Advanced Computer Graphics

Mesh Processing

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de
Vertex Normals

- Polygonal surfaces are (usually) just a linear approximation of smooth surfaces
- Wanted: good vertex normals
 - "Good" = as close as possible to true normals
 - Ansatz: compute vertex normal \mathbf{n}_0 at vertex V_0 as
 $$\mathbf{n}_0 = \sum_{i=1}^{k} w_i \mathbf{n}_i$$
 where \mathbf{n}_i = normal of face given by $V_0V_iV_{i+1}$, w_i = some weight
 - Question: which weights give best normals?
Weights That Have Been Proposed in the Literature

- No weights, i.e. \(w_i = 1 \)
- \(w_i = A_i \) (area), \(w_i = \alpha_i \),
 \(w_i = \frac{1}{r_i r_{i+1}} \) with \(r_i := \| V_i - V_0 \| \)
- Best (so far) [Nelson Max]:
 \[
 w_i = \frac{\sin(\alpha_i)}{r_i r_{i+1}}
 \]
- Gives *provably* correct normals for polyhedra inscribed in sphere (= degree 2 surface)
- Smallest RMSE almost everywhere for polygonal approximations of polynomial surface of degree 3

<table>
<thead>
<tr>
<th>Weights</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>One (no weights)</td>
<td>7.3 – 3.7</td>
</tr>
<tr>
<td>(A_i)</td>
<td>6.5 – 2.8</td>
</tr>
<tr>
<td>(\alpha_i)</td>
<td>10.7 – 3.4</td>
</tr>
<tr>
<td>(\frac{1}{r_i r_{i+1}})</td>
<td>7.3 – 5.1</td>
</tr>
<tr>
<td>Best (\left(\frac{\sin(\alpha_i)}{r_i r_{i+1}} \right))</td>
<td>3.0 – 1.5</td>
</tr>
</tbody>
</table>
• Practical computation:

 • Remember: \((V_i - V_0) \times (V_{i+1} - V_0) = \sin(\alpha_i) r_i r_{i+1} n_i\)

 • In practice, this allows for easier computation of the vertex normal:

 \[n_0 = \sum_{i=1}^{k} \frac{(V_i - V_0) \times (V_{i+1} - V_0)}{(V_i - V_0)^2 (V_{i+1} - V_0)^2} \]

• Geometric intuition why longer faces should have smaller weights:
Consistent Normal Orientation for Meshes

- **Problem:**
 - Many models consist of many unconnected patches (in particular those created with modelling tools)
 - Patches do not necessarily have consistent orientation

- **Bad consequences:**
 - Two-sided lighting is necessary (slightly slower than one-sided lighting)
 - BSP representation of polyhedra is easier to construct with consistent normals
 - And many more ...

single-sided lighting
double-sided lighting
• Idea for a solution: *boundary coherence*
 = patches with common boundaries should be oriented consistently

• This is fairly straight-forward to implement, provided we have *complete neighborhood information* (topology)
 • And assuming the mesh is closed
General Procedure

1. Detect edges incident to only 1 polygon (boundary edges), or incident to more than 2 polygons (non-manifold edges)

2. Partition mesh into 2-manifold patches

3. Orient normals consistently within each patch (propagate consistent normal direction from one polygon to the next throughout a patch using BFS)

4. Determine patch-patch boundaries close to each other (which are "meant" to be connected)

5. Propagate normal orientations across those boundaries, too
Results

Before

After
Mesh Smoothing

- Frequent problem: meshes are noisy (e.g., from marching cubes, or point cloud reconstruction)

 Typical output of marching cubes

 Output from laser scanner after meshing

 Desired, smoothed mesh

- Idea: "convolve" mesh with a filter (kernel), like Gaussian filter for images
Digression/Recap: Image Smoothing (Blurring)

• Simple, linear filtering by convolution:
 • \(I = I(x,y) \) = input image, \(J = J(x,y) \) = output image
 \[
 J(x, y) = \sum_{i=-k,...,+k} \sum_{j=-k,...,+k} I(x + i, y + j)H(i,j)
 \]
 • \(H \) is called a kernel, \(k \) = kernel width

• Sequential algorithm to construct \(J \):
 • Slide a \(k \times k \) window across \(I \)
 • At every pixel of \(I \), compute weighted average of \(I \) inside window, weighted by \(H \)
Examples

- Gaussian kernel

\[
H = \frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]

- Box filter (= simple averaging):

\[
H = \frac{1}{9} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
Digression: Edge Extraction

Vertical edges (absolute value)

Vertical Sobel Operator

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}
\]

Vertical edges (absolute value)
Horizontal Sobel Operator

\[
\begin{pmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{pmatrix}
\]

Horizontal edges (absolute value)
• Problem: we can't simply apply the convolution idea to meshes!
• Why not?
• Meshes don't have a canonical, tensor-structure-like parameterization!
 • I.e., usually there is no parameterization like x and y in the plane
• Goal: filter *without* parameterization
Laplacian Smoothing

- Idea:
 - Consider edges as springs
 - For a vertex v_0, determine its position of least energy within its 1-ring

Energy of v_0: $E = \frac{1}{2} \sum_{i=1}^{d} \|v_i - v_0\|^2$

- Necessary condition for minimum: derivative equals zero

$$\frac{dE}{dv_0} = \sum_{i=1}^{d} (v_i - v_0) = 0$$

- Iterative procedure: $v'_0 = \frac{1}{d} \sum_{i=1}^{d} v_i$

Sometimes a.k.a. "umbrella operator"
• Generalization by "influence" of adjacent vertices and "speed":

\[\Delta \mathbf{v}_0 = \sum_{i=1}^{k} w_i (\mathbf{v}_i - \mathbf{v}_0), \quad \text{with} \quad \sum w_i = 1, \quad w_i \geq 0 \]

\[\mathbf{v}'_0 = \mathbf{v}_0 + \lambda \Delta \mathbf{v}_0 \]

• Simplest form of the weights:

\[\Delta \mathbf{v}_0 = \frac{1}{d} \sum_{i=1}^{d} (\mathbf{v}_i - \mathbf{v}_0) \]

where \(d \) = degree of \(\mathbf{v}_0 \) = number of neighbors

• Better weights are \(w_i = \frac{1}{||\mathbf{v}_i - \mathbf{v}_0||} \) or \(w_i = e^{-||\mathbf{v}_i - \mathbf{v}_0||^2} \)

(see chapter "Object Representations" for more)
Comparison with Other Smoothing Operators

- Original
- 10% noise
- Laplacian
- Bilaplacian
- Mean Curvature
- Coons
Problem: Laplace-Smoothing Causes Shrinking
A Simple Extension to Prevent Shrinking

- Like before, for every v_i compute

$$\Delta v_i = \frac{1}{d} \sum_{j \in N(i)} (v_j - v_i)$$

- Average all neighboring Δ's (including the own Δ):

$$d_i = \frac{1}{d+1} \sum_{j \in N(i) \cup i} \Delta v_j$$

- Push the new vertex towards the 1-ring equilibrium and outwards away from the local direction of contraction:

$$v'_i = v_i + \lambda(\alpha \Delta v_i + (1 - \alpha)d_i)$$
Comparison

Laplacian smoothing

Smoothing with pushback
Global Laplacian Smoothing

- Given: mesh $M = (V, E, F)$, $V = \{v_1, ..., v_n\}$, $v_i = (x_i, y_i, z_i)$
- Sought: mesh M' with vertices v_i' such that
 - M' is smoother than M, and
 - M' approximates M
- If M' was perfectly smooth (i.e., a plane), we could find weights s.t.
 \[
 \forall i : \sum_{j \in \mathcal{N}(v_i')} w_{ij} (v_j' - v_i') = 0
 \]
 (1)
 - This can be written as 3 systems of linear equations, one for x coords, one for y coords, one for z
 - In the following, we will deal with the x coords – y and z work similarly
• Consider the x coords; write (1) as

$$L \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = 0$$

where L is a $n \times n$ matrix, with

$$L_{ij} = \begin{cases} -1 & , i = j \\ w_{ij} & , (i, j) \in E \\ 0 & , \text{else} \end{cases}$$

• Definition: L is called \textbf{Laplacian} of the mesh
 • In a sense, L encodes the adjacency of the mesh
 • Analogously, construct a system of equations of y and z
• Example: for sake of simplicity, use \(w_{ij} = \frac{1}{d_i} \)

\[
L = \begin{bmatrix}
1 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{4} & 1 & -\frac{1}{4} & 1 & 0 & -\frac{1}{4} \\
0 & -\frac{1}{2} & 1 & 0 & 0 & -\frac{1}{2} \\
-\frac{1}{4} & 1 & 0 & -\frac{1}{4} & 1 & -\frac{1}{4} \\
-\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & -\frac{1}{3} \\
0 & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & 1 & -\frac{1}{4}
\end{bmatrix}
\]

• Warning: \(L \) has rank \(n-1 \), \(n = \# \text{ vertices} \)

• "Proof" by example: vector \(\mathbf{x} = (1, \ldots, 1)^T \) is a solution to \(L\mathbf{x} = 0 \)

• And for all \(\alpha \), \(L(\alpha \mathbf{x}) = 0 \), too
• Solution: "anchor" one vertex, i.e., fix its position

• For instance, in our example, add condition $\mathbf{v}_1' = \mathbf{v}_1$:

$$\begin{bmatrix}
0 & -\frac{1}{3} & 3 & 0 & 1 & 1 \\
-\frac{1}{4} & 1 & -\frac{1}{4} & 4 & 0 & -\frac{1}{4} \\
0 & -\frac{1}{2} & 1 & 0 & 0 & -\frac{1}{2} \\
-\frac{1}{4} & 1 & 0 & 1 & -\frac{1}{4} & 1 \\
-\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & -\frac{1}{3} \\
0 & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & 1
\end{bmatrix}
\begin{bmatrix}
x_1' \\
x_2' \\
\vdots \\
x_n'
\end{bmatrix}
=
\begin{bmatrix}
0 \\
\vdots \\
0
\end{bmatrix}

• This system now has a unique solution
• Avoiding shrinking: introduce another constraint requiring the barycenters of the new triangles be the same as the barycenters of the old ones

\[\forall (i, j, k) \in F : \frac{1}{3} (v_i' + v_j' + v_k') = \frac{1}{3} (v_i + v_j + v_k) \]

(2)

• Write (1) and (2) as

\[
\begin{pmatrix}
L \\
B
\end{pmatrix}
\begin{pmatrix}
x_1' \\
x_2' \\
\vdots \\
x_n'
\end{pmatrix} =
\begin{pmatrix}
0 \\
b
\end{pmatrix}
\]

(3)

where B is a \(m \times n \) matrix, \(m = \text{number of triangles} \), and \(b \) is a column vector with \(m \) entries, where the \(k \)-th row corresponds to triangle \(F_k = (i_1, i_2, i_3) \) and \(B_{ki} = \frac{1}{3} \), for \(i = i_1, i_2, i_3 \), 0 elsewhere, and \(b_k = \frac{1}{3} (x_{i_1} + x_{i_2} + x_{i_3}) \)
• Solve (over-determined) system (3), which has the form $A x = c$ in the least squares sense:

$$x = (A^T A)^{-1} A^T c$$

• In real life, use a sparse solver, e.g., TAUCS or OpenNL

• Results:
• Further requirement: certain points ("features") should be maintained

• Solution: introduce constraints
 - Pick feature points \(\mathbf{v}_{i_1}, \ldots, \mathbf{v}_{i_k} \)
 - Either by user, or by automatic salient point detectors
 - Add constraint \(\mathbf{v}'_{i_l} = \mathbf{v}_{i_l}, \ l = 1, \ldots, k \) (4)
 - Add equations (4) to system (3):
 \[
 \begin{pmatrix}
 \mathbf{L} \\
 \mathbf{B} \\
 \mathbf{C}
 \end{pmatrix}
 \begin{pmatrix}
 x'_1 \\
 x'_2 \\
 \vdots \\
 x'_{\ell}
 \end{pmatrix}
 = \begin{pmatrix}
 0 \\
 b \\
 c
 \end{pmatrix}
 \]
 where \(\mathbf{C} \) is a matrix containing in every row \(l \) just one 1 at position \(i_l \), \(1 \leq l \leq k \), and \(\mathbf{c} = (x_{i_1}, \ldots, x_{i_k}) \)
 - Again, we do this for \(x \)-, \(y \)-, and \(z \)-coordinates separately
Results

Noisy original

Smoothed

Noisy original

Laplacian smoothing

Bilateral smoothing

Global smoothing
Mesh Simplification

- **Simplification**: Generate a coarse mesh from a fine (hi-res) mesh
 - While maintaining certain criteria (will not be discussed further here)

- **Elementary operations**:
 - **Edge collapse**:
 - All edges adjacent to the edge are required
 - **Vertex removal**:
 - All edges incident to the vertex are needed
Subdivision Surfaces: One of the First Movies

Pixar: "Geri's Game"
Examples from Animation Films

- Input base mesh
- Subdivision patch structure
- Final model

[Nießner et al., 2012]
Example from Games

- Used to create high-poly models that are then used to bake texture maps (normal map, specular map, etc.) for the low-poly in-game models
Basic Idea of Subdivision

- Start with a (simple) mesh M^0, called control mesh
- In each iteration i:
 - Refinement: subdivide edges and faces of M^i
 - Some schemes split vertices ("dual" subdivision schemes)
 - Weighted averaging: calculate new positions by averaging neighboring vertices
 - Results in a new mesh M^{i+1} (generation $i+1$)
- Ideally, the mesh converges to a limit surface
The Catmull-Clark Subdivision Scheme

- Let \(p_i \) = vertices of the old mesh generation
- For each face, calculate a new "face point"
 \[
 f = \frac{1}{k} \sum_{i=1}^{k} p_i
 \]
- For each edge, calculate a new "edge point"
 \[
 e = \frac{1}{4} (p_1 + p_2 + f_1 + f_2)
 \]
- For each old vertex, calculate a new "vertex point"
 \[
 p' = \frac{1}{m} q + \frac{2}{m} r + \frac{m-3}{m} p
 \]

\(k \) = \# old vertices incident to the face (valence)
\(p_1, p_2 \) = old vertices incident to the edge
\(f_1, f_2 \) = new face point of the faces incident to the edge
\(m \) = \# faces/edges incident to old vertex (valence)
\(q \) = average of incident face points
\(r \) = average of incident edge points

\[
q = \frac{1}{m} \sum_{i=1}^{m} f_i
\]
\[
r = \frac{1}{m} \sum_{i=1}^{m} e_i
\]
Catmull-Clark in Action
Advantages

• Modelers and animators (artists) like object descriptions that are ...
 • Easy to understand and control
 • Smooth, but creases can be added easily when needed
 • Offer different levels of detail, and LoD's can be made adaptive, e.g., view-dependent
 • Well-suited for animation, i.e., easy to deform
 • Allow for arbitrary topology (with holes and borders)
 • Compact (in terms of memory usage)
Subdivision Schemes ("Subdivision Zoo")

Common schemes:
• Catmul Clark
• Doo Sabin
• Loop
• Butterfly – Nira Dyn
• ...many more

Classification by:
• Mesh type: tris, quads, hex..., combination
• Face / vertex split (a.k.a. "primal" / "dual" scheme)
• Interpolating / Approximating
• Smoothness
• Linear/non-linear
• ...
Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark