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Abstract

This course serves as a practical guide to ray tracing and photon map-

ping. The notes are mostly aimed at readers familiar with ray tracing,

who would like to add an efficient implementation of photon mapping

to an existing ray tracer. The course itself also includes a description

of the ray tracing algorithm.

There are many reasons to augment a ray tracer with photon maps.

Photon maps makes it possible to efficiently compute global illumina-

tion including caustics, diffuse color bleeding, and participating me-

dia. Photon maps can be used in scenes containing many complex

objects of general type (i.e. the method is not restricted to tessellated

models). The method is capable of handling advanced material de-

scriptions based on a mixture of specular, diffuse, and non-diffuse

components. Furthermore, the method is easy to implement and ex-

periment with.

This course is structured as a half day course. We will therefore as-

sume that the participants have knowledge of global illumination al-

gorithms (in particular ray tracing), material models, and radiometric

terms such as radiance and flux. We will discuss in detail photon trac-

ing, the photon map data structure, the photon map radiance estimate,

and rendering techniques based on photon maps. We will emphasize

the techniques for efficient computation throughout the presentation.

Finally, we will present several examples of scenes rendered with pho-

ton maps and explain the important aspects that we considered when

rendering each scene.
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Course Overview

1 minutes: Introduction and Welcome
Henrik Wann Jensen

Overview of the course and motivation for attending it.

19 minutes: The Ray Tracing Algorithm
Henrik Wann Jensen

This part will cover the basics of the ray tracing algorithm.

35 minutes: Photon Tracing: Building the Photon Maps
Henrik Wann Jensen

This part of the course will cover efficient techniques for photon tracing
including:

• Emitting photons from the light sources in the scene

• The use of projection maps

• Simulating scattering and absorption of photons using Russian Roulette

• Storing photons in the photon map

• Preparing the photon map for rendering

Also the use of several photon maps for the simulation of caustics, soft indi-
rect illumination and participating media will be described.

45 minutes: Rendering using Photon Mapping
Henrik Wann Jensen

This part will cover the details of how to integrate photon mapping into a ray
tracer, and how to use it for rendering of 3D models.

Several examples will be shown to illustrate the various aspects of the com-
bination of ray tracing and photon mapping.
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Chapter 1

Introduction

This course material describes in detail the practical aspects of the photon map
algorithm. The text is based on previously published papers, technical reports and
dissertations (in particular [Jensen96c]). It also reflects the experience obtained
with the implementation of the photon map as it was developed at the Technical
University of Denmark. After reading this course material, it should be relatively
straightforward to add an efficient implementation of the photon map algorithm to
any ray tracer.

1.1 Motivation

The photon mapping method is an extension of ray tracing. In 1989, Andrew
Glassner wrote about ray tracing [Glassner89]:

“Today ray tracing is one of the most popular and powerful tech-
niques in the image synthesis repertoire: it is simple, elegant, and eas-
ily implemented. [However] there are some aspects of the real world
that ray tracing doesn’t handle very well (or at all!) as of this writ-
ing. Perhaps the most important omissions are diffuse inter-reflections
(e.g. the ‘bleeding’ of colored light from a dull red file cabinet onto a
white carpet, giving the carpet a pink tint), and caustics (focused light,
like the shimmering waves at the bottom of a swimming pool).”

At the time of the development of the photon map algorithm in 1993, these prob-
lems were still not addressed efficiently by any ray tracing algorithm. The pho-
ton map method offers a solution to both problems. Diffuse interreflections and
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caustics are both indirect illumination of diffuse surfaces; with the photon map
method, such illumination is estimated using precomputed photon maps. Extend-
ing ray tracing with photon maps yields a method capable of efficiently simulating
all types of direct and indirect illumination. Furthermore, the photon map method
can handle participating media and it is fairly simple to parallelize [Jensen00].

1.2 What is photon mapping?

The photon map algorithm was developed in 1993–1994 and the first papers on the
method were published in 1995. It is a versatile algorithm capable of simulating
global illumination including caustics, diffuse interreflections, and participating
media in complex scenes. It provides the same flexibility as general Monte Carlo
ray tracing methods using only a fraction of the computation time.

The global illumination algorithm based on photon maps is a two-pass method.
The first pass builds the photon map by emitting photons from the light sources into
the scene and storing them in aphoton mapwhen they hit non-specular objects.
The second pass, the rendering pass, uses statistical techniques on the photon map
to extract information about incoming flux and reflected radiance at any point in
the scene. The photon map is decoupled from the geometric representation of the
scene. This is a key feature of the algorithm, making it capable of simulating
global illumination in complex scenes containing millions of triangles, instanced
geometry, and complex procedurally defined objects.

Compared with finite element radiosity, photon maps have the advantage that
no meshing is required. The radiosity algorithm is faster for simple diffuse scenes
but as the complexity of the scene increases, photon maps tend to scale better. Also
the photon map method handles non-diffuse surfaces and caustics.

Monte Carlo ray tracing methods such as path tracing, bidirectional path trac-
ing, and Metropolis can simulate all global illumination effects in complex scenes
with very little memory overhead. The main benefit of the photon map compared
with these methods is efficiency, and the price paid is the extra memory used to
store the photons. For most scenes the photon map algorithm is significantly faster,
and the result looks better since the error in the photon map method is of low fre-
quency which is less noticeable than the high frequency noise of general Monte
Carlo methods.

Another big advantage of photon maps (from a commercial point of view) is
that there is no patent on the method; anyone can add photon maps to their renderer.
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As a result several commercial systems use photon maps for rendering caustics and
global illumination.

1.3 Overview of the course material

The first part describes the basic photon mapping algorithm. Section 2.1 describes
emission, tracing, and storing of photons. Section 2.2 describes how to organize
the photons in a balanced kd-tree for improved performance in the rendering step.
The radiance estimate based on photons is outlined in section 2.3. This section
also contains information on how to filter the estimate to obtain better quality and
it contains a description of how to locate photons efficiently given the balanced
kd-tree. The rendering pass is presented in section 2.4 with information on how to
split the rendering equation and use the photon map to efficiently compute different
parts of the equation. Section 2.5 we give a number of examples of scenes rendered
with the photon map algorithm.

The second part provides some information about recent research on visual
importance. How can we send the photons to the parts of the model that we are
concerned about?

The last part provides the details for a number of practical tricks that can make
photon mapping significantly faster.

1.4 More information

For more information about photon mapping, all the practical details, the theory
and the insight for understanding the technique see:

Henrik Wann Jensen
Realistic Image Synthesis using Photon Mapping
AK Peters, 2001

This book also contains additional information about participating media and sub-
surface scattering. Finally, it contains an implementation with source code in C++
of the photon map data structure.
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Chapter 2

A Practical Guide to Global
Illumination using Photon
Mapping

2.1 Photon tracing

The purpose of the photon tracing pass is to compute indirect illumination on dif-
fuse surfaces. This is done by emitting photons from the light sources, tracing them
through the scene, and storing them at diffuse surfaces.

2.1.1 Photon emission

This section describes how photons are emitted from a single light source and from
multiple light sources, and describes the use of projection maps which can increase
the emission efficiency considerably.

Emission from a single light source

The photons emitted from a light source should have a distribution corresponding
to the distribution of emissive power of the light source. This ensures that the
emitted photons carry the same flux — ie. we do not waste computational resources
on photons with low power.

Photons from a diffuse point light source are emitted in uniformly distributed
random directions from the point. Photons from a directional light are all emitted
in the same direction, but from origins outside the scene. Photons from a diffuse
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square light source are emitted from random positions on the square, with direc-
tions limited to a hemisphere. The emission directions are chosen from a cosine
distribution: there is zero probability of a photon being emitted in the direction
parallel to the plane of the square, and highest probability of emission is in the
direction perpendicular to the square.

In general, the light source can have any shape and emission characteristics —
the intensity of the emitted light varies with both origin and direction. For example,
a (matte) light bulb has a nontrivial shape and the intensity of the light emitted
from it varies with both position and direction. The photon emission should follow
this variation, so in general, the probability of emission varies depending on the
position on the surface of the light source and the direction.
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Figure 2.1: Emission from light sources: (a) point light, (b) directional light,
(c) square light, (d) general light.

Figure 2.1 shows the emission from these different types of light sources.

The power (“wattage”) of the light source has to be distributed among the pho-
tons emitted from it. If the power of the light isPlight and the number of emitted
photons isne, the power of each emitted photon is

Pphoton =
Plight

ne
. (2.1)

Pseudocode for a simple example of photon emission from a diffuse point light
source is given in Figure 2.2.

To further reduce variation in the computed indirect illumination (during ren-
dering), it is desirable that the photons are emitted as evenly as possible. This can
for example be done with stratification [Rubinstein81] or by using low-discrepancy
quasi-random sampling [Keller96].
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emit photons from diffuse point light() {
ne = 0 number of emitted photons
while (not enough photons) {

do { use simple rejection sampling to find diffuse photon direction
x = random number between -1 and 1
y = random number between -1 and 1
z = random number between -1 and 1

} while ( x2 + y2 + z2 > 1 )

~d = < x, y, z >
~p = light source position

trace photon from ~p in direction ~d
ne = ne + 1

}
scale power of stored photons with 1/ne

}

Figure 2.2: Pseudocode for emission of photons from a diffuse point light

Multiple lights

If the scene contains multiple light sources, photons should be emitted from each
light source. More photons should be emitted from brighter lights than from dim
lights, to make the power of all emitted photons approximately even. (The infor-
mation in the photon map is best utilized if the power of the stored photons is
approximately even). One might worry that scenes with many light sources would
require many more photons to be emitted than scenes with a single light source.
Fortunately, it is not so. In a scene with many light sources, each light contributes
less to the overall illumination, and typically fewer photons can be emitted from
each light. If, however, only a few light sources are important one might use an
importance sampling map [Peter98] to concentrate the photons in the areas that are
of interest to the observer. The tricky part about using an importance map is that we
do not want to generate photons with energy levels that are too different since this
will require a larger number of photons in the radiance estimate (see section 2.3)
to ensure good quality.
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Projection maps

In scenes with sparse geometry, many emitted photons will not hit any objects.
Emitting these photons is a waste of time. To optimize the emission,projection
maps can be used [Jensen93, Jensen95a]. A projection map is simply a map of
the geometry as seen from the light source. This map consists of many little cells.
A cell is “on” if there is geometry in that direction, and “off” if not. For example,
a projection map is a spherical projection of the scene for a point light, and it is a
planar projection of the scene for a directional light. To simplify the projection it is
convenient to project the bounding sphere around each object or around a cluster of
objects [Jensen95a]. This also significantly speeds up the computation of the pro-
jection map since we do not have to examine every geometric element in the scene.
The most important aspect about the projection map is that it gives a conservative
estimate of the directions in which it is necessary to emit photons from the light
source. Had the estimate not been conservative (e.g. we could have sampled the
scene with a few photons first), we could risk missing important effects, such as
caustics.

The emission of photons using a projection map is very simple. One can either
loop over the cells that contain objects and emit a random photon into the direc-
tions represented by the cell. This method can, however, lead to slightly biased
results since the photon map can be “full” before all the cells have been visited.
An alternative approach is to generate random directions and check if the cell cor-
responding to that direction has any objects (if not a new random direction should
be tried). This approach usually works well, but it can be costly in sparse scenes.
For sparse scenes it is better to generate photons randomly for the cells which have
objects. A simple approach is to pick a random cell with objects and then pick
a random direction for the emitted photon for that cell [Jensen93]. In all circum-
stances it is necessary to scale the energy of the stored photons based on the number
of active cells in the projection map and the number of photons emitted [Jensen93].
This leads to a slight modification of formula 2.1:

Pphoton =
Plight

ne

cells with objects
total number of cells

. (2.2)

Another important optimization for the projection map is to identify objects
with specular properties (i.e. objects that can generate caustics) [Jensen93]. As it
will be described later, caustics are generated separately, and since specular objects
often are distributed sparsely it is very beneficial to use the projection map for

14



caustics.

2.1.2 Photon tracing

Once a photon has been emitted, it is traced through the scene using photon tracing
(also known as “light ray tracing”, “backward ray tracing”, “forward ray tracing”,
and “backward path tracing”). Photon tracing works in exactly the same way as ray
tracing except for the fact that photons propagate flux whereas rays gather radiance.
This is an important distinction since the interaction of a photon with a material can
be different than the interaction of a ray. A notable example is refraction where
radiance is changed based on the relative index of refraction[Hall88] — this does
not happen to photons.

When a photon hits an object, it can either be reflected, transmitted, or ab-
sorbed. Whether it is reflected, transmitted, or absorbed is decided probabilistically
based on the material parameters of the surface. The technique used to decide the
type of interaction is known as Russian roulette [Arvo90] — basically we roll a
dice and decide whether the photon should survive and be allowed to perform an-
other photon tracing step.

Examples of photon paths are shown in Figure 2.3.

Reflection, transmission, or absorption?

For a simple example, we first consider a monochromatic simulation. For a re-
flective surface with a diffuse reflection coefficientd and specular reflection coeffi-
cients (with d + s ≤ 1) we use a uniformly distributed random variableξ ∈ [0, 1]
(computed with for exampledrand48() ) and make the following decision:

ξ ∈ [0, d] −→ diffuse reflection
ξ ∈]d, s + d] −→ specular reflection
ξ ∈]s + d, 1] −→ absorption

In this simple example, the use of Russian roulette means that we do not have to
modify the power of the reflected photon — the correctness is ensured by averaging
several photon interactions over time. Consider for example a surface that reflects
50% of the incoming light. With Russian roulette only half of the incoming photons
will be reflected, but with full energy. For example, if you shoot 1000 photons at
the surface, you can either reflect 1000 photons with half the energy or 500 photons
with full energy. It can be seen that Russian roulette is a powerful technique for
reducing the computational requirements for photon tracing.
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a

b
c

Figure 2.3: Photon paths in a scene (a “Cornell box” with a chrome sphere on left
and a glass sphere on right): (a) two diffuse reflections followed by absorption, (b) a
specular reflection followed by two diffuse reflections, (c) two specular transmissions
followed by absorption.

With more color bands (for example RGB colors), the decision gets slightly
more complicated. Consider again a surface with some diffuse reflection and some
specular reflection, but this time with different reflection coefficients in the three
color bands. The probabilities for specular and diffuse reflection can be based on
the total energy reflected by each type of reflection or on the maximum energy
reflected in any color band. If we base the decision on maximum energy, we can
for example compute the probabilityPd for diffuse reflection as

Pd =
max(drPr, dgPg, dbPb)

max(Pr, Pg, Pb)

where(dr, dg, db) are the diffuse reflection coefficients in the red, green, and blue
color bands, and(Pr, Pg, Pb) are the powers of the incident photon in the same
three color bands.

Similarly, the probabilityPs for specular reflection is

Ps =
max(srPr, sgPg, sbPb)

max(Pr, Pg, Pb)

where(sr, sg, sb) are the specular reflection coefficients.
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The probability of absorbtion isPa = 1 − Pd − Ps. With these probabilities,
the decision of which type of reflection or absorption should be chosen takes the
following form:

ξ ∈ [0, Pd] −→ diffuse reflection
ξ ∈]Pd, Ps + Pd] −→ specular reflection
ξ ∈]Ps + Pd, 1] −→ absorption

The power of the reflected photon needs to be adjusted to account for the proba-
bility of survival. If, for example, specular reflection was chosen in the example
above, the powerPrefl of the reflected photon is:

Prefl,r = Pinc,r sr/Ps

Prefl,g = Pinc,g sg/Ps

Prefl,b = Pinc,b sb/Ps

wherePinc is the power of the incident photon.
The computed probabilities again ensure us that we do not waste time emitting

photons with very low power.
It is simple to extend the selection scheme to also handle transmission, to han-

dle more than three color bands, and to handle other reflection types (for example
glossy and directional diffuse).

Why Russian roulette?

Why do we go through this effort to decide what to do with a photon? Why not just
trace new photons in the diffuse and specular directions and scale the photon energy
accordingly? There are two main reasons why the use of Russian roulette is a very
good idea. Firstly, we prefer photons with similar power in the photon map. This
makes the radiance estimate much better using only a few photons. Secondly, if
we generate, say, two photons per surface interaction then we will have28 photons
after 8 interactions. This means 256 photons after 8 interactions compared to 1
photon coming directly from the light source! Clearly this is not good. We want at
least as many photons that have only 1–2 bounces as photons that have made 5–8
bounces. The use of Russian roulette is therefore very important in photon tracing.

There is one caveat with Russian roulette. It increases variance on the solution.
Instead of using the exact values for reflection and transmission to scale the photon
energy we now rely on a sampling of these values that will converge to the correct
result as enough photons are used.
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(a) (b)

Figure 2.4: “Cornell box” with glass and chrome spheres: (a) ray traced image (di-
rect illumination and specular reflection and transmission), (b) the photons in the
corresponding photon map.

Details on photon tracing and Russian roulette can be found in [Shirley90,
Pattanaik93, Glassner95].

2.1.3 Photon storing

This section describes which photon-surface interactions are stored in the photon
map. It also describes in more detail the photon map data structure.

Which photon-surface interactions are stored?

Photons are only stored where they hit diffuse surfaces (or, more precisely, non-
specular surfaces). The reason is that storing photons on specular surfaces does
not give any useful information: the probability of having a matching incoming
photon from the specular direction is zero, so if we want to render accurate specular
reflections the best way is to trace a ray in the mirror direction using standard ray
tracing. For all other photon-surface interactions, data is stored in a global data
structure, thephoton map. Note that each emitted photon can be stored several
times along its path. Also, information about a photon is stored at the surface
where it is absorbed if that surface is diffuse.
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For each photon-surface interaction, the position, incoming photon power, and
incident direction are stored. (For practical reasons, there is also space reserved for
a flag with each set of photon data. The flag is used during sorting and look-up in
the photon map. More on this in the following.)

As an example, consider again the simple scene from Figure 2.3, a “Cornell
box” with two spheres. Figure 2.4(a) shows a traditional ray traced image (direct
illumination and specular reflection and transmission) of this scene. Figure 2.4(b)
shows the photons in the photon map generated for this scene. The high concen-
tration of photons under the glass sphere is caused by focusing of the photons by
the glass sphere.

Data structure

Expressed inC the following structure is used for each photon [Jensen96b]:

struct photon {

float x,y,z; // position

char p[4]; // power packed as 4 chars

char phi, theta; // compressed incident direction

short flag; // flag used in kdtree

}

The power of the photon is represented compactly as 4 bytes using Ward’s
packed rgb-format [Ward91]. If memory is not of concern one can use 3 floats to
store the power in the red, green, and blue color band (or, in general, one float per
color band if a spectral simulation is performed).

The incident direction is a mapping of the spherical coordinates of the photon
direction to 65536 possible directions. They are computed as:

phi = 255 * (atan2(dy,dx)+PI) / (2*PI)

theta = 255 * acos(dx) / PI

whereatan2 is from the standard C library. The direction is used to compute the
contribution for non-Lambertian surfaces [Jensen96a], and for Lambertian surfaces
it is used to check if a photon arrived at the front of the surface. Since the photon
direction is used often during rendering it pays to have a lookup table that maps the
theta, phi direction to three floats directly instead of using the formula for spherical
coordinates which involves the use of the costlycos() andsin() functions.
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A minor note is that the flag in the structure is a short. Only 2 bits of this flag
are used (this is for the splitting plane axis in the kd-tree), and it would be possible
to use just one byte for the flag. However for alignment reasons it is preferable to
have a 20 byte photon rather than a 19 byte photon — on some architectures it is
even a necessity since the float-value in subsequent photons must be aligned on a
4 byte address.

We might be able to compress the information more by using the fact that we
know the cube in which the photon is located. The position is, however, used very
often when the photons are processed and by using standard float we avoid the
overhead involved in extracting the true position from a specialized format.

During the photon tracing pass the photon map is arranged as a flat array of
photons. For efficiency reasons this array is re-organized into a balanced kdtree
before rendering as explained in section 2.2.

2.1.4 Extension to participating media

Up to this point, all photon interactions have been assumed to happen at object sur-
faces; all volumes were implicitly assumed to not affect the photons. However, it
is simple to extend the photon map method to handleparticipating media, i.e. vol-
umes that participate in the light transport. In scenes with participating media, the
photons are stored within the media in a seperatevolume photon map[Jensen98].

Photon emission, tracing, and storage

Photons can be emitted from volumes as well as from surfaces and points. For
example, the light from a candle flame can be simulated by emitting photons from
a flame-shaped volume.

When a photon travels through a participating medium, it has a certain prob-
ability of being scattered or absorped in the medium. The probability depends
on the density of the medium and on the distance the photon travels through the
medium: the denser the medium, the shorter the average distance before a photon
interaction happens. Photons are stored at the positions where a scattering event
happens. The exception is photons that come directly from the light source since
direct illumination is evaluated using ray tracing. This separation was introduced
in [Jensen98] and it allows us to compute the in-scattered radiance in a medium
simply by a lookup in the photon map.
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Figure 2.5: Sphere in fog: (a) schematic diagram of light paths, (b) the caustic pho-
tons in the photon map.

As an example, consider a glass sphere in fog illuminated by directional light.
Figure 2.5(a) shows a schematic diagram of the photon paths as photons are being
focused by refraction in the glass sphere. Figure 2.5(b) shows the caustic photons
stored in the photon map.

Multiple scattering, anisotropic scattering, and non-homogeneous media

The simple example above only shows the photon interaction in the fog after refrac-
tion by the glass sphere, and the photon paths are terminated at the first scattering
event. General multiple scattering is simulated simply by letting the photons scatter
everywhere and continuously after the first interaction. The path can be terminated
using Russian roulette.

The fog in the example has uniform density, but it is not difficult to handle
media with nonuniform density (aka. nonhomogeneous media), since we use ray
marching to integrate the properties of the medium. A simple ray marcher works
by dividing the medium into little steps [Ebert94]. The accumulated density (inte-
grated extinction coefficient) is updated at each step, and based on a precomputed
probability it is determined whether the photon should be absorbed, scattered, or
whether another step is necessary.

21



For more complicated examples of scattering in participating media, including
anisotropic and nonhomogeneous media and complex geometry, see [Jensen98].

2.1.5 Three photon maps

For efficiency reasons, it pays off to divide the stored photons into three photon
maps:

Caustic photon map: contains photons that have been through at least one spec-
ular reflection before hitting a diffuse surface:LS+D.

Global photon map: an approximate representation of the global illumination so-
lution for the scene for all diffuse surfaces:L{S|D|V }∗D

Volume photon map: indirect illumination of a participating medium:
L{S|D|V }+V .

Here, we used the grammar from [Heckbert90] to describe the photon paths:L means
emission from the light source,S is specular reflection or transmission,D is dif-
fuse (ie. non-specular) reflection or transmission, andV is volume scattering. The
notation{x|y|z} means “one ofx, y, or z”, x+ means one or several repeats ofx,
andx∗ means zero or several repeats ofx.

The reason for keeping three separate photon maps will become clear in sec-
tion 2.4. A separate photon tracing pass is performed for the caustic photon map
since it should be of high quality and therefore often needs more photons than the
global photon map and the volume photon map.

The construction of the photon maps is most easily achieved by using two sep-
arate photon tracing steps in order to build the caustics photon map and the global
photon map (including the volume photon map). This is illustrated in Figure 2.6
for a simple test scene with a glass sphere and 2 diffuse walls. Figure 2.6(a) shows
the construction of the caustics photon map with a dense distribution of photons,
and Figure 2.6(b) shows the construction of the global photon map with a more
coarse distribution of photons.

2.2 Preparing the photon map for rendering

Photons are only generated during the photon tracing pass — in the rendering pass
the photon map is a static data structure that is used to compute estimates of the
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(a) (b)

Figure 2.6: Building (a) the caustics photon map and (b) the global photon map.

incoming flux and the reflected radiance at many points in the scene. To do this it
is necessary to locate the nearest photons in the photon map. This is an operation
that is done extremely often, and it is therefore a good idea to optimize the repre-
sentation of the photon map before the rendering pass such that finding the nearest
photons is as fast as possible.

First, we need to select a good data structure for representing the photon map.
The data structure should be compact and at the same time allow for fast nearest
neighbor searching. It should also be able to handle highly non-uniform distribu-
tions — this is very often the case in the caustics photon map. A natural candidate
that handles these requirements isa balanced kd-tree[Bentley75]. Examples of
using a balanced versus an unbalanced kd-tree can be found in [Jensen96a].

2.2.1 The balanced kd-tree

The time it takes to locate one photon in a balanced kd-tree has a worst time perfor-
mance ofO(log N), whereN is the number of photons in the tree. Since the photon
map is created by tracing photons randomly through a model one might think that a
dynamically built kd-tree would be quite well balanced already. However, the fact
that the generation of the photons at the light source is based on the projection map
combined with the fact that models often contain highly directional reflectance
models easily results in a skewed tree. Since the tree is created only once and
used many times during rendering it is quite natural to consider balancing the tree.
Another argument that is perhaps even more important is the fact that a balanced
kd-tree can be represented using a heap-like data-structure [Sedgewick92] which
means that explicitly storing the pointers to the sub-trees at each node is no longer
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kdtree *balance( points ) {
Find the cube surrounding the points
Select dimension dim in which the cube is largest
Find median of the points in dim
s1 = all points below median
s2 = all points above median
node = median
node.left = balance( s1 )
node.right = balance( s2 )
return node

}

Figure 2.7: Pseudocode for balancing the photon map

necessary. (Array element 1 is the tree root, and elementi has element2i as left
child and element2i + 1 as right child.) This can lead to considerable savings in
memory when a large number of photons is used.

2.2.2 Balancing

Balancing a kd-tree is similar to balancing a binary tree. The main difference is the
choice at each node of a splitting dimension. When a splitting dimension of a set is
selected, the median of the points in that dimension is chosen as the root node of the
tree representing the set and the left and right subtrees are constructed from the two
sets separated by the median point. The choice of a splitting dimension is based
on the distribution of points within the set. One might use either the variance or
the maximum distance between the points as a criterion. We prefer a choice based
upon maximum distance since it can be computed very efficiently (even though
a choice based upon variance might be slightly better). The splitting dimension is
thus chosen as the one which has the largest maximum distance between the points.

Figure 2.7 contains a pseudocode outline for the balancing algorithm [Jensen96c].

To speed up the balancing process it is convenient to use an array of pointers
to the photons. In this way only pointers needs to be shuffled during the median
search. An efficient median search algorithm can be found in most textbooks on
algorithms — see for example [Sedgewick92] or [Cormen89].

The complexity of the balancing algorithm isO(N log N) whereN is the num-
ber of photons in the photon map. In practice, this step only takes a few seconds
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even for several million photons.

2.3 The radiance estimate

A fundamental component of the photon map method is the ability to compute
radiance estimates at any non-specular surface point in any given direction.

2.3.1 Radiance estimate at a surface

The photon map can be seen as a representation of the incoming flux; to com-
pute radiance we need to integrate this information. This can be done using the
expression for reflected radiance:

Lr(x, ~ω) =
∫
Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′)|~nx · ~ω′| dω′i , (2.3)

whereLr is the reflected radiance atx in direction ~ω. Ωx is the (hemi)sphere
of incoming directions,fr is the BRDF (bidirectional reflectance distribution func-
tion) [Nicodemus77] atx andLi is the incoming radiance. To evaluate this integral
we need information about the incoming radiance. Since the photon map provides
information about the incoming flux we need to rewrite this term. This can be done
using the relationship between radiance and flux:

Li(x, ~ω′) =
d2Φi(x, ~ω′)

cos θi dω′i dAi
, (2.4)

and we can rewrite the integral as

Lr(x, ~ω) =
∫
Ωx

fr(x, ~ω′, ~ω)
d2Φi(x, ~ω′)

cos θi dω′i dAi
|~nx · ~ω′| dω′i

=
∫
Ωx

fr(x, ~ω′, ~ω)
d2Φi(x, ~ω′)

dAi
. (2.5)

The incoming fluxΦi is approximated using the photon map by locating then

photons that has the shortest distance tox. Each photonp has the power∆Φp(~ωp)
and by assuming that the photons intersects the surface atx we obtain

Lr(x, ~ω) ≈
n∑

p=1

fr(x, ~ωp, ~ω)
∆Φp(x, ~ωp)

∆A
. (2.6)
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L

Figure 2.8: Radiance is estimated using the nearest photons in the photon map.

The procedure can be imagined as expanding a sphere aroundx until it contains
n photons (see Figure 2.8) and then using thesen photons to estimate the radiance.

Equation 2.6 still contains∆A which is related to the density of the photons
aroundx. By assuming that the surface is locally flat aroundx we can compute
this area by projecting the sphere onto the surface and use the area of the resulting
circle. This is indicated by the hatched area in Figure 2.8 and equals:

∆A = πr2 , (2.7)

wherer is the radius of the sphere – ie. the largest distance betweenx and each of
the photons.

This results in the following equation for computing reflected radiance at a
surface using the photon map:

Lr(x, ~ω) ≈ 1
πr2

N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) . (2.8)

This estimate is based on many assumptions and the accuracy depends on the
number of photons used in the photon map and in the formula. Since a sphere is
used to locate the photons one might easily include wrong photons in the estimate
in particular in corners and at sharp edges of objects. Edges and corners also causes
the area estimate to be wrong. The size of those regions in which these errors occur
depends largely on the number of photons in the photon map and in the estimate.
As more photons are used in the estimate and in the photon map, formula 2.8
becomes more accurate. If we ignore the error due to limited accuracy of the
representation of the position, direction and flux, then we can go to the limit and
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L L

Figure 2.9: Using a sphere (left) and using a disc (right) to locate the photons.

increase the number of photons to infinity. This gives the following interesting
result whereN is the number of photons in the photon map:

lim
N→∞

1
πr2

bNαc∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) = Lr(x, ~ω) for α ∈]0, 1[ . (2.9)

This formulation applies to all pointsx located on a locally flat part of a surface for
which the BRDF, does not contain the Dirac delta function (this excludes perfect
specular reflection). The principle in equation 2.9 is that not only will an infinite
amount of photons be used to represent the flux within the model but an infinite
amount of photons will also be used to estimate radiance and the photons in the
estimate will be located within an infinitesimal sphere. The different degrees of in-
finity are controlled by the termNα whereα ∈]0, 1[. This ensures that the number
of photons in the estimate will be infinitely fewer than the number of photons in
the photon map.

Equation 2.9 means that we can obtain arbitrarily good radiance estimates by
just using enough photons! In finite element based approaches it is more compli-
cated to obtain arbitrary accuracy since the error depends on the resolution of the
mesh, the resolution of the directional representation of radiance and the accuracy
of the light simulation.

Figure 2.8 shows how locating the nearest photons is similar to expanding a
sphere aroundx and using the photons within this sphere. It is possible to use
other volumes than the sphere in this process. One might use a cube instead, a
cylinder or perhaps a disc. This could be useful to either obtain an algorithm that
is faster at locating the nearest photons or perhaps more accurate in the selection of
photons. If a different volume is used then∆A in equation 2.6 should be replaced
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by the area of the intersection between the volume and the tangent plane touching
the surface atx. The sphere has the obvious advantage that the projected area and
the distance computations are very simple and thus efficiently computed. A more
accurate volume can be obtained by modifying the sphere into a disc (ellipsoid)
by compressing the sphere in the direction of the surface normal atx (shown in
Figure 2.9) [Jensen96c]. The advantage of using a disc would be that fewer “false
photons” are used in the estimate at edges and in corners. This modification works
pretty well at the edges in a room, for instance, since it prevents photons on the
walls to leak down to the floor. One issue that still occurs, however, is that the area
estimate might be wrong or photons may leak into areas where they do not belong.
This problem is handled primarily by the use of filtering.

2.3.2 Filtering

If the number of photons in the photon map is too low, the radiance estimates be-
comes blurry at the edges. This artifact can be pleasing when the photon map is
used to estimate indirect illumination for a distribution ray tracer (see section 2.4
and Figure 2.15) but it is unwanted in situations where the radiance estimate rep-
resents caustics. Caustics often have sharp edges and it would be nice to preserve
these edges without requiring too many photons.

To reduce the amount of blur at edges, the radiance estimate is filtered. The
idea behind filtering is to increase the weight of photons that are close to the point
of interest,x. Since we use a sphere to locate the photons it would be natural to
assume that the filters should be three-dimensional. However, photons are stored
at surfaces which are two-dimensional. The area estimate is also based on the
assumption that photons are located on a surface. We therefore need a 2d-filter
(similar to image filters) which is normalized over the region defined by the pho-
tons.

The idea of filtering caustics is not new. Collins [Collins94] has examined
several filters in combination with illumination maps. The filters we have ex-
amined are two radially symmetric filters: the cone filter and the Gaussian fil-
ter [Jensen96c], and the specialized differential filter introduced in [Jensen95a].
For examples of more advanced filters see Myszkowski et al. [Myszkowski97].
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The cone filter

The cone-filter [Jensen96c] assigns a weight,wpc, to each photon based on the
distance,dp, betweenx and the photonp. This weight is:

wpc = 1− dp

k r
, (2.10)

wherek ≥ 1 is a filter constant characterizing the filter andr is the maximum
distance. The normalization of the filter based on a 2d-distribution of the photons
is 1− 2

3k and the filtered radiance estimate becomes:

Lr(x, ~ω) ≈

N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp)wpc

(1− 2
3k )πr2

. (2.11)

The Gaussian filter

The Gaussian filter [Jensen96c] has previously been reported to give good results
when filtering caustics in illumination maps [Collins94]. It is easy to use the Gaus-
sian filter with the photon map since we do not need to warp the filter to some
surface function. Instead we use the assumption about the locally flat surfaces and
we can use a simple image based Gaussian filter [Pavicic90] and the weightwpg of
each photon becomes

wpg = α

1− 1− e−β
d2
p

2r2

1− e−β

 , (2.12)

wheredp is the distance between the photonp andx andα = 0.918 andβ =
1.953 (see [Pavicic90] for details). This filter is normalized and the only change to
equation 2.8 is that each photon contribution is multiplied bywpg:

Lr(x, ~ω) ≈
N∑

p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp)wpg . (2.13)

Differential checking

In [Jensen95a] it was suggested to use a filter based on differential checking. The
idea is to detect regions near edges in the estimation process and use less photons
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in these regions. In this way we might get some noise in the estimate but that is
often preferable to blurry edges.

The radiance estimate is modified based on the following observation: when
adding photons to the estimate, near an edge the changes of the estimate will be
monotonic. That is, if we are just outside a caustic and we begin to add photons
to the estimate (by increasing the size of the sphere centered atx that contains the
photons), then it can be observed that the value of the estimate is increasing as we
add more photons; and vice versa when we are inside the caustic. Based on this
observation, differential checking can be added to the estimate — we stop adding
photons and use the estimate available if we observe that the estimate is either
constantly increasing or decreasing as more photons are added.

2.3.3 The radiance estimate in a participating medium

For the radiance estimate presented so far we have assumed that the photons are
located on a surface. For photons in a participating medium the formula changes
to [Jensen98]:

Li(x, ~ω) =
∫

Ω
f(x, ~ω′, ~ω) L(x, ~ω′) dω′

=
∫

Ω
f(x, ~ω′, ~ω)

d2Φ(x, ~ω′)
σs(x) dω′ dV

dω′

=
1

σs(x)

∫
Ω
f(x, ~ω′, ~ω)

d2Φ(x, ~ω′)
dV

≈ 1
σs(x)

n∑
p=1

f(x, ~ω′p, ~ω)
∆Φp(x, ~ω′p)

4
3πr3

, (2.14)

whereLi is the in-scattered radiance, and the volumedV = 4
3πr3 is the volume of

the sphere containing the photons.σs(x) is the scattering coefficient atx andf is
the phase-function.

2.3.4 Locating the nearest photons

Efficiently locating the nearest photons is critical for good performance of the pho-
ton map algorithm. In scenes with caustics, multiple diffuse reflections, and/or
participating media there can be a large number of photon map queries.

Fortunately the simplicity of the kd-tree permits us to implement a simple but
quite efficient search algorithm. This search algorithm is a straight forward ex-
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tension of standard search algorithms for binary trees [Cormen89, Sedgewick92,
Horowitz93]. It is also related to range searching where kd-trees are commonly
used as they have optimal storage and good performance [Preparata85]. The near-
est neighbors query for kd-trees has been described extensively in several publica-
tions by Bentley et al. including [Bentley75, Bentley79a, Bentley79b, Bentley80].
More recent publications include [Preparata85, Sedgewick92]. Some of these pa-
pers go beyond our description of a nearest neighbors query by adding modifi-
cations and extensions to the kd-tree to further reduce the cost of searching. We
do not implement these extensions because we want to maintain the low storage
overhead of the kd-tree as this is an important aspect of the photon map.

Locating the nearest neighbors in a kd-tree is similar to range searching [Preparata85]
in the sense that we want to locate photons within a given volume. For the photon
map it makes sense to restrict the size of the initial search range since the contribu-
tion from a fixed number of photons becomes small for large regions. This simple
observation is particularly important for caustics since they often are concentrated
in a small region. A search algorithm that does not limit the search range will be
slow in such situations since a large part of the kd-tree will be visited for regions
with a sparse number of photons.

A generic nearest neighbors search algorithm begins at the root of the kd-tree,
and adds photons to a list if they are within a certain distance. For then nearest
neighbors the list is sorted such that the photon that is furthest away can be deleted
if the list containsn photons and a new closer photon is found. Instead of naive
sorting of the full list it is better to use a max-heap [Preparata85, Sedgewick92,
Horowitz93]. A max-heap (also known as a priority queue) is a very efficient way
of keeping track of the element that is furthest away from the point of interest.
When the max-heap is full, we can use the distanced to the root element (ie. the
photon that is furthest away) to adjust the range of the query. Thus we skip parts
of the kd-tree that are further away thand.

Another simple observation is that we can use squared distances — we do not
need the real distance. This removes the need of a square root calculation per
distance check.

The pseudo-code for the search algorithm is given in Figure 2.10. A simple
implementation of this routine is available with source code at [MegaPov00].

For this search algorithm it is necessary to provide an initial maximum search
radius. A well-chosen radius allows for good pruning of the search reducing the
number of photons tested. A maximum radius that is too low will on the other hand
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given the photon map, a positionx and a max search distanced2

this recursive function returns a heaph with the nearest photons.
Call with locate photons(1) to initiate search at the root of the kd-tree

locate photons( p ) {
if ( 2p + 1 < number of photons ) {

examine child nodes
Compute distance to plane (just a subtract)

δ = signed distance to splitting plane of node n
if ( δ < 0) {

We are left of the plane - search left subtree first
locate photons( 2p )
if ( δ2 < d2 )

locate photons( 2p + 1 ) check right subtree
} else {

We are right of the plane - search right subtree first
locate photons( 2p + 1 )
if ( δ2 < d2 )

locate photons( 2p ) check left subtree
}

}
Compute true squared distance to photon

δ2 = squared distance from photon p to x
if ( δ2 < d2 ) { Check if the photon is close enough?

insert photon into max heap h
Adjust maximum distance to prune the search

d2 = squared distance to photon in root node of h
}

}

Figure 2.10: Pseudocode for locating the nearest photons in the photon map

introduce noise in the photon map estimates. The radius can be chosen based on an
error metric or the size of the scene. The error metric could for example take the
average energy of the stored photons into account and compute a maximum radius
from that assuming some allowed error in the radiance estimate.

A few extra optimizations can be added to this routine, for example a delayed
construction of the max heap to the time when the number of photons needed has
been found. This is particularly useful when the requested number of photons is
large.

Nathan Kopp has implemented a slightly different optimization in an extended
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Figure 2.11: Tracing a ray through a pixel.

version of the Persistence Of Vision Ray Tracer (POV) calledMegaPov (available
at [MegaPov00]). In his implementation the initial maximum search radius is set to
a very low value. If this value turns out to be too low, another search is performed
with a higher maximum radius. He reports good timings and results from this
technique [Kopp99].

Another change to the search routine is to use the disc check as described ear-
lier. This is useful to avoid incorrect color bleeding and particularly helpful if the
gathering step is not used and the photons are visualized directly.

2.4 Rendering

Given the photon map and the ability to compute a radiance estimate from it, we
can proceed with the rendering pass. The photon map is view independent, and
therefore a single photon map constructured for an environment can be utilized to
render the scene from any desired view. There are several different ways in which
the photon map can be visualized. A very fast visualization technique has been
presented by Myszkowski et al. [Myszkowski97, Volevich99] where photons are
used to compute radiosity values at the vertices of a mesh.

In this note we will focus on the full global illumination approach as presented
in [Jensen96b]. Initially we will ignore the presence of participating media; at the
end of the note we have added some notes for this case.

The final image is rendered using distribution ray tracing in which the pixel ra-
diance is computed by averaging a number of sample estimates. Each sample con-
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sists of tracing a ray from the eye through a pixel into the scene (see Figure 2.11).
The radiance returned by each ray equals the outgoing radiance in the direction of
the ray leaving the point of intersection at the first surface intersected by the ray.
The outgoing radiance,Lo, is the sum of the emitted,Le, and the reflected radiance

Lo(x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) , (2.15)

where the reflected radiance,Lr, is computed by integrating the contribution from
the incoming radiance,Li,

Lr(x, ~ω) =
∫
Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′) cos θi dω′i , (2.16)

wherefr is the bidirectional reflectance distribution function (BRDF), andΩx is
the set of incoming directions aroundx.

Lr can be computed using Monte Carlo integration techniques like path tracing
and distribution ray tracing. These methods are very costly in terms of rendering
time and a more efficient approach can be obtained by using the photon map in
combination with our knowledge of the BRDF and the incoming radiance.

The BRDF is separated into a sum of two components: A specular/glossy,fr,s,
and a diffuse,fr,d

fr(x, ~ω′, ~ω) = fr,s(x, ~ω′, ~ω) + fr,d(x, ~ω′, ~ω) . (2.17)

The incoming radiance is classified using three components:

• Li,l(x, ~ω′) is direct illumination by light coming from the light sources.

• Li,c(x, ~ω′) is caustics — indirect illumination from the light sources via
specular reflection or transmission.

• Li,d(x, ~ω′) is indirect illumination from the light sources which has been
reflected diffusely at least once.

The incoming radiance is the sum of these three components:

Li(x, ~ω′) = Li,l(x, ~ω′) + Li,c(x, ~ω′) + Li,d(x, ~ω′) . (2.18)
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By using the classifications of the BRDF and the incoming radiance we can
split the expression for reflected radiance into a sum of four integrals:

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′) cos θi dω′i

=
∫

Ωx

fr(x, ~ω′, ~ω)Li,l(x, ~ω′) cos θi dω′i +∫
Ωx

fr,s(x, ~ω′, ~ω)(Li,c(x, ~ω′) + Li,d(x, ~ω′)) cos θi dω′i +∫
Ωx

fr,d(x, ~ω′, ~ω)Li,c(x, ~ω′) cos θi dω′i +∫
Ωx

fr,d(x, ~ω′, ~ω)Li,d(x, ~ω′) cos θi dω′i . (2.19)

This is the equation used whenever we need to compute the reflected radiance
from a surface. In the following sections we discuss the evaluation of each of
the integrals in the equation in more detail. We distinguish between two different
situations: an accurate and an approximate.

The accurate computation is used if the surface is seen directly by the eye or
perhaps via a few specular reflections. It is also used if the distance between the ray
origin and the intersection point is below a small threshold value — to eliminate
potential inaccurate color bleeding effects in corners. The approximate evaluation
is used if the ray intersecting the surface has been reflected diffusely since it left
the eye or if the ray contributes only little to the pixel radiance.

2.4.1 Direct illumination

Direct illumination is given by the term∫
Ωx

fr(x, ~ω′, ~ω)Li,l(x, ~ω′) cos θi dω′i ,

and it represents the contribution to the reflected radiance due to direct illumina-
tion. This term is often the most important part of the reflected radiance and it
has to be computed accurately since it determines light effects to which the eye is
highly sensitive such as shadow edges.

Computing the contribution from the light sources is quite simple in ray tracing
based methods. At the point of interest shadow rays are sent towards the light
sources to test for possible occlusion by objects. This is illustrated in Figure 2.12.
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Figure 2.12: Accurate evaluation of the direct illumination.

If a shadow ray does not hit an object the contribution from the light source is
included in the integral otherwise it is neglected. For large area light sources several
shadow rays are used to properly integrate the contribution and correctly render
penumbra regions. This strategy can however be very costly since a large number
of shadow rays is needed to properly integrate the direct illumination.

Using a derivative of the photon map method we can compute shadows more
efficiently using shadow photons [Jensen95c]. This approach can lead to consider-
able speedups in scenes with large penumbra-regions that are normally very costly
to render using standard ray tracing. The approach is stochastic though, so it might
miss shadows from small objects in case these aren’t intersected by any photons.
This is a problem with all techniques that use stochastic evaluation of visibility.

The approximate evaluation is simply the radiance estimate obtained from the
global photon map (no shadow rays or light source evaluations are used). This is
seen in Figure 2.15 where the global photon map is used in the evaluation of the
incoming light for the secondary diffuse reflection.

2.4.2 Specular and glossy reflection

Specular and glossy reflection is computed by evaluation of the term∫
Ωx

fr,s(x, ~ω′, ~ω)(Li,c(x, ~ω′) + Li,d(x, ~ω′)) cos θi dω′i .
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Figure 2.13: Rendering specular and glossy reflections.

The photon map is not used in the evaluation of this integral since it is strongly
dominated byfr,s which has a narrow peak around the mirror direction. Using the
photon map to optimize the integral would require a huge number of photons in
order to make a useful classification of the different directions within the narrow
peak offr,s. To save memory this strategy is not used and the integral is evaluated
using standard Monte Carlo ray tracing optimized with importance sampling based
on fr,s. This is still quite efficient for glossy surfaces and the integral can in most
situations be computed using only a small number of sample rays.

This is illustrated in Figure 2.13.

2.4.3 Caustics

Caustics are represented by the integral∫
Ωx

fr,d(x, ~ω′, ~ω)Li,c(x, ~ω′) cos θi dω′i .

The evaluation of this term is dependent on whether an accurate or an approximate
computation is required. In the accurate computation, the term is solved by us-
ing a radiance estimate from the caustics photon map. The number of photons in
the caustics photon map is high and we can expect good quality of the estimate.
Caustics are never computed using Monte Carlo ray tracing since this is a very in-
efficient method when it comes to rendering caustics. The approximate evaluation
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Figure 2.14: Rendering caustics.

of the integral is included in the radiance estimate from the global photon map.

This is illustrated in Figure 2.14.

2.4.4 Multiple diffuse reflections

The last term in equation 2.19 is∫
Ωx

fr,d(x, ~ω′, ~ω)Li,d(x, ~ω′) cos θi dω′i .

This term represents incoming light that has been reflected diffusely at least once
since it left the light source. The light is then reflected diffusely by the surface
(usingfr,d). Consequently the resulting illumination is very “soft”.

The approximate evaluation of this integral is a part of the radiance estimate
based on the global photon map.

The accurate evaluation of the integral is calculated using Monte Carlo ray trac-
ing optimized using the BRDF with an estimate of the flux as described in [Jensen95b].
An important optimization at Lambertian surfaces is the use of Ward’s irradiance
gradient caching scheme [Ward88, Ward92]. This means that we only compute
indirect illumination on Lambertian surfaces if we cannot interpolate with suf-
ficient accuracy from previously computed values. The advantage of using the
photon map compared to just using the irradiance gradient caching method is that
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we avoid having to trace multiple bounces of indirect illumination and we can use
the information in the photon map to concentrate our samples into the important
directions.

This is illustrated in Figure 2.15.

Figure 2.15: Computing indirect diffuse illumination with importance sampling.

2.4.5 Participating media

In the presence of participating media we can still use the framework as presented
so far. The main difference is that we need to take the media into account as we
trace rays through the scene. This can be done quite efficiently using ray marching
and the volume radiance estimate as described in [Jensen98].

2.4.6 Why distribution ray tracing?

The rendering method presented here is a combination of many algorithms. In or-
der to render accurate images without using too many photons a distribution ray
tracer is used to compute illumination seen directly by the eye. One might con-
sider visualizing the global photon map directly, and this would indeed be a full
global illumination solution (it would be similar to the density estimation approach
presented in [Shirley95]). The problem with this approach is that an accurate solu-
tion requires a large number of photons. Significantly fewer photons are necessary
when a distribution ray tracer is used to evaluate the first diffuse reflection. If
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a blurry solution is not a problem (for example for previewing) then a direct vi-
sualization of the photon map can be used. For more accurate results it is often
necessary to use more than 1000 photons in the radiance estimate (see the results
section for some examples).

40



2.5 Examples

In this section we present some examples of scenes rendered using photon maps.
Please see the photon map web-page athttp://www.gk.dtu.dk/photonmap

for the latest results. Also refer to the papers included in these notes for more ex-
amples.

All the images have been rendered using theDali rendering program.Dali

is an extremely flexible renderer that supports ray tracing with global illumination
and participating media. The global illumination simulation code based on photon
maps is a module inDali that is loaded at runtime. All material and geometry
code is also represented via modules that are loaded at runtime.Dali is multi-
threaded and all images have been rendered on a dual PentiumII-400 PC running
Linux. The width of each image is 1024 pixels and 4 samples per pixel have been
used.

2.5.1 The Cornell box

Most global illumination papers feature a simulation of the Cornell box, and so
does this note. Since we are not limited to radiosity our version of the Cornell
box is slightly different. It has a mirror sphere and a glass sphere instead of the
two cubes featured in the original Cornell box (the original Cornell box can be
found athttp://www.graphics.cornell.edu/online/box/ ). Clas-
sic radiosity methods have difficulties handling curved specular objects, but ray
tracing methods (including the photon map method) have no problems with these.

Ray tracing

The image in Figure 2.16 shows theray tracedversion of the Cornell box. Notice
the sharp shadows and the black ceiling of the box due to lack of area lights and
global illumination. Rendering time was 3.5 seconds.

Ray tracing with soft shadows

In Figure 2.17 soft shadows have been added. It has been reported that some people
associate soft shadows with global illumination, but in the Cornell box example it
is still obvious that something is missing. The ceiling is still black. Rendering time
was 21 seconds.
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Figure 2.16: Ray traced Cornell box with sharp shadows.

Adding caustics

The image in Figure 2.18 includes the caustics photon map. Notice the bright spot
below the glass sphere and on the right wall (due to light reflected of the mirror
sphere and transmitted through the glass sphere). Also notice the faint illumination
of the ceiling. The caustics photon map has 50000 photons and the estimate uses
up to 60 photons. Photon tracing took 2 seconds. Rendering time was 34 seconds.
We did not use any filtering of the caustics photons. A maximum search distance
of 0.15 was used for the caustics photon map (the depth of the Cornell box is 5
units). Using a search distance of 0.5 increased the rendering time to 42 seconds.
For an unlimited initial search radius the rendering time was 43 seconds. The
computed images looked very similar. The faint illumination of the ceiling is a
caustic (created by the bright caustic on the floor) — it becomes a little softer with
the increased search radius. For a search radius of 0.01 the caustics became more
noisy, and the rendering time was 25 seconds. For other scenes where the caustics
are more localized the influence of the maximum search radius on the rendering
time can be more dramatic than for the Cornell box.
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Figure 2.17: Ray traced Cornell box with soft shadows.

Figure 2.18: Cornell box with caustics.
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Figure 2.19: Cornell box with global illumination.

Global illumination

In Figure 2.19 global illumination has been computed. The image is much brighter
and the ceiling is illuminated. 200000 photons were used in the global photon map
and 100 photons in the estimate. The caustic photon map parameters are the same.
Photon tracing took 4 seconds. Rendering time was 66 seconds.

The radiance estimate from the global photon map

Finally in Figure 2.20 we have visualized the radiance estimates from the global
photon map directly. We have shown images with 100 and 500 photons in the
estimate. Notice how the illumination becomes softer and more pleasing with more
photons, but also more blurry and with more false color bleeding at the edges. The
edge problem can be solved partially by using an ellipsoid or disc to locate the
photons (see section 2.3) — with 500 photons in the estimate and the ellipsoid
search activated we get the image in Figure 2.21 These images took 30–35 seconds
to render. Notice how the quality of the direct visualization gives a reasonable
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Figure 2.20: Global photon map radiance estimates visualized directly using 100 pho-
tons (left) and 500 photons (right) in the radiance estimate.

Figure 2.21: Global photon map radiance estimates visualized directly using 500
photons and a disc to locate the photons. Notice the reduced false color bleeding at
the edges.

estimate of the overall illumination in the scene. This is the information we benefit
from in the full rendering step since we do not have to sample the incoming light
recursively.
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Figure 2.22: Fast visualization of the radiance estimate based on 50 photons and a
global photon map with just 200 photons. Rendering time was 4 seconds.

Fast global illumination estimate

For fast visualization of global illumination one can use very few photons in the
global photon map. In Figure 2.22 we have visualized the radiance estimate from a
global photon map with just 200 photons! We used up to 50 photons in the radiance
estimate. The illumination is very blurry and as a consequence the shadows and the
caustics are missing, but the overall illumination is approximately correct, and this
visualization is representative of the final rendering as shown in Figure 2.19. Pho-
ton tracing took 0.03 seconds and the rendering time for the image was 4 seconds.
This is almost as fast as the simple ray tracing version, and the main reason is that
we only used ray tracing to compute the first intersection and the mirror reflections
and transmissions. The global photon map was used to estimate both indirect and
direct light.
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Figure 2.23: Cornell box with water.

2.5.2 Cornell box with water

In the Cornell box in Figure 2.23 we have inserted a displacement-mapped water
surface. To render this scene we used 500000 photons in both the caustics and the
global photon map, and up to 100 photons in the radiance estimate. We used a
higher number of caustic photons due to the water surface which causes the entire
floor to be illuminated by the photons in the caustics photon map. Also the number
of photons in the global photon map have been increased to account for the more
complex indirect illumination in the scene. The water surface is made of 20000
triangles. The rendering time for the image was 11 minutes.
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Figure 2.24: Fractal Cornell box.

2.5.3 Fractal Cornell box

An example of a more complex scene is shown in Figure 2.24. The walls have
been replaced with displacement mapped surfaces (generated using a fractal mid-
point subdivision algorithm) and the model contains a little more than 1.6 million
elements. Notice that each wall segment is an instanced copy of the same fractal
surface. With photon maps it is easy to take advantage of instancing and the ge-
ometry does not have to be explicitly represented. We used 200000 photons in the
global photon map and 50000 in the caustics photon map. This is the same number
of photons as in the simple Cornell box and our reasoning for choosing the same
values are that the complexity of the illumination is more or less the same as in
the simple Cornell box. We want to capture the color bleeding from the colored
walls and the indirect illumination of the ceiling. All in all we used the same pa-
rameters for the photon map as in the simple Cornell box. We only changed the
parameters for the acceleration structure to handle the larger amount of geometry.
The rendering time for the scene was 14 minutes.
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Figure 2.25: Cornell box variation with 4 light sources.

2.5.4 Cornell box with multiple lights

A simple example of a scene with multiple light sources is the variation of the
Cornell box scene shown in Figure 2.25. We generated 100000 photons from each
light source and the resulting global photon map has 400000 photons. Other than
that the rendering parameters were the same as for the other Cornell box with 1
light source. The rendering time for this scene was 90 seconds.
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Figure 2.26: Cornell box with a participating medium.

2.5.5 Cornell box with smoke

The Cornell box scene shown in Figure 2.26 is an example of a scene with a uni-
form participating medium. To simulate this scene we used 100000 photons in the
global photon map and 150000 photons in the volume photon map. A simple non-
adaptive ray marcher has been implemented so the step size had to be set to a low
value which is extra costly. The rendering time for the scene was 44 minutes.
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Figure 2.27: A cognac glass with a caustic.

2.5.6 Cognac glass

Figure 2.27 shows an example of a caustic from a cognac glass. The glass is an
object of revolution approximated with 12000 triangles. To generate the caustic we
used 200000 photons. The radiance estimates for the caustic were computed using
up to 40 photons. The rendering time for the image was 8 minutes and 10 seconds
— part of this rendering time is due to the ray traced depth of field simulation.
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Figure 2.28: Caustics through a prism with dispersion.

2.5.7 Prism with dispersion

The classic example of dispersion with glass prism is shown in Figure 2.28. Even
though only three separate wavelengths have been sampled, the color variations
in the caustics are smooth. An accurate color representation would require more
wavelength samples; such an extension to the photon map is easy to implement.
500000 photons were used in the caustics and 80 photons were used in the radiance
estimate. The rendering time for the image was 32 seconds.
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Figure 2.29: Granite bunny next to a marble bunny — both models are rendered using
subsurface scattering. The photon map is used to compute multiple scattering inside
the stone material.

2.5.8 Subsurface scattering

A recent addition to the photon map is the simulation of subsurface scattering [Jensen99,
Dorsey99]. For subsurface scattering we use the photon map to compute the effect
of multiple scattering within a given material. This is often very costly to compute
and therefore mostly omitted from approaches dealing with subsurface scattering.
This is unfortunate since multiple scattering leads to very nice and subtle color
bleeding effects inside the material which improves the quality of the rendering.

Figure 2.29 shows a granite bunny next to a marble bunny. Both of these stone
models are rendered using subsurface scattering with 100000 photons used to sim-
ulate multiple scattering. The rendering time for the picture was 21 minutes. This
bunny is the original Stanford bunny and the scene contains 140000 triangles, and
it is rendered with full global illumination and depth of field.

Figure 2.30 shows a bust of Diana the Huntress made of translucent marble. For
this scene the light source was behind the bust to emphasize the effect of subsurface
scattering. Notice the translucency of the hair and the nose region. This image was
rendered in 21 minutes using 200000 photons.
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Figure 2.30: Translucent marble bust illuminated from behind

2.6 Where to get programs with photon maps

Photon maps are already available on the Internet for downloading. We have col-
lected the following links as of the writing of these notes.

RenderPark (a photorealistic rendering tool) has photon maps (as well as many
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other global illumination algorithms). See
http://www.cs.kuleuven.ac.be/cwis/research/graphics/RENDERPARK/ for more
information.

Nathan Kopp has made a photon map extension toMegaPov [MegaPov00]
(an extended version of POV ray). Free source code and executable can be found
at: www.nathan.kopp.com/patched.htm

Most commercial renderers now supports photon mapping for global illumina-
tion.
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Chapter 3

References and further reading

This section lists the references referenced in these course notes plus additional
background material relevant to the photon map method. The material is divided
into three groups: the photon map method, ray tracing and photon tracing and
data-structures with focus on kd-trees. Each part is in chronological order with
annotations. In addition we have listed a number of animations rendered with pho-
ton maps and finally we have provided a more detailed list of relevant background
literature.

The photon map method

[Jensen95a] Henrik Wann Jensen and Niels Jørgen Christensen.
“Photon maps in Bidirectional Monte Carlo Ray Tracing of
Complex Objects”.
Computers & Graphics19 (2), pages 215–224, 1995.
The first paper describing the photon map. The paper sug-
gested the use of a mixture of photon maps and illumination
maps, where photon maps would be used for complex surfaces
such as fractals.

[Jensen95b] Henrik Wann Jensen.
“Importance driven path tracing using the photon map”.
Rendering Techniques ’95 (Proceedings of the Sixth Euro-
graphics Workshop on Rendering), pages 326–335. Springer
Verlag, 1995.
Introduces the use of photons for importance sampling in path
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tracing. By combining the knowledge of the incoming flux
with the BRDF it is possible to get better results using fewer
sample rays.

[Jensen95c] Henrik Wann Jensen and Niels Jørgen Christensen.
“Efficiently Rendering Shadows using the Photon Maps”.
In Proceedings of Compugraphics’95, pages 285–291, Alvor,
December 1995.
Introduces the use of shadow photons for an approximate clas-
sification of the light source visibility in a scene.

[Jensen96a] Henrik Wann Jensen.
“Rendering caustics on non-Lambertian surfaces”.
Proceedings of Graphics Interface’96, pages 116-121,
Toronto, May 1996 (also selected for publication in Computer
Graphics Forum, volume 16, number 1, pages 57–64, March
1997). Extension of the photon map method to render caustics
on non-Lambertian surfaces ranging from diffuse to glossy.

[Jensen96b] Henrik Wann Jensen.
“Global illumination using photon maps”.
Rendering Techniques ’96 (Proceedings of the Seventh Euro-
graphics Workshop on Rendering), pages 21–30. Springer Ver-
lag, 1996.
Presents the global illumination algorithm using photon maps.
A caustic and a global photon map is used to optimize the ren-
dering of global illumination including the simulation of caus-
tics.

[Jensen96c] Henrik Wann Jensen.
The photon map in global illumination.
Ph.D. dissertation, Technical University of Denmark, Septem-
ber 1996.
An in-depth description of the photon map method based on
the presentations in the published photon map papers.

[Christensen97] Per H. Christensen.
“Global illumination for professional 3D animation, visualiza-
tion, and special effects” (invited paper).
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Rendering Techniques ’97 (Proceedings of the Eighth Euro-
graphics Workshop on Rendering), pages 321–326. Springer
Verlag, 1997.
Describes the requirements of a global illumination method
in a commercial environment, and motivates the choice of the
photon map method.

[Myszkowski97] Karol Myszkowski.
“Lighting reconstruction using fast and adaptive density esti-
mation techniques”.
Rendering Techniques ’97 (Proceedings of the Eighth Euro-
graphics Workshop on Rendering), pages 321–326. Springer
Verlag, 1997.
Efficient techniques for filtering and visualizing photons.

[Slusallek98] Philipp Slusallek, Mark Stamminger, Wolfgang Heidrich, J.-
C. Popp, and Hans-Peter Seidel.
“Composite Lighting Simulations with Lighting Network”.
IEEE Computer Graphics & Applications, 18(2), pages 22-31,
March/April 1998.
Describes a framework in which the photon map can be inte-
grated into a radiosity simulation.

[Peter98] Ingmar Peter and Georg Pietrek.
“Importance driven construction of photon maps.”
Rendering Techniques ’98 (Proceedings of the Ninth Euro-
graphics Workshop on Rendering), pages 269–280. Springer
Verlag, 1998.
Use of importance to focus the photons where they contribute
most to the visible solution. This requires an initial importance
(or “importons”) tracing pass from the camera before the pho-
ton tracing pass from the light sources.

[Jensen98] Henrik Wann Jensen and Per H. Christensen.
“Efficient simulation of light transport in scenes with partici-
pating media using photon maps”.
Proceedings of SIGGRAPH 98, pages 311–320. ACM, 1998.
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Extension of the photon map method to simulate global illu-
mination in scenes with participating media.

[Lange98] Thorsten Lange and Georg Pietrek.
“Rendering Participating Media using the Photon Map”.
Technical Report no. 678, University of Dortmund, 1998.
Also describes the extension of the photon map method to sim-
ulate global illumination in the presence of participating me-
dia.

[Jensen99] Henrik Wann Jensen, Justin Legakis and Julie Dorsey.
“Rendering of Wet Materials”.
Proceedings of the Tenth Eurographics Workshop on Render-
ing, pages 281-290, Granada, June 1999.
Simulates subsurface scattering using the volume photon map
in order to render wet materials.

[Dorsey99] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin
Legakis and Hans Køhling Pedersen.
“Modeling and Rendering of Weathered Stone”.
Proceedings of SIGGRAPH 99, pages 223–234, 1999.
Describes rendering of volumetric weathering effects in stone
based on subsurface scattering optimized using the volume
photon map.

[Christensen99] Per H. Christensen
“Faster Photon Map Global Illumination”.
Journal of Graphics Tools, 4(3), pages 1–10, 1999.
Introduces precomputed irradiance values per photon for faster
look-ups.

[Jensen00] Henrik Wann Jensen.
“Parallel Global Illumination using Photon Mapping”.
In SIGGRAPH’2000, Course 30, New Orleans, July 2000.
Describes how to implement the photon mapping algorithm to
take advantage of multi-processor/multi-host computers.

[PMAPCourse] SIGGRAPH 2000 Course Note.
“A Practical Guide to Global Illumination Using Photon
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Maps”.
Previous SIGGRAPH course on photon mapping.

[Suykens00] Frank Suykens and Yves Willems.
“Density control for photon maps”.
Rendering Techniques 2000 (Proceedings of the Eleventh Eu-
rographics Workshop on Rendering), pp. 11–22. Springer-
Verlag, 2000.
Introduces techniques for limiting the density of the photons
in order to get a better distribution of photons. Also presents
ideas for using visual importance to construct higher quality
photon maps.

[RPK] Ph. Bekaert and F. Suykens.
RenderPark, a physically based rendering tool.
K.U. Leuven, http://www.renderpark.be, 1996-2001.
An open-source renderer that supports photon mapping.

[Jensen01] Henrik Wann Jensen.
Realistic Image Synthesis using Photon Mapping.
AK Peters, 2001
An in-depth book describing photon mapping, all the theory,
and all the practical details. Includes an implementation of the
photon map data structure.

Ray tracing and photon tracing

[Whitted80] Turner Whitted.
“An improved illumination model for shaded display”.
Communications of the ACM, volume 23, number 6,
pages 343–349. ACM, June 1975.
The classic ray tracing paper.

[Arvo86] James Arvo.
“Backward ray tracing”.
Developments in ray tracing, SIGGRAPH 86 seminar notes.
ACM, August 1986.
Introduces light ray tracing and illumination maps for comput-
ing caustics.
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[Glassner89] Andrew S. Glassner.
An introduction to ray tracing.
Academic Press, 1989.
The standard reference on ray tracing. Still a pleasure to read.

[Shirley91] Peter Shirley.
Physically Based Lightning Calculations for Computer
Graphics.
Ph.d. thesis, University of Illinois at Urbana-Champaign,
1991.
Good overview of Monte Carlo ray tracing. Also presents one
of the first practical multi-pass global illumination methods.

[Chen91] Eric Shenchang Chen, Holly E. Rushmeier, Gavin Miller, and
Douglas Turner.
“A progressive multi-pass method for global illumination”.
Proceedings of SIGGRAPH 91, pages 164–174. ACM, 1991.
One of the first multi-pass global illumination methods. Uses
illumination maps for caustics, radiosity for indirect light and
path tracing for rendering.

[Ward92] Gregory Ward and Paul Heckbert.
“Irradiance gradients”.
Third Eurographics Workshop on Rendering, pages 85–98.
Eurographics, 1992.
Describes the irradiance gradients method which is used for
the final gathering step of the photon map method.

[Pattanaik93] Sumant N. Pattanaik.
”Computational Methods for Global Illumination and Visual-
isation of Complex 3D Environments”.
Ph.d. Thesis, Birla Institute of Technology & Science, 1993
Introduces particle tracing where photons are emitted from the
light sources and stored in a mesh.

[Rushmeier93] Holly Rushmeier, Ch. Patterson and A. Veerasamy.
”Geometric Simplification for Indirect Illumination Calcula-
tions”.
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Proceedings of Graphics Interface ’93, pages 35-55, 1994.
Introduces the concept of geometry simplification for the ra-
diosity step of multipass global illumination computations.

[Glassner95] Andrew S. Glassner.
Principles of digital image sythesis.
Morgan Kaufmann, 1995.
Gives an excellent overview of the entire field of image syn-
thesis. Of particular interest here is the description of Monte
Carlo photon tracing and Russian roulette.

[Lafortune96] Eric P. Lafortune.
Mathematical Models and Monte Carlo Algorithms for
Physcially Based Rendering.
Ph.d. thesis, Katholieke University, Leuven, Belgium 1996.
Good overview of Monte Carlo ray tracing techniques includ-
ing bidirectional path tracing.

[Dutre96] Philip Dutŕe and Yves D. Willems.
Mathematical Frameworks and Monte Carlo Algorithms for
Global Illumination in Compute Graphics.
Ph.d. thesis, Katholieke Universiteit Leuven, 1996.
Another fine overview of Monte Carlo ray tracing and photon
tracing.

[Ward98] Gregory Ward Larson and Rob Shakespeare.
Rendering with Radiance — the art and science of lighting
visualization.
Morgan Kaufmann, 1998.
An entire book dedicated to the excellent Radiance renderer
with many practical examples.

Datastructures

[Bentley75] Jon L. Bentley.
“Multidimensional binary search trees used for associative
searching”.
Communications of the ACM, volume 18, number 9,
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pages 509–517. ACM, 1975.
First paper on the kd-tree datastructure.

[Preparata85] Franco P. Preparata and Michael Ian Shamos.
Computational Geometry An Introduction, Springer-Verlag,
1985

[Cormen89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest.
Introduction to algorithms.
MIT Press, 1989.
Good overview of algorithms including the heap-datastructure.

[Sedgewick92] Robert Sedgewick.
Algorithms in C++.
Addison-Wesley, 1992.
Also good description of the heap structure, and algorithms for
the median search (used in the balancing algorithm).

Other references

These are additional useful references for ray tracing based rendering methods.

[Ansi86] American National Standard Institute.
”Nomenclature and Definitions for Illumination Engineer-
ing” .
ANSI report, ANSI/IES RP-16-1986, 1986.

[Arvo90] James Arvo and David Kirk.
“Particle Transport and Image Synthesis”.
Computer Graphics24 (4), pages 53–66, 1990.

[Aupperle93] Larry Aupperle and Pat Hanrahan:
“A Hierarchicah Illumination Algorithm for Surfaces with
Glossy Reflection”.
Computer Graphics, pages 155–162, 1993.

[Bentley79a] Jon Louis Bentley.
“Multidimensional Binary Search Trees in Database Applica-
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tions”.
IEEE Trans. on Soft. Eng.5 (4), pages 333–340, July 1979.

[Bentley79b] Jon Louis Bentley and Jerome H. Friedman.
“Data Structures for Range Searching”.
Computing Surveys11 (4), pages 397–409, 1979.

[Bentley80] Jon Louis Bentley, Bruce W. Weide, and Andrew C. Yao.
“Optimal Expected-Time Algorithm for Closest Point Prob-
lems”.
ACM Trans. on Math. Soft., 6 (4), pages 563–580, dec. 1980.

[Chalmers] Alan Chalmers et al. “Practical Parallel Rendering”. ISBN:
1-56881-179-9, A K Peters, 2002.

[Christensen93] Per Henrik Christensen, David Salesin and Tony DeRose.
”A Continuous Adjoint Formulaion for Radiance Transport”.
Fourth Eurographics Workshop on Rendering, pages 95–104,
1993

[Christensen95] Per Henrik Christensen.
Hierarchical Techniques for Glossy Global Illumination.
PhD thesis, Seattle, Washington, 1995.

[Collins94] Steven Collins.
“Adaptive Splatting for Specular to Diffuse Light Transport”.
In Proceedings of the 5th Eurographics Workshop on Render-
ing, pages 119–135, Darmstadt 1994.

[Cook84] Robert L. Cook.
“Distributed Ray Tracing”.
Computer Graphics18 (3), pages 137–145, 1984.

[Cook86] Robert L. Cook.
“Stochastic Sampling in Computer Graphics”.
ACM Transactions on Graphics5 (1), pages 51–72, Jan. 1986.

[Dutre94] Philip Dutŕe and Yves D. Willems.
“Importance-driven Monte Carlo Light Tracing”.
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In proceedings of 5. Eurographics Workshop on Rendering,
pages 185–194, Darmstadt 1994.

[Dutre95] Philip Dutre and Yves D. Willems.
“Potential-Driven Monte Carlo Particle Tracing for Diffuse
Environments with Adaptive Probability Density Functions”.
In P. M. Hanrahan and W. Purgathofer, editors,Render-
ing Techniques ’95, pages 306–315, New York, NY, 1995.
Springer-Verlag.

[Ebert94] David Ebert, Ken Musgrave, Darwyn Peachey, Ken Perlin and
Steve Worley.
Texturing and Modeling: A Procedural Approach.
Academic Press, October 1994.

[Goral84] Cindy Goral, Kenneth Torrance, Donald Greenberg, Bennet
Battaile. “Modeling the Interaction of Light Between Dif-
fuse Surfaces”. Computer Graphics (SIGGRAPH ’84 Pro-
ceedings), volume 18, number 3, pages 213-222, July 1984,
Minneapolis, Minnesota.

[Gritz96] Larry Gritz and J. K. Hahn.
“BMRT: A Global Illumination Implementation of the Render-
Man Standard”.
Journal of Graphics Tools, Vol. 1, No. 3, pages 29-47, 1996.

[Hall88] Roy Hall.
Illumination and Color Computer Generated Imagery.
Springer-Verlag, 1988

[Heckbert90] Paul S. Heckbert.
“Adaptive Radiosity Textures for Bidirectional Ray Tracing”.
Computer Graphics24 (4), pages 145–154, 1990.

[Horowitz93] Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed.
Fundamentals of Data Structures in C, Computer Science
Press, 1993

[Igehy99] Homan Igehy. Tracing ray differentials.Computer Graphics,
33(Annual Conference Series):179–186, 1999.
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[Jensen93] Henrik Wann Jensen.
Global Illumination using Bidirectional Monte Carlo Ray
Tracing.
M.Sc. thesis, Technical University of Denmark (in Danish),
1993.

[Jensen95f] Henrik Wann Jensen and Niels Jørgen Christensen.
“Optimizing Path Tracing using Noise Reduction Filters”.
In Proceedings of WSCG 95, pages 134–142, Plzen 1995.

[Kajiya86] James T. Kajiya.
“The Rendering Equation”.
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[Kalos86] M. Kalos and P. Whitlock.Monte Carlo Methods, Volume 1:
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[Keller00] Alexander Keller and Ingo Wald.
“Efficient Importance Sampling Techniques for the Photon
Map”.
In Vision Modelling and Visualization 2000, pages 271–279,
Saarbruecken, Germany, 2000.

[Kilauea] Kilauea, SquareUSA’s rendering software with photon maps.
http://www.squareusa.com/kilauea/ .

[Kopp99] Nathan Kopp.
Personal communication.

[Lafortune93] Eric P. Lafortune and Yves D. Willems.
“Bidirectional Path Tracing”.
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