dimensional discrete cosine trans-
form is applied to each of the components, after which

the coefficients are rounded, more aggressively for the

Cb and Cr components. Of course, it is crucial that the

3×3 matrix in the above transformation is nonsingular,

as the transformation needs to be inverted in order to

decode a JPEG file.

The later JPEG2000 standard replaces the discrete

cosine transform with a wavelet transform and uses

larger blocks. Despite the more sophisticated mathe-

matics underlying it, JPEG2000 has not caught on as a

general purpose image format, but it is appropriate in

special applications such as storing fingerprints, where

it is much better than JPEG at reproducing edges.

6 Nonlinear RGB

The CIE LAB and XYZ color spaces are device-

independent: they are absolute color spaces defined

with reference to a “standard human observer.” The

RGB images one comes across in practice, such as JPEG

images from a digital camera, are in device-dependent

RGB spaces. These spaces are obtained from a linear

transformation of CIE XYZ space followed by a non-

linear transformation of each coordinate that modifies

the gamma (brightness), analogously to the definition

of the L channel in LAB space. They also have specifi-

cations in (x,y) chromaticity coordinates of the pri-

maries red, green, and blue, and the white point (as

there is no unique definition of white). The most com-

mon nonlinear RGB space is sRGB, defined by Hewlett–

Packard and Microsoft in the late 1990s for use by con-

sumer digital devices and now the default space for

images on the web. The sRGB gamut is the convex hull

of the red, green, and blue points, and is shown on the

chromaticity diagram in figure 4.

7 Digital Image Manipulation

Digital images are typically stored as 8-bit RGB images,

that is, as arrays A ∈ Rm×n×3 where aij1, aij2, and

aij3 are the RGB values of the pixel indexed by (i, j).
In practice, each element aijk is an integer in the range

0 to 255, but for notational simplicity we will assume

the range is instead [0,1]. Image manipulations corre-

spond to transforming the array A to another array B,

where

bijk = fijk(aijk),

for some functions fijk. In practice, the 3mn func-

tions fijk will be highly correlated. The simplest case

is where fijk ≡ f is independent of i, j, and k, and an
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example is fijk(aijk) =min(aijk+0.2,1), which bright-
ens an image by increasing the RGB values of every pixel
by 0.2. Another example is

fijk(aijk) =

2a2
ijk aijk 6 0.5,

1− 2(1− aijk)2 aijk > 0.5.
(3)

This transformation increases contrast because it
makes RGB components less than 0.5 smaller (darken-
ing the pixel) and those greater than 0.5 larger (lighten-
ing the pixel). These kinds of global manipulations are
offered by all programs for editing digital images, but
the results they produce are usually crude and unpro-
fessional. For realistic, high quality results, the trans-
formations need to be local and, from the photographic
point of view, proportional. For example, the brighten-
ing transformation above will change any RGB triplet
(r , g, b) with min(r , g, b) > 0.8 to (1,1,1), which
is pure white, almost certainly producing an artificial
result. The transformation (3) that increases contrast
will change the colors, since it modifies the RGB values
at each pixel independently.

Advanced digital image manipulation avoids these
problems by various techniques, a very powerful one
being to apply a global transformation through a mask
that selectively reduces the effect of the transforma-
tion in certain parts of the image. The power of this
technique lies in the fact that the image itself can be
used to construct the mask.

However, there are situations where elementary cal-
culations on images are useful. A security camera might
detect movement by computing the variance of several
images taken a short time apart. A less trivial example
is where one wishes to photograph a busy scene such
as an iconic building without the many people and vehi-
cles that are moving through the scene at any one time.
Here, a solution is to put the camera on a tripod and
take a few tens of images, each a few seconds apart, and
then take the median of the images (each pixel gets the
median R, G, and B values of all the pixels in that loca-
tion in the image). With luck, and assuming the lighting
conditions remained constant through the procedure,
the median pixel will in every case be the unobscured
one that was wanted!
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