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View-Frustum Culling     

§  In many real scenes, a substantial 
percentage of the scene is outside 
the view frustum 

Potentially 
Visible Set 
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Bounding Volumes (BVs) 

§  Test per polygon is too expensive, overall rendering time would 
be slower than without VFC 

§  Therefore, test complete objects (= set of polygons) whether they 
are outside the view frustum 

§  Do fast tests with simple bounding volumes (BVs): 

§  The process is efficient only if 
 Cost( BV test ) << Cost( rendering the polygon set ) 

Sphere Axis Aligned 
Bounding Box (AABB) Oriented BBox (OBB) 
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Calculation of OBBs 
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Representation of BVs 

§  Sphere :=  ( center, radius) 

§  AABB := (min, max) = 
(xmin, ymin, zmin, xmax, ymax, zmax) 

§  OBB is defined by 

§  center 

§  3 axes 

§  3 „radii“ 

§ Corresponds to a 3x4 matrix: 

           T(M) . R(u,v,w) . S(rx,ry,rz) 
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ry 

M 

r 

max 

min 
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Representation of the View Frustum 

§  Procedure: 
1. Use parameters from gluPerspective and gluLookAt 

2. Calculate vertices of the frustum 

3. Calculate the frustum planes 

§  Determine corners (in world coordinates): 
 
 

 
Analogously, calc all other vertices 

§  Determine the planes of the corners : 
§  3 points are sufficient (cross product of edges) 

§  Note: ensure a consistent orientation of the normals! 

§  Small optimization: normals of the near and far plane are known already 
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F 
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f 

F = C + f ·d

P = F +
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Test Sphere v. Frustum For View Frustum Culling 

§  Given: 6 plane equations 
 
and a sphere 

 
§  Question: Is the sphere is completely  

outside the frustum? 

§  Yes ↔ 

§  If    . 

then one of the planes intersects the sphere (but not necessarily 
the frustum) 

§  If      . 

then the sphere is completely inside the frustum 

c 
r Ei : x ·ni � di = 0

(x � c)2 � r2 = 0

⇥i : c ·ni � di > r

⇤i : |c ·ni � di | ⇥ r

⇥i : c ·ni � di < �r
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Test Box v. Frustum 

§  Warning: it is not sufficient to check that  
all vertices are outside the frustum! 

§  Counterexample: 

§  A simple, conservative test: 
All 8 vertices are on the positive side  
of the same plane → box is outside  

§  This test produces so-called  
"false positives" ⟶ increases the PVS  

§  The box is completely inside ⇔  
all vertices are on the negative side of all planes 
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Optimizations 

§  It is sufficient to test two corners against each plane: 
§ We denote by "N vertex" that vertex of all  

vertices where the following function 
assumes the minimum:  

   f (x) = x . n – d 

§  Analogously define "P vertex" (f assumes max) 

§  These are (almost always) unique because f  is  
monotone, and a box is convex 

n 

P-Vertex 

N-Vertex 

loop over all planes i: 
  calculate fi(N vertex) 
  if N nertex is on positive side: 
    → complete box is on the positive side 
    → complete box is outside the frustum 
  calculate fi(P vertex) 
  if P vertex is on the negative side: 
    → complete box is on the negative side 
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§  How to quickly find the N- or P vertex? 

§  If box = axis-aligned bounding box (AABB), then it can be done 
very fast 

§  AABB = (xmin, ymin, zmin, xmax, ymax, zmax) 

n 

Max 

Min 

N 

P 

Px =

�
xmax , nx � 0

xmin , nx < 0

Py =

�
ymax , ny � 0

ymin , ny < 0

Pz = . . .

Nx =

�
xmin , nx � 0

xmax , nx < 0
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Further Optimizations 

§  "Meta-BVs": If many boxes need  
to be tested, enclose boxes and  
balls in a frustum 

§  Or enclose the frustum in an AABB, too 

§  Produces more false positives, so YMMV 

§  Exploit temporal coherence: if box has been culled by a certain 
frustum plane, save that plane and test this first in the next frame. 
Probability is high that this plane culls the box again!  
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Hierarchical View Frustum Culling 

§  Generating at each node of the scene graph a bounding volume 
including the complete subtree →  

   Bounding-Volume-Hierarchy (BVH) 

§  Traverse this BVH und test all knots 

root 

Camera 
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Further Optimization 

§  Plane Masking:  

§  If a box is completely on the negative side 
of a plane, then all children too. Do not 
test this level for the children 

§  If a BV is completely inside, then all 
children are inside 
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Occlusion Culling 

§  Occlusion Culling is always interesting, if many objects are 
hidden by a few objects 

§  Definition: Depth Complexity 
§  Number of intersections of the ray in the scene 

§  Number of polygons projected on a pixel 

§  Number of polygons that would be visible at a pixel, all polygons were 
transparent 

§  Comment : Depth Complexity is oberservation and directional 
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Examples of High Depth Complexity 
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First, the Special Case of “Cities" 

§  Render the scene from front to back (reverse Painter's Algorithm) 

§  Generate an "occlusion horizon" 
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§  Rendering an object (here tetrahedra; behind the gray objects): 

§  Determine axis-aligned bounding box (AABB) of the projection of the 
object 

§  Comparison with the occlusion horizon 

culled 
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§  If an object is considered as visible: 

§  Add the AABB with the previous occlusion horizon 
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General Occlusion Culling 

§  Given: 

§  A partial(!) rendered scene, and 

§  not yet rendered object 

§  Task:  

§  Decide quickly whether the object would modify pixels in the frame 
buffer, if it were rendered; 

§  I.o.w.: decide quickly whether the object of the current scene is 
completely covered 

§  Terminology: 
Occluder 

Occluded geometry 
("occludee") 
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Examples of Applications of the General Occlusion Culling 

Power plant, 13 million triangles  
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"Double Eagle", 4 GB, 82M triangles, 127,000 objects 
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Visible polygons: 450k (ca. 4%) 

Invisible polygons: 10M (ca. 96%) 
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Occlusion-Culling in OpenGL 

§  Earlier as extension ARB_occlusion_query ,  
nowadays in OpenGL core from version 1.5  

§ Operating mode: Asks OpenGL how many pixels would be 
"repainted" from a batch 

§  Appendage: Draw a simple representation ("Proxy"), without 
changing the color or depth buffer 

§ Were no pixels drawn by the proxy, the object itself must not be 
drawn 

§  Proxy geometry: first sacrifice a little computing power to 
possibly save a lot of computing power later 

§  Tolerably accurate bounding volumes 

§  No texturing, no shading, no light sources 

§  No colors, texture coordinates, normals 
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§  First create occlusion query at initialization : 

§  Render a set of objects (hiding a lot) 

§  Disable writing in Z- and color buffer (optional): 

§  Create request for a lot of other objects : 

§  Reading result of the request: 

glGenQueries( int count, unsigned int queryIDs[] ); 

glBeginQuery( GL_SAMPLES_PASSED, unsigned int querynum ); 
// rendere Proxy-Geometrie, z.B. Bounding Volume ...  
glEndQuery( GL_SAMPLES_PASSED ); 

glGetQueryObjectiv( int querynum, 
                    GL_QUERY_RESULT, int *samplesCounted ); 

glDepthMask( GL_FALSE ); 
glColorMask( GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE ); 
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Demo 
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Batching Queries 

§  Problem: A query = expensive State-Changes 
§  Before: Disable writing to color-and Z-buffer 

§  After: Switch back 

§  This overhead takes more time than the actual query! 

§  Idea: Batching 

§  Implement 2 additional queues 

§  Both contain objects that should to be tested for visibility 

§  I-Queue: contains previously “invisible” objects 

§  V-Queue: likewise for "visible" 

§  Parameters: Batch size b  (ca. 20-80) 

§  Principle: only if batch size is reached, the list of queries is sent to 
OpenGL 

§  "Previously visible" objects are still rendered immediately 
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§  Exemple: each color = one state change 

Naive CHC++ 
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§  Goal: Reduce the number state changes, and thus the time 
required per Occlusion Query 

§  Therefore, send a sequence of requests, read the result of the 
sequence afterwards 

 

0 

0.5 

1 

1 4 16 64 256 1024 4096 

Requests per 
second 

(normalized) 

Size of the Query Bunches 

Rechner 1 

Rechner 2 
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The Naive "draw-and-wait" Approach 

  
Sort items about the depth in  
Create query sequence 
while some objects are not rendered: 
  For each object in query sequence: 
    BeginQuery 
    Render bounding volume 
    EndQuery 
  For each object in query sequence: 
    GetQuery 
    if #pixel drawn > 0: 
      Render object 



G. Zachmann 58 Culling Advanced Computer Graphics 20 June 2013 SS 

§  Problems of the naive approach: 
§  Very high response time (latency) for a query: 

-  long graphics pipeline,  
-  some time by the execution of the queries (rasterization), and 
-  transfer the result back to the host. 

§  Sequence: "CPU stalls" and "GPU starvation" 

D1 

D1 

Q2 Q3 Q4 

Q2 Q3 Q4 

Latency due to  
render state change 

R2 R3 R4 D2 D4 

V I V 

CPU 

GPU 

D = "draws" 
Q = "query" 
R = "response" 
V/I = "visible" / "invisible" 

D2 
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Sort the Object List 

§  Observation: Depending on the order in which you render the 
objects, you get a high culling rate or not 

§  Solution: sort the list by distance to the object Viewpoint 

worst case: 

best case: 

4 

1 

3 

2 

2 

3 

1 

4 

1 

2 

3 7 

5 

6 4 



G. Zachmann 60 Culling Advanced Computer Graphics 20 June 2013 SS 

Aggressive Approximate Culling 

§  Often only conservative culling : 

§  Even if only one pixel of the BVs is visible 
also one pixel of the object can be visible → 
draw object 

§  Disadvantage: Often outer parts of the BVs 
are visible where no object pixel are located  

§  Idea: Ignore barely visible objects 

§ Object probably (!) not visible if only a few 
pixels of the BVs are visible 

§  Heuristics: Draw object only if query  

   result ≥ threshold 

§  Potentially "small" holes in or between 
objects 
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Coherent Hierarchical Culling (CHC & CHC++)        [2008] 

§  Here in a simplified representation (a.o. without hierarchy) 

§  Given: Set of objects 

§  Here: Object = Amount of useful contiguous polygons 

§  Ideas: 

§  Perform a queue with stored hardware occlusion queries 

§  First assumption: if an object was visible in the last frame, it is also 
visible in the current frame 

§  If an object was invisible, first check its visibility 

§  Do not wait for result, go further through the query 

§  Edit query results as soon as they are available 
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The algorithm 

L = list of all objects (incl. BVs) 
Q = queue for occlusion queries (initally empty) 
 

sort L from front to back with respect to current viewpoint 
 

repeat: 
 

  // process list of objects 
  if L not empty: 
    O = L.front 
    if O inside view frustum: 
      issue occlusion query with BV(O) 
      append O to Q 
      if O is marked "previously visible": 
        render O 
  end if 
... 
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... 
  // process queries 
  while Q not empty and  
        result of occlusion query Q.front available 
    V = Q.pop 
    if num. visible pixels of query V > threshold: 
      V.obj = "visible" 
      if V.obj is not marked "previously visible": 
          render V.obj 
    else: 
      V.obj = "invisible" 
  end while 
 

until Q empty and L empty 

Below: gradual improvement of this algorithm 
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Fusion (Potentially) Hidden Geometry 

§  Observation :  

§  If we knew that a lot of objects in the current frame is hidden, then we 
could verify this by exactly one occlusion query 

§ Objects that were hidden in many frames are probably obscured in the 
current frame (temporal coherence of visibility) 

§  Idea:  

§  Invent an "oracle" that can predict for a given set of objects with high 
probability whether the coherence of visibility is satisfied 

§  If the probability is high enough, test this set by 1  

   Query: 

glBeginQuery( GL_SAMPLES_PASSED, q ); 
  render BVs with the set of objects ...  
glEndQuery( GL_SAMPLES_PASSED ); 
glGetQueryObjectiv( q, GL_QUERY_RESULT, *samples ); 

This will be called  
in the following: 
Multiquery! 
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§  Definition: Visibility persistence 
 
 
 
where I(t) = number of objects, which were constantly covered in 
previous t frames 

§  Interpretation: p(t) = " probability ", that one object, which was 
covered t frames, will also be covered in the following frames 

§  Observation: is amazingly  

    independent from object and scene 

§  Consequence: can be approximated 

    well by analytic function! 

p(t) =
I(t + 1)

I(t)

p(t) ⇥ 0.99� 0.7e�t
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§  If tO = Number of previous frames which the object O was 
covered 

§  Define an "oracle" for a set M of objects i(M)  := the „probability“ 
that all objects from M  in the actual frame will be invisible (only 
a heuristic!): 

§  Define that 

§  Costs of an occlusion multiquery (in the batch): 
 

 

§  Expected benefits of a multiquery: 

i(M) =
Y

O2M

p(tO)

C (M) = 1 + c1|M |

B(M) = c2i(M)

X

O2M

num polygons of O
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§  Thus defining the expected value of a multiquery: 

§  f the I-queue is full at some point: 

§  Sort the objects Oi  in the I-queue tO  → {O1 , … , Ob } 

§  Simple greedy search the maximum 

§  Set on a multiquery for these first  n  objects from the I-queue 

§  Repeat until the I-queue is empty 

V (M) =
B(M)

C (M)

max

n=1...b

�
V ({O1, . . . , On}
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Tighter Bounding Volumes 

§  Observation: As greater the BV in relation to the object as more 
probable that the occlusion query returns a "false positive"  
(claims "visible", but in truth "invisible") 

§  Objective: close as possible BVs 
§  Boundary conditions: 

§  BVs must be very fast to render 
§  BVs may not cost a lot of memory 

§  Idea: 
§  Decompose object  
   into cluster 
   (cluster of polygons) 
§ Wrap a BBox around each  
   clustert (AABB) 
§  Use as BV foreach object  
   the union of the small  
   BBoxes 
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§  Question: how small should the "small" AABBs (or cluster) be? 

§  Observation: the greater the number of small AABBs, ... 

§  ... the greater the probability that "invisible" is correctly recognized, 
but 

§  ... the greater the surface → onger rendering time of the resulting 
occlusion queries 

§  Strategy for the construction of the "narrow AABBs": 

§  Devide clusters recursively 

§  termination criterion: if 
 
 

§  Parameter σ depends on the graphics card (σ ≈ 1.4 seems OK) 

�
Oberfläche der kleinen AABBs > � · Oberfläche der großen AABB
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Altogether 

§  The queues in CHC++: 

rendering queue 

v-queue (visible nodes) i-queue (invisible nodes) 

query queue 

Multiquery 

OpenGL 



G. Zachmann 72 Culling Advanced Computer Graphics 20 June 2013 SS 

Results 

§  Walkthrough the power plant model: 
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Another Special Case: Architectural Models 
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Cells and Portals (Portal Culling) 

§  Scenario: Walkthrough of buildings and cities 

§  Transparent portals connect the cells 

§  doors, windows, holes, ... 

§  Observation: cells see each other only through the portals 

§  Which cell is included in the PVS? 

§  The cell which contains the Viewpoint 

§  And these cells, which have a portal to the initial cell 

A 
D 

H 

F C B 

E 

G 
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Example scene 
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Result 

§  Example scene : 

§  Speedup is highly dependent on the model and viewpoint 

§  Frame rate is 1-10-fold the frame rate without Cells & Portals method 

§  For typical viewports the method removes 20 - 50% from the model 



G. Zachmann 89 Culling Advanced Computer Graphics 20 June 2013 SS 

§  Field of applications 

§  Computer games 

§  Buildings 

§  Cities 

§  Ships (inside) 

§  Not suitable for CAD data 

§  Aircrafts 

§  Industrial facilities 

§  Not suitable for natural objects 

§  Plants 

§  Forests 
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Detail Culling 

§  Idea: Objects that occupy less than N pixels in the projection are 
not shown 

§  This approach also removes parts that would be visible in the 
final image 

§  Advantage: trade-off quality / speed 

§  Particularly suitable for camera motion (the faster, the more 
details can be culled) 
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Estimating the Projected Size of an Object 

§  Estimate the size of the BVs in screen space from: 

(eye) e 

(near plane) 

v (normalized view direction) 

r 

c 

n 

(distance along v) 

(Estimate of the projected radius) 

estimated area of the projected sphere 

d = v·(c� e)

r̂ = r · n

d
�r̂2 =


