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W Implicit Surfaces

= An implicit surface is the set

{x| F(x) =0, x € R*}

with some function F.
= Example: surface of sphere

= More & nicer examples:

(x*+y*+ z2—ak2)2 -b((z — k)*-2x%) ((z + k)2—2y2)2
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Intersection of Ray with Implicit Surface

= Ray: P(t)=0+t-d

* Inserting in implicit function F(x) =0
yields polynomial

F(P(t))=0
in t of degree n

" Find the roots:

= |f degree < 5: solve for t analytically

= Else: interval bisection, Newton's method, ...

= Start values? ...
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W Root-Finding with Laguerre's Method

= Advantage: one of the very few "sure-fire" methods

= Limitations:
= Works only for polynomials

= Algorithm needs to perform calculations in complex numbers, even if
all roots are real (and thus all coefficients)

= Very little theory is known about its convergence behavior

- If the root it converges to is a simple root, then the convergence order is (at
least) 3

= Lots of empirical evidence that the algorithm (almost) always
converges towards a root; and it does so from (almost) any
starting value!
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Y  Motivation for the Algorithm

= Given: the polynomial
P(x) =(x —x1)(x —x2)...(x — xp) (0)
where the x; are the, possibly complex, yet unknown roots

= From that, we can derive the following equations:

In|P(x)| =In|x —x¢| +In|x — x| + - - - + In|x — x|
d 1 1 P(x)
&|n\P(x)\—X_X1+---+X_Xn—P(X) =G (1)
d? 1 1
= InlP(x) = — B
dx? [P (x — x1)° (X — xp)°
P (PR,
S P P 2
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= Let x be our current approximation of a root, w.l.0.g. root Xxi

7
= Make a "drastic" assumption: 1
= Denote distance X — x; = a X <3/X1
= Assume, distance to all other roots is b \ .
X—x;~b, 1=273,...,n X; ® >
= Then, we can write (1) & (2) like this:
1 n—1
G~ -+ (3)
a b
1 n—1
H~ — 5 (4)
a b
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= Plug (4) into (3) and solve for a :

n

T+ Vn—D)(H=0?) )

d

= Compute G and H from
P(x) = ag + aix + ax* + ... + apx”
P'(x) = a1 + 2apx + 3asx* ... + na,x" !

P"(x) =2a, +3-2-a3x...+n-(n—1)a,x"?

= Choose sign in front of sqrt such that \a] becomes minimal

= Remark: discriminant under sqrt can become negative
— a can become complex

" New approximation of root x71 is x; = x — a
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Y  The Algorithm

choose 0-th approximation X(O)

repeat p! (k)
compute G = ()

P(x()
P//(X(k))
H= G-
& Pmy

n
compute a —

- G+ +/(n—1)(nH = G?)

let X(k+1) = X(k) — a
until a is "small enough" or k 2 max
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= Warning: try to use code from Numerical Recipes

= For ray-tracing: have to compute all roots!
= When first root is found, factor it out of polynomial

= Find next root of smaller polynomial, repeat Laguerre n times
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@ The "Batman Equation” -

)
ool

Optional

= With a few tricks, one can even create complex objects & :

:-8.87100526 y: UNDEFINED @

ly + 2432

x\2 Jlx[ =3[ | rx)2 N
((7> NEE +(3) y + 1)'
X 3v33 — 7 5 5
<||—( m )x—3+¢1—(||x\—2|—1> —y>-
(= 1) (] - (X =75 (A= 5)1 N[5 0r [I0x1= 1) (x] = 75
( (=75 )(3' '”5\/ SRICE y><2'25\/ (1= pel) (W =75,

<F+<15—5r )yt _evio 4—<\x\—1>2‘y>‘°

x| =1 14
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Quadrics (Sphere, Cylinder, Paraboloid, Hyperboloid) ot

" Infinite cylinder:

X242 =1

= Parabolloid:

xX*4+y*—z=0

= Hyperboloid (one sheet):

x> +y?—z2=1

= All of these can be written as a quadratic form (hence the name):

x"Mx=0 xeR* MecR**
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= Torus (is not really a quadric!):

\ 2
c—\x2+y?2) +2°2=2°

full view cutaway cross-section

ring
forus

et —

horn
forus

spindle
rorus
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Superquadrics

= Generalization of quadrics

Super-ellipsoid:

(5)+(B)

= Super-toroid:

() )Y G -
a b C
= Warning: in above equations, we always mean |x|P |
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Examples of Super-Quadrics
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XScreenSaver demo "SuperQuadrics"
(www.jwz.org/xscreensaver)
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Ratioquadrics [Blanc & Schlick, 1996] = “sc#

e ]

= Variant of superquadrics with somewhat better properties

= |dea of superquadrics can be rewritten like this:

F(x,y,z) = fp(g) + fq(%) + fr(%)_l

— |y|P
fo(x) = || 1 | | | -
/
= Problem: : //
= fp(x) is not differentiable at x=0 5 //
forp <1 /
= Therefore, we get cusps, — -

which might be unwanted

= Besides, fp(x) is fairly expensive

to evaluate —~
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= Simple idea: use different power functions

= A new pseudo-power function
[Blanc & Schlick]:

o X
p+(1—p)x

8p(X)

= With that, the ratioquadric for a "ratio-ellipsoid" is

0.6 -

—

—

F(x.y,z) = gp(5) + &(5) + &(%) — 1

= Result:
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W Metaballs

" |Inspired by molecules

= |dea: consider the surface of a sphere as the set of points that
have the same "potential", where the maximum is reached at the
center of the sphere — isosurface

= A potential field is described by a potential field function, e.q.

p(r) = %

where
r=n(x)=|x— x|

" The sphere's surface is thus
K ={x]|p(x) =7}

= T is called threshold or isovalue
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= More complex objects can be created by blending (superposition)
of several potential fields

= Simplest blending is (weighted) addition of the potential fields:

x) = Zl aj f?EX) o ni(x) =[x = x|

= The set of points x; is called the skeleton,

P is the total potential, the a; determine the influence (= "field's force")

= Negative influence can "carve out" material (e.g., for making holes)

" Note: the potential field is defined in the whole space

Sumrof Gaussian:
Individual fields Potential blob shapes

) 4
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" |ngredients for definition of metaballs:
distance function, potential function, skeleton points, weights

" |n general, a metaballs object is defined as the isosurface

F={Px)=7|xeR® P(x)=) ap(di(x)) }
with p = potential function,
d; = distance function to i-th skeletal point

= Examples for 2 skeleton points:

3lAoW
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T
0.05/r~2
Gauss , b=4
(*), b=1
08 (**), d=3
0.6 |-
0.4 -
0.2 |
0
0 0.2 0.4 0.6 0.8
Vergleich
1 T
d= 0 ——
d= 5
d= 20
0.8 + d=100
0.6 |-
0.4 +
0.2 -
0
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(**) mit verschiedenen Parametern
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= Effect of the variation of the parameter d :

6600

Potential fct is (**), d is fixed for the left skeleton point, d = 10 ... 2000 for the right skeleton point

= Many names for this kind of modeling methodology:
"metaballs", "soft objects", "blobs", "blobby modeling",
"implicit modeling", ...
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o
Deformable Models ’%

= With implicit modeling (metaballs), it is easy to create and
animate deformable "blob-like" objects:

= Animate (move) the skeleton points

= Modify parameters g, d, ...
Different iso-values T

= Modify the iso-value T

Brian Wyvill Frédéric Triquet
http://pages.cpsc.ucalgary.ca/~blob/animations.html http://www?2.lifl.fr/~triquet/implicit/video/
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"The Great Train Rubbery" — Siggraph

G. Zachmann Advanced Computer Graphics
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"The Wyvill Brothers"

Geoff Brian
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Y Generalization / Variants

= Points are the simplest kind of primitive for metaballs skeletons;
analogously, we can use lines, polygons, ellipsoids, etc.:

Examples of other
primitives:
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= Other blending functions:

Pu(x) = max{pi(x), p2(x)}
Pn(x) = min{p1(x), p2(x)}

= A tree of "blending" operations (similar to CSG) — the "BlobTree":

&
T -
p
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W  Remarks on Implicit Modeling

= One can achieve some nice effects very easily

= The technique did not get traction in the tool set of animation
industries and CAD, because there is too much "black magic"
involved in achieving a particular effect [says Geoff Wyuvill, too]

= For special kinds of deformable objects, it can be very useful,

e.g., for fluids
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