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Motivation 

!  Definition: 

!  The dynamic range of an image is the contrast ratio between the 
brightest and darkest parts 

!  The dynamic range of a display or optical sensor is the ratio of the 
brightest representable or perceived luminance to the darkest  

!  The dynamic range of the human visual system: 

sRGB 

Human simultaneous range 

Human range with adaptation 
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Computer Graphics WS07/08 –Tone Mapping
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Sources of High Dynamic Range Images (HDRI) 

!  Ray-Tracing: physically 
accurate synthetic images 

!  Photography: 

!  Several shots with different 
exposure times 

!  "Blending" together  
(needs 
calibrated 
response 
curve from 
camera) 
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!  And in games, too, to some extent: 

Lost Planet: Extreme Condition, PC version, 2007  
(not known, exactly what kind of HDRI / tone mapping was done) 
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Display of HDR Images  

!  Use either real HDR displays ... 

!  ... or LDR displays;  then you need: 

!  Tone mapping (TM) / tone reproduction = Map of the real high 
dynamic range (HDR) luminances on a low dynamic range (LDR) 
display with a limited luminance bandwidth 

Background illumination of HDR display 
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Informal Statement of the Problem 

Physically correct 

Best effort rendering on LDR display 
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Naïve Tone-Mapping 

Luminous densities in real world or HDRI, cd/m2 
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Result of the Naive Mapping 

Scale by 1/max Clamp to 1 Log. mapping 
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An Important Class of Tone Mappings 

!  First consider pure "point functions": 

!  Determine a transfer function  y = T (x) 

-  Also called tone mapping operator 

!  T only depends on the color x of a pixel; it is completely independent 
of its position or the neighborhood around 

!  Examples: 

Linear scaling 
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Input  range 
Input 
value 

Gamma correction 
Output 

value 
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The Luminance Histogram 

!  Images with "unbalanced" histograms do not use the full 
dynamic range 

!  Balanced histograms result in a more pleasant image and reflects 
the content much better 
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!  The histogram of an image contains valuable information about 
the grayscale 

!  It contains no spatial information 

!  All of the following images have exactly the same histogram! 
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!  First presented by Abu Yusuf Ya'qub ibn Ishaq al-Sabbah Al-Kindi 
as a tool for deciphering a (simple) substitution cipher 

!  Now called frequency analysis method 

!  Breakthrough at this time, 850 n. Chr. [Simon Singh: The Code Book, 
1999] 

Historical Note: Histograms for Decrypting 
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Histogram Stretching 

!  Linear scaling = "histogram stretching": 

I 

J 
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I � I
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� I
min

·J
max
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Interpretation of an Image Histogram 

!  Treat all pixels as i.i.d. random variables , i.e., each pixel = one RV 

!  i.i.d. random variables = independent, identically distributed RVs 

!  Histogram = discrete approximation of the probability density 
function (PDF) of a pixel in the image 
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Discrete (Histogram) vs. Continuous Formulation (PDF/CDF) 

Discrete world: 

 
 

Histogram: 

 
Cumulative histogram: 

 

Continuous world: 

 
 

Probability distrib. funct. (PDF): 

 
Cumul. distrib. function (CDF): 

 

 

x � [0, 1]x ⇥ 0, . . . , L� 1

H(x) =
x�

u=0

h(u) P(x) =

� x

0
p(u)du

x

p(x) 

P(x) 
P(x) 

p(x) 

y

x

h(x)
H(x)

h(x) 

H(x) 

L = # levels

h(x) = # pixels with level x

p(x) = “density” at level x
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!  Clearly: 

!  Therefore h (x) respectively H (x) is often normalized with 

!  Let X be a random variable; 
the probability that the event "X ≤ x" occurs is 
 
 

    or (in the discrete world) 

1
N

P[X � x ] = P(x) =

� x

0
p(u)du

H(L� 1) =

L�1X

u=0

h(u) = N = number of pixels

P[X  x ] = H(x) =
1

N

xX

0

h(u)
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Example Histogram (or, rather, PDF) 

!  How did bots (= agents) or, rather, programmers compare according 
to programming language in the Google AI challenge 2010: 
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Can We Do Better Than Histogram Stretching? 

!  Example with different transfer function: 

!  How can we find algorithmically the optimal transfer function? 
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Histogram Equalization 

!  Given: a random variable X with a certain PDF  

!  Wanted: function T such that the random variable Y = T(X) has a 
uniformly distributed PDF    

!  This transformation is called histogram equalization 

h(x) 
or 

p(x) 

x y 

y = T(x) 

h(y) 
or 

p(y) 

pX

pY � const
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!  Conjecture: the transfer function 
 
 
performs exactly this histogram equalization 

x 
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p(x) 
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1. Version of a Proof  

!  Let  X  be a continuous random variable 

!  Let  Y = T(X)   (so Y is a continuous RV, too) 

!  Let  T  be !1 and monotonically increasing 

!  Consequently, T' and T-1 do exist  
!  Because T  maps all  

to             , 
we have 

  

!  So, for small       , we have 

Y 

X 
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x �x

x � s � x + �x

y � t � y + �y

pY (y)�y � pX (x)�x pY (y) � pX (x)
�x

�y

� x+�x

x
pX (s)ds =
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y
pY (t)dt

x + �x

y + �y

T  
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t 

Gabriel Zachmann
Optionally
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!  When                  , then the approximation becomes an exact 
equation: 

!  Combined: 
 

 

�x � 0

lim
�x�0

�y

�x
= lim

�x�0

T (x + �x)� T (x)

�x
= T ⇥(x)

pY (y) = lim
�x�0

pX (x)
�x

�y
= pX (x) lim

�x�0

1

�y/�x

pY (y) =
pX (x)

T

0(x)

Gabriel Zachmann
Optionally

Gabriel Zachmann
Optionally
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!  Now, inserting                         results in 

 

!  Side result: now we know how to convert distribution functions, 
if a random variable is a function of another random variable.  

!  Continue with the histogram equalization …  

x = T�1(y)

pY (y) =
pX (T�1(y))

T ⇥(T�1(y))

Gabriel Zachmann
Optionally
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!  Sought is a function T, such that  

!  Inserting our previous result yields 

!  Inserting                         results in 

!  Sought was T, so integration yields: 

pX (T�1(y))

T ⇥(T�1(y))
= 1

T ⇥(T�1(y)) = pX (T�1(y))

x = T�1(y) T �(x) = pX (x)

pY (y) � 1

T (x) =

� x

0
T �(u)du = PX (x)

Gabriel Zachmann
Optionally
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2. Version of a Proof  

!  To prove: 

!  I.e., the image after the transformation 
by the transfer function has a flat histogram 

!  Proof by inserting: 

1 

1 

PY 

y 

PY (y) = y

PY (y) = P[Y � y ]

= P[T (X ) � y ]

= P[PX (x) � y ]

= P[x � P�1
X (y)]

= y

= PX (P�1
X (y))
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Examples 

Orig. Image Histogram Result 
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Equalization in RGB 

Equalization in HSV 

a.k.a. 
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A Problem of Histogram Equalization 

!  Problematic case: a very narrow histogram of the input image 
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!  Result: unwanted contrast 

Transfer 
function 

Resulting 
histogram 
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Tone Reproduction by Ward et al.         [1997] 

!  Problem of histogram equalization: 

!  Very steep sections of the transfer function T  
can produce visible noise 

!  Idea: limit the slope of T 

!  Algorithm: 

1.  Determine the histogram h 

-  Reminder:  

2.  Clamp too large bins to a value            , where                              ,   
N = number of pixels,  B = number of bins 

3.  Let                                      

4.  Use this to perform equalization and repeat a few times  

p T 

h � p = T �

� � 0.5 . . . 1.5�· N
B

N ⇥ =
�L�1

i=0 h(xi )
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Excursion: The Weber-Fechner Law     [~1850] 

!  By experiment, we find: 

!  The just noticeable difference (JND) of a stimulus (e.g., weight) 
depends on the level of the stimulus (differential threshold of 
noticeability) 

!  The ratio of the JND over the level of the stimulus is constant 
(depending on the kind of stimulus) 

!  The mathematical formulation of these findings: 

!  Let  S  be the level of the stimulus,  and let �S  be the JND at this level 

!  Now, Weber's law says: 

�S

S
= const
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!  The Weber-Fechner law:  
Let  E  be the level of the perceived sensation of S  (e.g., perceived 
weight), and let �E  be the JND of E. 
Then we have 

!  Integration results in: 

!  Here, c  is a constant that describes the minimum stimulus S0 , with 
which just a sensation                is created  (threshold stimulus): 

!  Combined: 

E � 0

�E = k
�S

S

E = k ·lnS + c

c = �k ·lnS0

E = k ·ln S

S0

� dE = k
1

S
dS
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!  Example application: decibel as a unit of measurement for the 
perceived loudness of a sound 
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Excursion2: The Stevens Power Function 

!  Another plausible assumption seems (IMHO) the following: 

!  Transformation results in: 

�E

E
= k

�S

S

1

E
dE � k

1

S
dS = 0 ln E–k ln S = c

ln
E

Sk
= c

E

Sk
= ec = c 0

� 

� 

� 

� 

� 

1

E
�E � k

1

S
�S = 0

Gabriel Zachmann
Optionally
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!  Finally results in Stevens' power law: 
 
 
where E = sensation strength ("perceived weight"), S = stimulus 
(a physical value), c and k = constants, which depend on the 
sense organ 

!  For many stimuli, k < 1  
(for brightness k ≈ 0.5,  
for sound volume k ≈ 0.6) 

!  For some stimuli, k > 1  
(for temperature k ≈ 1-1.6,  
for electric shock k ≈ 2-3) 

E = cSk

k 

k 

Gabriel Zachmann
Optionally
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Notes on the Laws 

!  The Weber-Fechner law describes (apparently) better the 
perception of stimuli in the middle range, the Stevens power law 
better in the lower and upper range 

!  Research on the two laws is still in full swing  

!  There are early indications that neural networks and cellular 
automata also show this behavior, if sensory perception 
(excitation + transport) is simulated with them! 



G. Zachmann 38 Tone Mapping Advanced Computer Graphics 26 June 2014 SS 

!  In the case of the visual sense, �E can be specified in more detail: 

�E =

�
⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⇥

�2.8 , log L < �3.9

(0.4 log L + 1.6)2.2–2.8 , �3.9 ⇥ log L < �1.4

log L� 0.4 , �1.4 ⇥ log L < �0.02

(0.3 log L + 0.7)2.7 � 0.7 , �0.02 ⇥ log L < 1.9

log L� 1.3 , log L ⇤ 1.9

Gabriel Zachmann
Optionally
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Perceptually-Based Tone Mapping 

!  Assume two adjacent pixels in the original image have just a 
difference in intensity of the JND, i.e. 

  

 
    (w.l.o.g.  L1 > L2 ) 

!  Wanted is a transfer function T such that                                      
this condition is an invariant, i.e. 

!  Transformation: 

�L = L1 � L2 = J(L1)

p(L1) = T �(L1) ⇤
T (L1)� T (L2)

L1 � L2
⇥ J(T (L1))

L1 � L2
=

J(T (L1))

J(L1)

T 

L1 L2 

T (L1)� T (L2)  J(T (L1))
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!  Algorithm: 

1.  Compute the histogram h  

2.  Calculate the cumulative histogram ⟶ transfer function T 

3.  Clamp all bins of the original h, such that 
 
 
 
where Li  is the intensity level of bin i 

4.  Compute a new cumulative histogram ⟶ new transfer function T 

5.  Repeat a few times 

h(i) � J(T (Li ))

J(Li )
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Example 
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!  Side note: The Weber-Fechner law is also the reason for 
performing the histogram equalization or tone mapping very 
often in so-called "log-space" 

Luminance 
image Log. 

Brightness 
image 

Histogram- 
Equalization 

Exp. Luminance 
image 

Brightness 
image 
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Other Tone Mapping Operators 

Left/right images 
show dynamic range 

Result by 
Shilick's operator 
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Left/right images 
show dynamic range 

Result by 
Reinhard's operator 
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Further Ideas 

!  Problem: This method prevents �L > J(L) also between pixels, 
which are not adjacent 

!  Idea: map each pixel taking into account only the neighboring pixels 

�  Real local Tone-Mapping-Operator (local TMO) 

!  Unfortunately leading again to other problems (i.e. "halos") 

!  Further limitations of the human visual systems: 

!  Glare (Blendung): strong light sources in the peripheral vision reduce 
contrast sensitivity of the eye 

!  Scotopic / mesopic vision: at low luminance, the color sensitivity 
decreases sharply 

!  Similarly, spatial resolution decreases  

" Could take advantage of all that in the TMO 
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Generating a Histogram on the GPU 

!  Given: gray-scale image (= texture) 

!  Goal: histogram as 1D texture  
!  Each texel  = one bin 

!  Problem: "distribution" of pixels into the bins 
!  Destination output address of a fragment shader is fixed 

!  First idea: 
!  For each pixel in the original image, render one point (GL_POINT) 

!  In the vertex shader, calculate the corresponding bin (instead of a 
transformation with MVP matrix) 

!  Pass the "coordinate" of this bin as the coordinate of the point to the 
fragment shader 

!  Problem: 
!  High data transfer volume CPU � GPU  

!  Example: 1024²x2x4 Bytes = 8 MB  in addition to 1024²-image 
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Generation of Histograms Using the Geometry Shader 

!  Render a quad in the application 

!  Vertex shader is just a pass-through 

!  The geometry shader … 
! makes one loop over the image, 

!  emits for each pixel a point primitive with  
x coordinate = brightness of pixel = bin ,  y=0 

!  The fragment shader … 
!  takes the points, 

!  outputs color (1,0,0,0), 

!  at position (x,0) 

!  The pixel operation … 
!  is set to blending with glBlendFunc(GL_ONE,GL_ONE) = 

accumulation (current cards can do that also with FP-FBOs) 
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Video 
Thorsten Scheuerm

ann, Justin H
ensley; 2007. 

G
raphics Product G

roup, Advanced M
icro D

evices Inc.
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Alternative: Use CUDA on the GPU 

!  Reminder for those of you who have attended my Massively Parallel 
Algorithms class:  

!  Use CUDA's Graphics Interoperability to access image in CUDA 

!  Compute the histogram using a massively parallel algorithm 

!  Do a parallel prefix sum on the histogram 

!  Switch back to OpenGL and transform the image using a fragment shader 
(or do it in CUDA, too) 

!  For those of you who have not attended my Massively Parallel 
Algorithms class:  

!  This might be an incentive to do so # 

Gabriel Zachmann
Optionally



G. Zachmann 54 Tone Mapping Advanced Computer Graphics 26 June 2014 SS 

High-Dynamic Range Imaging in Photography 

!  Were actually doing it before computer graphics did it 
[Charles Wyckoff, 1930-40] 

!  Meanwhile, HDRI is well integrated in Photoshop & Co. 

Original Tone mapped 
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Examples 
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