eeeeee

U  Spatial Partitioning vs. Object Partitioning

= So far: acceleration data structure subdivided space, objects
(=triangles) are associated afterwards to the cells

= Now: partition the set of objects, associate a bounding volume
(= subset of space) with each

" |n reality, the borders between the two categories are not clear-
cut!

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 68



eeeeee

J
Bounding Volumes (BVs) §..

= General idea: approximate complex,

geometric objects, or sets of objects, by
some outer "hull"

= Requirements:

= The objects must be completely inside the BV

= More to come....

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 69



U  Examples of Bounding Volumes

/ \é
Cylinder Box, AABB (R*-trees) Convex hull
[Weghorst et al., 1985] [Beckmann, Kriegel, et al., 1990] [Lin et. al., 2001]

Qaster thesis >

Sphere Prism OBB (oriented bounding box)
[Hubbard, 1996] [Barequet, et al., 1996] [Gottschalk, et al., 1996]

o
s,
.
S
K &, .
DY .
> -, 0 .

K .
RIS 5 o
P o s e
N : . R * .
. S T
.

% -
% .
.

N A

k-DOPs / Slabs Intersection of
Spherical shell [Zachmann, 1998] several, other BVs

[..]

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures

b



eeeeee

U  k-DOPs

= Examples:

6-DOP
(AABB) 14-DOP

18-DOP

26-DOP

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures



eeeeee

W The Costs of BVs g

= Costs of a ray intersection with a subset of the scene, enclosed in a
BV:
I'=nB+ml
I = total costs
n = number of rays tested against the BV
B = costs for one ray-BV intersection test
m = number of rays that actually intersect the BV
| = costs for testing the objects in the BV

= Goal: minimize T
= Consequence: 2 incompatible requirements on BVs:

= BVs should be simple (e.g., sphere or box) = small costs for ray tests, B;
downside: number of ray hits, m, is usually large

= BVs should be compact (e.g., exact, convex hull) = small m; downside:
intersection costs, B, are high

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 72

P



eeeeee

= Qualitative comparison:

Better approximation,
higher build and update costs

Sphere AABB k-DOP OBB convex hull

Smaller computational costs
for overlap test

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures 73



eeeeee

U The Bounding Volume Hierarchy (BVH) .

VR =

= Definition:
A BVH over a set of primitives, P, is a tree where each node are
associated
= a subset of P; and
= a BV B, that encloses all primitives in the subset.

= Remark:

= Often, we use the BV as a synonym for the node in the BVH
= Primitives are usually stored only at child nodes

- Feel free to experiment; exceptions can make sense

= Most of the time, primitives are partitioned, i.e., if P is the set of
primitives associated with a node, and P; are the subsets of primitives
associated with the children, then

P=PU...UP,

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 74

s e



eeeeee

= Schematic example: @

= Parameters:
= The kind of BV used
= "Arity" (degree of the nodes)
= Stopping criterion (in particular, number of triangles per leaf)

= Criterion for partitioning the primitives (guiding the construction)

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures

7. ca
VR

75

b



Bremen

)

Y Examples

¢ ®

G. Zachmann Advanced Computer Graphics SS

e
b

<N
0

+May 2014 Acceleration Data Structures 76



eeeeee

Example for the Traversal of a BVH with a Ray

. 9

13

@

G. Zachmann

Advanced Computer Graphics

SS

+May 2014

Acceleration Data Structures

)
ool

$ F
afi3:

77



eeeeee

..

> 2B
<n

E-X3)
b

" Test 13 — yes

= Test 9 — yes

- Test 1 — no

- Test2 — no

- Test 3 — yes

13 = Test 10 — yes, but intersection

point is farther away

9| > Result: only 3 instead of 8 tests with
objects, plus 3 tests with BVs

11 12 = Question: why did we start with BV 9?

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures 78



eeeeee

Y A Better Hierarchy Traversal

= Problem: the order by which nodes are visited with pure depth-
first search (DFS) depends only on the topology of the tree

= Better: consider the spatial layout of the BV's, too

= Criterion: distance between origin of ray and intersection with
BV (estimated distance)

= Consequence: should not use simple recursion / stack any more

= Use priority queue

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures

79



eeeee

Y Algorithm

= Maintain a p-queue
= Contains all BVs that still need to be visited

= Sorted by their distance from ray origin (along ray)

..
P

<N
60

Pqueue q <« init with root
closest hit = oo
while g not empty:
node «— extract front from g // = nearest BV
if dist(node) <= closest hit: // else: skip this subtree
if node is leaf:
intersect ray with all polygons in node
update closest hit, if any polygon is closer
else // inner node
forall children of node:
if ray intersects child:
insert child in q with its distance

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures



eeeee

= Efficient implementation of a p-queue: heap

" Insertion of an element, and extracting the front — O(log n)

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures

81



G. Zachmann

Advanced Computer Graphics

SS

Test with 13 — yes, insert

13

Pop front of queue — 13

= Test with 9 — no

= Test with 10 — yes, insert

10

Pop front of queue — 10

= Testwith 11 — yes

= Test with 12 — yes

12

11

12 herausnehmen
= Schnitt mit4 - Ja
= Schnitt mit5 -2 Ja

5« B

5 herausnehmen, Test mit Primitiv

6 herausnehmen, Test mit Primitiv

11

= 11 herausnehmen ...

+May 2014

Acceleration Data Structures

v
TR E

82

]



eeeeee

Y

Remarks

= We don't need a complete ordering among the BV's in the
priority queue, because in each step, we only need to extract the
BV that has the closest intersection (among all others in the

queue); hence the heap

= Warning: the closest ray-BV intersection and the closest ray-

primitive intersection can occur in different BV's!

G. Zachmann

Advanced Computer Graphics

SS

+May 2014

A
4

Acceleration Data Structures

83

e



How Much Do We Gain?

\& o o L BT e g
N " N <~:’« ",A\ ,,I 4 ) -(l A *
Number of
10 91 820 7381 66430
spheres
Brute-force 2.5 11.4 115.0 2677.0 24891.0
Goldsmith/
2.3 2.8 4.1 5.5 7.4
Salmon BVH
Rendering times in seconds, Athlon XP 1900+
(Markus Geimer)
G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures

7. cc

D

VR %

85



eeeeee

W  The Construction of BV Hierarchies

= There are many possible principles:

1. Given by modeling process (e.g., in form of scene graph)

2. Bottom-up:
= Recursively combine objects/BV's and enclose in (larger) BV

= Problem: how to choose the objects/BV's to be combined?

3. Top-down:

= Partition the set of primitives recursively

= Problem: how to partition the set?

4. |terative Insert:

A

= Heuristic developed by Goldsmith/Salmon

QVA
T

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 87

e



eeeeee

Y Example for the Top-Down Construction of a BVH &5§

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)

In the following, work only with those elementary BVs

Partition the set of objects in two sub-sets

= Recurse

G. Zachmann Advanced Computer Graphlcs SS . May 2014 Acceleration Data Structures 90




eeeeee

Y Simplest Heuristic for Top-Down Construction: Median Cut o

1. Construct elementary BVs around
all objects

2. Sort all objects according to their
"center" along the x-axis

3. Partition the scene along the
median on the x-axis; assign half of
the objects to the left and the right
sub-tree, resp.

1. Variant: cyclically choose a different
axis on each level

2. Variant: choose the axis with the
longest extent

4. Repeat 1-3 recursively /—\ —\
= Terminate, when a node contains om ,é@

less than n objects

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures

b



eeeeee

A Better BVH Construction Method

= Given a set of polygons, what is their optimal partitioning?
(optimal with respect to raytracing performance)

= Employ the Surface-Area-Heuristic (SAH):
partition B such that

C(B) = Area(Bl)-N(Bl) + Area(Bz)-N(Bz)

attains its minimum

= Optimum could be achieved by exhaustive search:

C(B) = B/gy)rzB) C(B', B\B")

= Not practical

= Current "best" way: use method similar to kd-tree construction

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures 92



eeeeee

Heuristic Method to Achieve Good BVHs

1. Represent all polygons by their

midpoint A A

2. Calculate axis of largest extent
(using PCA)

3. Project all midpoints onto that
axis and sort

4. Search minimum of C(B) by
plane sweep

G. Zachmann Advanced Computer Graphics SS  May 2014

Acceleration Data Structures

94

E-Xal
P



eeeeee

= Running time:
T(n)=T(an)+ T((L —«a)n)+ O(nlogn)
e O(nlog” n)
where « is the proportion of polygons that end up in the "left"

child BV, and assuming « is bounded (e.qg., between 0.1 and 0.9)

= Remarks:

= Stopping criteria are the same as for the kd-tree

= Top-down methods usually lead to better BVHs than iterative ones

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 95



eeeeee

Y

lterative Insert

= Start with an empty root node

" |teratively insert one triangle after another into the BVH, possibly

thereby extending the BVH:
= Let the triangle "sift" to the bottom of the BVH
- VergroRere dabei ggf. das BV der Knoten
= |st das Dreieck an einem Blatt angekommen —
- Ersetze das Blatt durch einen inneren Knoten
- fuge das neue und das alte Dreieck als dessen Kinder an

= Steht man an einem inneren Knoten — treffe eine der
folgenden Entscheidungen:

- fuge das Dreieck am aktuellen (inneren) Knoten an

- lasse das Dreieck in den linken / rechten Teilbaum sickern

G. Zachmann Advanced Computer Graphics SS . May 2014

[Goldsmith & Salmon, 1987]

Acceleration Data Structures

s e

VR =

96


Gabriel Zachmann
Optional


eeeeee

Y

Beispiel fir Goldsmith und Salmon

Optional

= Szene vor der Erzeugung e e e m—m - -

der Hierarchie

= Jedes Objekt wird durch--------
sein Bounding Volume
umgeben

= Das gestrichelte Viereck ist
die gesamte Szene - .

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures

97


Gabriel Zachmann
Optional


Y

1. lteration

Optional

Gegenwartiger Baum

L1

Maoglichkeiten

G. Zachmann Advanced Computer Graphics SS  May 2014

Acceleration Data Structures

98


Gabriel Zachmann
Optional


Y

2. lteration

Gegenwartiger Baum

Maoglichkeiten

G. Zachmann

Advanced Computer Graphics

SS

+May 2014

Acceleration Data Structures

99

b



Y

3. lteration

Gegenwartiger Baum

Maoglichkeiten

G. Zachmann Advanced Computer Graphics

SS

+May 2014

Acceleration Data Structures

100



Y

4. lteration

Gegenwartiger Baum

G. Zachmann Advanced Computer Graphics

SS

+May 2014

Acceleration Data Structures

101



eeeeee

W 5. Iteration -

Gegenwartiger Baum

G. Zachmann Advanced Computer Graphics SS  May 2014 Acceleration Data Structures 102



eeeee

5. lteration

Gegenwartiger Baum

Moglichkeiten

5

G. Zachmann Advanced Computer Graphics

SS

+May 2014

Acceleration Data Structures

103

b



eeeeee

Y

Bemerkungen

L

o .
ARTE::

= Die Reihenfolge, in der die Objekte eingefliigt werden, hat einen
sehr grof3en Einfluss darauf, wie gut der Baum wird

= Goldsmith/Salmon experimentierten mit:

G. Zachmann

= Reihenfolge wie im geladenen Modell

= zufallig (shuffled)

= Sortiert entlang einer Koordinatenachse

Zahl der Schnitt-Berechnungen pro Strahl bei verschiedenen Testszenen

User Supplied 594 199 129 10.1 32.0 63.2
Sorted 6.53 20.0 159 13.3 32.0 55.2
Average Shuffled 6.21 199 143 9.4 40.5 44.8
Best Shuffled 594 199 124 8.7 36.7 424
Worst Shuffled 6.32 199 174 18.3 48.2 47.2
Advanced Computer Graphics SS . May 2014 Acceleration Data Structures

104


Gabriel Zachmann
Optional


. . g §
Y Comparison of Acceleration Data Strucures [Havran, 2001(?)] s

410000

100000
89800

89450

60000 ettt e e e e e e e e e et s mein s ek e mimes fas smmimns sms smms ems ems e ems 1t smms s smmrns s mmimns

53350 m Build time

B Rendering time

O Combined

6820 14760

6930 8710

5241

o)
'

Q
x

AG
UG

0O93A
O84A
HUG
BVH

= Applies only to raytracing

= |s not definitive, since new techniques are emerging all the time

G. Zachmann Advanced Computer Graphics SS . May 2014 Acceleration Data Structures 105



Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

‘May 2014

Acceleration Data Structures

.

VR

106



