eeeeee

W Occlusion Culling ¢!

= Occlusion Culling is always interesting, if many objects are
hidden by a few other objects

= Definition: depth complexity
= Number of intersections of a ray through the scene
= Number of polygons projected on a pixel

= Number of polygons that would be visible at a pixel, if all polygons
were transparent

= Comment : depth complexity depends on view point & direction

A

T N/
/A N

G. Zachmann Advanced Computer Graphics SS July 2014

Culling 42

E-X3)
b

Examples of High Depth Complexity

G. Zachmann Advanced Computer Graphics SS July 2014

Culling

. CG

VR

43

]

eeeeee

Y

First, the Special Case of “Cities"

= Render the scene from front to back (reverse Painter's Algorithm)

" Generate an "occlusion horizon"

G. Zachmann Advanced Computer Graphics SS July 2014 Culling

44

eeeeee

= Rendering an object (here tetrahedra; behind the gray objects):

= Determine axis-aligned bounding box (AABB) of the projection of the
object

= Comparison with the occlusion horizon

culled

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 45

eeeee

= |f an object is considered as visible:

= Add the AABB with the previous occlusion horizon

G. Zachmann Advanced Computer Graphics SS July 2014

Culling

46

eeeeee

W General Occlusion Culling

= Given:
= A partially(!) rendered scene, and

= A not yet rendered object

= Task:

= Decide quickly whether the object would modify pixels in the frame
buffer, if it were rendered;

= |n other words, decide quickly whether the object is completely

covered by the current scene

o | .
Terminology: Occluder
Occluded geometry

O/ ("occludee")

G. Zachmann Advanced Computer Graphics SS July 2014 Culling

=
b

FPS: 15.0

Power plant, 13 million triangles

G. Zachmann Advanced Computer Graphics SS July 2014 Culling

Bremen

I“ o T
-

/2
0

i 'II

~.d ' 1 q*;. 18
L BT
WL g s

e IS

-
o=,

Bk
— izl T

7 IS

W

Al

i

) .ni‘ll"
f

, :Hm

—

"Double Eagle", 4 GB, 82M triangles, 127,000 objects
G. Zachmann Advanced Computer Graphics

sS July 2014

Culling

Bremen

Y S

Visible polygons: 450k (ca. 4%)

Invisible polygons: T0M (ca. 96%)

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 50

e]

eeeeee

Y Occlusion Culling in OpenGL

" |dea:

= Draw a simple representation ("proxy") of an object, without changing the
color or depth buffer

= If no pixels would have been overwritten by the proxy (were it really
drawn), then the object itself need not be drawn

= Proxy geometry: spend a bit computing power upfront, in order to
hopefully save a lot of computing power later

= Use bounding volumes as proxies (again: tightness versus effort)

= During proxy rendering: no texturing, no shading, no light sources, no
colors, texture coordinates, normals

= OpenGL: occlusion query = ask OpenGL how many pixels would be
overwritten in the framebuffer by a specific OpenGL sequence

= Nowadays in OpenGL core

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 51

eeeee

= First create occlusion query at initialization :

glGenQueries(int count, unsigned int queryIDs[])

= Render a set of objects (try to start with those occluding a lot of the rest)

= Disable writing in Z- and color buffer (optional):

glDepthMask (GL_FALSE) ;
glColorMask (GL_ FALSE,GL FALSE,GL FALSE,GL FALSE) ;

= Start occlusion query request for some of the later, possibly occluded, objects :

glBeginQuery(GL_ SAMPLES PASSED, unsigned int querynum) ;
// render proxy geometry, e.g. bounding volumes
glEndQuery (GL SAMPLES PASSED) ;

= Reading result of the request:

glGetQueryObjectiv(int querynum,
GL QUERY RESULT, int *samplesCounted) ;

G. Zachmann Advanced Computer Graphics SS July 2014 Culling

<N
60

52

b

Bremen

@ Demo

Auf GLFW umstellen

e 06 occlusion_query.cpp (~/Work/Lehre/CG1/demos/occlusion_query) - VIM
-
void draw_objects()
{
glColor3f(1,1,0):
glPushMatrix():
glTranslatef (0, -.025, 0);
glScalef (1, .05, 1);
// render cube, with occlusion query
glBeginQueryARB (GL_SAMPLES_PASSED_ARB, og_plane);
glutSolidCube(.5):
glEndQueryARB (GL_SAMPLES_PASSED_ARB) ;
glPopMatrix():
// render sphere, with occlusion query
glColor3f(l, 0, 0);
glPushMatrix():
glTranslatef (0, .25, 0);
glBeginQueryARB(GL_SAMPLES_PASSED_ARB, og_sphere);
glutSolidSphere(.25, 20, 20);
glEndQueryARB (GL_SAMPLES_PASSED_ARB) ;
glPopMatrix():
}
void set_app_info_string()
GLuint plane_samples, sphere_samples;
// get results of occlusion queries
glGetQueryObjectuivARB(og_plane, GL_QUERY_RESULT_ARB, &plane_samples):;
glGetQueryObjectuivARB(og_sphere, GL_QUERY_RESULT_ARB, &sphere_samples):
string s:
char buff[80]; m
s = "visible samples\n plane:
sprintf(buff, "%d", plane_samples);
s += buff;
if(plane_samples == 0)
{
s #= " -- npo samples visible";
}
s += "\n sphere:
sprintf(buff, "%d", sphere_samples);
s += buff;
if(sphere_samples == 0)
s #= " -- no samples visible"; 2
) v
4

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 53

eeeeee

Batching Queries

= Problem: an occlusion query = expensive state changes
= Before: disable writing to color- and Z-buffer
= After: enable all this again

= This overhead takes more time than the actual query!
= |dea: batching
" Implement 2 additional queues
= Both contain objects that should be tested for visibility
= [-Queue: contains previously "invisible" objects
= V-Queue: likewise for "visible"
= Parameter: batch size b (ca. 20-80)

= Send list of queries to OpenGL only, when batch size is reached

= "Previously visible" objects are still rendered immediately

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 54

eeeeee

G. Zachmann

Advanced Computer Graphics

SS

July 2014

Culling

55

Y s

= Goal: Reduce the number of state changes, and thus the time
required per occlusion query
= Therefore, send a sequence of requests, read the result of the

sequence afterwards

[

0
BRechner 1 1 4 16 64 256 1024 4096

ORechner 2

Requests per
second
(normalized)

Size of the query batches

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 56

eeeeee

WY The Naive "Draw-and-Wait" Approach 4

<N
60

Sort items along the depth in the scene
Create query sequence
while some objects are not yet rendered:
for each object in query sequence:
BeginQuery
Render bounding volume
EndQuery
for each object in query sequence:
GetQuery
if #pixel drawn > O:
Render object

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 57

P

eeeeee

= Problems of the naive approach: very high response time
(latency) for a query

= long graphics pipeline,
= some time by the execution of the queries (rasterization), and
= transfer the result back to the host.

D, Q, Q;: Q, R, R; R,

D, D,

CPU

GPU

D,

D,

Lyj Q, Q; Q

Latency due to D = "draws"

Q — llqueryﬂ
render state change R = "response"

V/I = "visible" / "invisible"

= Consequence: CPU stalls and GPU starvation

G. Zachmann Advanced Computer Graphics SS July 2014 Culling 58

