
G. Zachmann 42 Culling Advanced Computer Graphics 24 July 2014 SS

Occlusion Culling

§  Occlusion Culling is always interesting, if many objects are
hidden by a few other objects

§  Definition: depth complexity
§  Number of intersections of a ray through the scene

§  Number of polygons projected on a pixel

§  Number of polygons that would be visible at a pixel, if all polygons
were transparent

§  Comment : depth complexity depends on view point & direction

G. Zachmann 43 Culling Advanced Computer Graphics 24 July 2014 SS

Examples of High Depth Complexity

G. Zachmann 44 Culling Advanced Computer Graphics 24 July 2014 SS

First, the Special Case of “Cities"

§  Render the scene from front to back (reverse Painter's Algorithm)

§  Generate an "occlusion horizon"

G. Zachmann 45 Culling Advanced Computer Graphics 24 July 2014 SS

§  Rendering an object (here tetrahedra; behind the gray objects):

§  Determine axis-aligned bounding box (AABB) of the projection of the
object

§  Comparison with the occlusion horizon

culled

G. Zachmann 46 Culling Advanced Computer Graphics 24 July 2014 SS

§  If an object is considered as visible:

§  Add the AABB with the previous occlusion horizon

G. Zachmann 47 Culling Advanced Computer Graphics 24 July 2014 SS

General Occlusion Culling

§  Given:

§  A partially(!) rendered scene, and

§  A not yet rendered object

§  Task:

§  Decide quickly whether the object would modify pixels in the frame
buffer, if it were rendered;

§  In other words, decide quickly whether the object is completely
covered by the current scene

§  Terminology:
Occluder

Occluded geometry
("occludee")

G. Zachmann 48 Culling Advanced Computer Graphics 24 July 2014 SS

Examples of Applications of the General Occlusion Culling

Power plant, 13 million triangles

G. Zachmann 49 Culling Advanced Computer Graphics 24 July 2014 SS

"Double Eagle", 4 GB, 82M triangles, 127,000 objects

G. Zachmann 50 Culling Advanced Computer Graphics 24 July 2014 SS

Visible polygons: 450k (ca. 4%)

Invisible polygons: 10M (ca. 96%)

G. Zachmann 51 Culling Advanced Computer Graphics 24 July 2014 SS

Occlusion Culling in OpenGL

§  Idea:

§  Draw a simple representation ("proxy") of an object, without changing the
color or depth buffer

§  If no pixels would have been overwritten by the proxy (were it really
drawn), then the object itself need not be drawn

§  Proxy geometry: spend a bit computing power upfront, in order to
hopefully save a lot of computing power later

§  Use bounding volumes as proxies (again: tightness versus effort)

§  During proxy rendering: no texturing, no shading, no light sources, no
colors, texture coordinates, normals

§  OpenGL: occlusion query = ask OpenGL how many pixels would be
overwritten in the framebuffer by a specific OpenGL sequence

§  Nowadays in OpenGL core

G. Zachmann 52 Culling Advanced Computer Graphics 24 July 2014 SS

§  First create occlusion query at initialization :

§  Render a set of objects (try to start with those occluding a lot of the rest)

§  Disable writing in Z- and color buffer (optional):

§  Start occlusion query request for some of the later, possibly occluded, objects :

§  Reading result of the request:

glGenQueries(int count, unsigned int queryIDs[]);

glBeginQuery(GL_SAMPLES_PASSED, unsigned int querynum);
// render proxy geometry, e.g. bounding volumes ...
glEndQuery(GL_SAMPLES_PASSED);

glGetQueryObjectiv(int querynum,
 GL_QUERY_RESULT, int *samplesCounted);

glDepthMask(GL_FALSE);
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);

G. Zachmann 53 Culling Advanced Computer Graphics 24 July 2014 SS

Demo
Auf GLFW umstellen

G. Zachmann 54 Culling Advanced Computer Graphics 24 July 2014 SS

Batching Queries

§  Problem: an occlusion query = expensive state changes
§  Before: disable writing to color- and Z-buffer

§  After: enable all this again

§  This overhead takes more time than the actual query!

§  Idea: batching

§  Implement 2 additional queues

§  Both contain objects that should be tested for visibility

§  I-Queue: contains previously "invisible" objects

§  V-Queue: likewise for "visible"

§  Parameter: batch size b (ca. 20-80)

§  Send list of queries to OpenGL only, when batch size is reached

§  "Previously visible" objects are still rendered immediately

G. Zachmann 55 Culling Advanced Computer Graphics 24 July 2014 SS

§  Example: each color = one state change

Naive CHC++

G. Zachmann 56 Culling Advanced Computer Graphics 24 July 2014 SS

§  Goal: Reduce the number of state changes, and thus the time
required per occlusion query

§  Therefore, send a sequence of requests, read the result of the
sequence afterwards

0

0.5

1

1 4 16 64 256 1024 4096

Requests per
second

(normalized)

Size of the query batches

Rechner 1

Rechner 2

G. Zachmann 57 Culling Advanced Computer Graphics 24 July 2014 SS

The Naive "Draw-and-Wait" Approach

Sort items along the depth in the scene
Create query sequence
while some objects are not yet rendered:
 for each object in query sequence:
 BeginQuery
 Render bounding volume
 EndQuery
 for each object in query sequence:
 GetQuery
 if #pixel drawn > 0:
 Render object

G. Zachmann 58 Culling Advanced Computer Graphics 24 July 2014 SS

§  Problems of the naive approach: very high response time
(latency) for a query
§  long graphics pipeline,
§  some time by the execution of the queries (rasterization), and
§  transfer the result back to the host.

§  Consequence: CPU stalls and GPU starvation

D1

D1

Q2 Q3 Q4

Q2 Q3 Q4

Latency due to
render state change

R2 R3 R4 D2 D4

V I V

CPU

GPU

D = "draws"
Q = "query"
R = "response"
V/I = "visible" / "invisible"

D2

