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Occlusion Culling 

§  Occlusion Culling is always interesting, if many objects are 
hidden by a few other objects 

§  Definition: depth complexity 
§  Number of intersections of a ray through the scene 

§  Number of polygons projected on a pixel 

§  Number of polygons that would be visible at a pixel, if all polygons 
were transparent 

§  Comment : depth complexity depends on view point & direction 
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Examples of High Depth Complexity 
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First, the Special Case of “Cities" 

§  Render the scene from front to back (reverse Painter's Algorithm) 

§  Generate an "occlusion horizon" 
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§  Rendering an object (here tetrahedra; behind the gray objects): 

§  Determine axis-aligned bounding box (AABB) of the projection of the 
object 

§  Comparison with the occlusion horizon 

culled 
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§  If an object is considered as visible: 

§  Add the AABB with the previous occlusion horizon 
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General Occlusion Culling 

§  Given: 

§  A partially(!) rendered scene, and 

§  A not yet rendered object 

§  Task:  

§  Decide quickly whether the object would modify pixels in the frame 
buffer, if it were rendered; 

§  In other words, decide quickly whether the object is completely 
covered by the current scene 

§  Terminology: 
Occluder 

Occluded geometry 
("occludee") 
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Examples of Applications of the General Occlusion Culling 

Power plant, 13 million triangles  
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"Double Eagle", 4 GB, 82M triangles, 127,000 objects 
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Visible polygons: 450k (ca. 4%) 

Invisible polygons: 10M (ca. 96%) 
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Occlusion Culling in OpenGL 

§  Idea:  

§  Draw a simple representation ("proxy") of an object, without changing the 
color or depth buffer 

§  If no pixels would have been overwritten by the proxy (were it really 
drawn), then the object itself need not be drawn 

§  Proxy geometry: spend a bit computing power upfront, in order to 
hopefully save a lot of computing power later 

§  Use bounding volumes as proxies (again: tightness versus effort) 

§  During proxy rendering: no texturing, no shading, no light sources, no 
colors, texture coordinates, normals 

§  OpenGL: occlusion query = ask OpenGL how many pixels would be 
overwritten in the framebuffer by a specific OpenGL sequence 

§  Nowadays in OpenGL core 
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§  First create occlusion query at initialization : 

§  Render a set of objects (try to start with those occluding a lot of the rest) 

§  Disable writing in Z- and color buffer (optional): 

§  Start occlusion query request for some of the later, possibly occluded, objects : 

§  Reading result of the request: 

glGenQueries( int count, unsigned int queryIDs[] ); 

glBeginQuery( GL_SAMPLES_PASSED, unsigned int querynum ); 
// render proxy geometry, e.g. bounding volumes ...  
glEndQuery( GL_SAMPLES_PASSED ); 

glGetQueryObjectiv( int querynum, 
                    GL_QUERY_RESULT, int *samplesCounted ); 

glDepthMask( GL_FALSE ); 
glColorMask( GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE ); 
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Demo 
Auf GLFW umstellen 
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Batching Queries 

§  Problem: an occlusion query = expensive state changes 
§  Before: disable writing to color- and Z-buffer 

§  After: enable all this again 

§  This overhead takes more time than the actual query! 

§  Idea: batching 

§  Implement 2 additional queues 

§  Both contain objects that should be tested for visibility 

§  I-Queue: contains previously "invisible" objects 

§  V-Queue: likewise for "visible" 

§  Parameter: batch size b  (ca. 20-80) 

§  Send list of queries to OpenGL only, when batch size is reached 

§  "Previously visible" objects are still rendered immediately 
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§  Example: each color = one state change 

Naive CHC++ 
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§  Goal: Reduce the number of state changes, and thus the time 
required per occlusion query 

§  Therefore, send a sequence of requests, read the result of the 
sequence afterwards 
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The Naive "Draw-and-Wait" Approach 

  
Sort items along the depth in the scene 
Create query sequence 
while some objects are not yet rendered: 
  for each object in query sequence: 
    BeginQuery 
    Render bounding volume 
    EndQuery 
  for each object in query sequence: 
    GetQuery 
    if #pixel drawn > 0: 
      Render object 
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§  Problems of the naive approach: very high response time 
(latency) for a query 
§  long graphics pipeline,  
§  some time by the execution of the queries (rasterization), and 
§  transfer the result back to the host. 

§  Consequence: CPU stalls and GPU starvation 
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