
G. Zachmann 30 Culling Advanced Computer Graphics 20 June 2013 SS

View-Frustum Culling

§  In many real scenes, a substantial
percentage of the scene is outside
the view frustum

Potentially
Visible Set

G. Zachmann 31 Culling Advanced Computer Graphics 20 June 2013 SS

Bounding Volumes (BVs)

§  Test per polygon is too expensive, overall rendering time would
be slower than without VFC

§  Therefore, test complete objects (= set of polygons) whether they
are outside the view frustum

§  Do fast tests with simple bounding volumes (BVs):

§  The process is efficient only if
 Cost(BV test) << Cost(rendering the polygon set)

Sphere Axis Aligned
Bounding Box (AABB) Oriented BBox (OBB)

G. Zachmann 32 Culling Advanced Computer Graphics 20 June 2013 SS

Calculation of OBBs

G. Zachmann 33 Culling Advanced Computer Graphics 20 June 2013 SS

Representation of BVs

§  Sphere := (center, radius)

§  AABB := (min, max) =
(xmin, ymin, zmin, xmax, ymax, zmax)

§  OBB is defined by

§  center

§  3 axes

§  3 „radii“

§ Corresponds to a 3x4 matrix:

 T(M) . R(u,v,w) . S(rx,ry,rz)

rx

ry

M

r

max

min

G. Zachmann 34 Culling Advanced Computer Graphics 20 June 2013 SS

Representation of the View Frustum

§  Procedure:
1. Use parameters from gluPerspective and gluLookAt

2. Calculate vertices of the frustum

3. Calculate the frustum planes

§  Determine corners (in world coordinates):

Analogously, calc all other vertices

§  Determine the planes of the corners :
§  3 points are sufficient (cross product of edges)

§  Note: ensure a consistent orientation of the normals!

§  Small optimization: normals of the near and far plane are known already

C

F

P W

H

f

F = C + f ·d

P = F +
1

2
Hv � 1

2
Wu

G. Zachmann 35 Culling Advanced Computer Graphics 20 June 2013 SS

Test Sphere v. Frustum For View Frustum Culling

§  Given: 6 plane equations

and a sphere

§  Question: Is the sphere is completely

outside the frustum?

§  Yes ↔

§  If .

then one of the planes intersects the sphere (but not necessarily
the frustum)

§  If .

then the sphere is completely inside the frustum

c
r Ei : x ·ni � di = 0

(x � c)2 � r2 = 0

⇥i : c ·ni � di > r

⇤i : |c ·ni � di | ⇥ r

⇥i : c ·ni � di < �r

G. Zachmann 36 Culling Advanced Computer Graphics 20 June 2013 SS

Test Box v. Frustum

§  Warning: it is not sufficient to check that
all vertices are outside the frustum!

§  Counterexample:

§  A simple, conservative test:
All 8 vertices are on the positive side
of the same plane → box is outside

§  This test produces so-called
"false positives" ⟶ increases the PVS

§  The box is completely inside ⇔
all vertices are on the negative side of all planes

G. Zachmann 37 Culling Advanced Computer Graphics 20 June 2013 SS

Optimizations

§  It is sufficient to test two corners against each plane:
§ We denote by "N vertex" that vertex of all

vertices where the following function
assumes the minimum:

 f (x) = x . n – d

§  Analogously define "P vertex" (f assumes max)

§  These are (almost always) unique because f is
monotone, and a box is convex

n

P-Vertex

N-Vertex

loop over all planes i:
 calculate fi(N vertex)
 if N nertex is on positive side:
 → complete box is on the positive side
 → complete box is outside the frustum
 calculate fi(P vertex)
 if P vertex is on the negative side:
 → complete box is on the negative side

G. Zachmann 38 Culling Advanced Computer Graphics 20 June 2013 SS

§  How to quickly find the N- or P vertex?

§  If box = axis-aligned bounding box (AABB), then it can be done
very fast

§  AABB = (xmin, ymin, zmin, xmax, ymax, zmax)

n

Max

Min

N

P

Px =

�
xmax , nx � 0

xmin , nx < 0

Py =

�
ymax , ny � 0

ymin , ny < 0

Pz = . . .

Nx =

�
xmin , nx � 0

xmax , nx < 0

G. Zachmann 39 Culling Advanced Computer Graphics 20 June 2013 SS

Further Optimizations

§  "Meta-BVs": If many boxes need
to be tested, enclose boxes and
balls in a frustum

§  Or enclose the frustum in an AABB, too

§  Produces more false positives, so YMMV

§  Exploit temporal coherence: if box has been culled by a certain
frustum plane, save that plane and test this first in the next frame.
Probability is high that this plane culls the box again!

G. Zachmann 40 Culling Advanced Computer Graphics 20 June 2013 SS

Hierarchical View Frustum Culling

§  Generating at each node of the scene graph a bounding volume
including the complete subtree →

 Bounding-Volume-Hierarchy (BVH)

§  Traverse this BVH und test all knots

root

Camera

G. Zachmann 41 Culling Advanced Computer Graphics 20 June 2013 SS

Further Optimization

§  Plane Masking:

§  If a box is completely on the negative side
of a plane, then all children too. Do not
test this level for the children

§  If a BV is completely inside, then all
children are inside

G. Zachmann 42 Culling Advanced Computer Graphics 20 June 2013 SS

Occlusion Culling

§  Occlusion Culling is always interesting, if many objects are
hidden by a few objects

§  Definition: Depth Complexity
§  Number of intersections of the ray in the scene

§  Number of polygons projected on a pixel

§  Number of polygons that would be visible at a pixel, all polygons were
transparent

§  Comment : Depth Complexity is oberservation and directional

G. Zachmann 43 Culling Advanced Computer Graphics 20 June 2013 SS

Examples of High Depth Complexity

G. Zachmann 44 Culling Advanced Computer Graphics 20 June 2013 SS

First, the Special Case of “Cities"

§  Render the scene from front to back (reverse Painter's Algorithm)

§  Generate an "occlusion horizon"

G. Zachmann 45 Culling Advanced Computer Graphics 20 June 2013 SS

§  Rendering an object (here tetrahedra; behind the gray objects):

§  Determine axis-aligned bounding box (AABB) of the projection of the
object

§  Comparison with the occlusion horizon

culled

G. Zachmann 46 Culling Advanced Computer Graphics 20 June 2013 SS

§  If an object is considered as visible:

§  Add the AABB with the previous occlusion horizon

G. Zachmann 47 Culling Advanced Computer Graphics 20 June 2013 SS

General Occlusion Culling

§  Given:

§  A partial(!) rendered scene, and

§  not yet rendered object

§  Task:

§  Decide quickly whether the object would modify pixels in the frame
buffer, if it were rendered;

§  I.o.w.: decide quickly whether the object of the current scene is
completely covered

§  Terminology:
Occluder

Occluded geometry
("occludee")

G. Zachmann 48 Culling Advanced Computer Graphics 20 June 2013 SS

Examples of Applications of the General Occlusion Culling

Power plant, 13 million triangles

G. Zachmann 49 Culling Advanced Computer Graphics 20 June 2013 SS

"Double Eagle", 4 GB, 82M triangles, 127,000 objects

G. Zachmann 50 Culling Advanced Computer Graphics 20 June 2013 SS

Visible polygons: 450k (ca. 4%)

Invisible polygons: 10M (ca. 96%)

G. Zachmann 51 Culling Advanced Computer Graphics 20 June 2013 SS

Occlusion-Culling in OpenGL

§  Earlier as extension ARB_occlusion_query ,
nowadays in OpenGL core from version 1.5

§ Operating mode: Asks OpenGL how many pixels would be
"repainted" from a batch

§  Appendage: Draw a simple representation ("Proxy"), without
changing the color or depth buffer

§ Were no pixels drawn by the proxy, the object itself must not be
drawn

§  Proxy geometry: first sacrifice a little computing power to
possibly save a lot of computing power later

§  Tolerably accurate bounding volumes

§  No texturing, no shading, no light sources

§  No colors, texture coordinates, normals

G. Zachmann 52 Culling Advanced Computer Graphics 20 June 2013 SS

§  First create occlusion query at initialization :

§  Render a set of objects (hiding a lot)

§  Disable writing in Z- and color buffer (optional):

§  Create request for a lot of other objects :

§  Reading result of the request:

glGenQueries(int count, unsigned int queryIDs[]);

glBeginQuery(GL_SAMPLES_PASSED, unsigned int querynum);
// rendere Proxy-Geometrie, z.B. Bounding Volume ...
glEndQuery(GL_SAMPLES_PASSED);

glGetQueryObjectiv(int querynum,
 GL_QUERY_RESULT, int *samplesCounted);

glDepthMask(GL_FALSE);
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);

G. Zachmann 53 Culling Advanced Computer Graphics 20 June 2013 SS

Demo

G. Zachmann 54 Culling Advanced Computer Graphics 20 June 2013 SS

Batching Queries

§  Problem: A query = expensive State-Changes
§  Before: Disable writing to color-and Z-buffer

§  After: Switch back

§  This overhead takes more time than the actual query!

§  Idea: Batching

§  Implement 2 additional queues

§  Both contain objects that should to be tested for visibility

§  I-Queue: contains previously “invisible” objects

§  V-Queue: likewise for "visible"

§  Parameters: Batch size b (ca. 20-80)

§  Principle: only if batch size is reached, the list of queries is sent to
OpenGL

§  "Previously visible" objects are still rendered immediately

G. Zachmann 55 Culling Advanced Computer Graphics 20 June 2013 SS

§  Exemple: each color = one state change

Naive CHC++

G. Zachmann 56 Culling Advanced Computer Graphics 20 June 2013 SS

§  Goal: Reduce the number state changes, and thus the time
required per Occlusion Query

§  Therefore, send a sequence of requests, read the result of the
sequence afterwards

0

0.5

1

1 4 16 64 256 1024 4096

Requests per
second

(normalized)

Size of the Query Bunches

Rechner 1

Rechner 2

G. Zachmann 57 Culling Advanced Computer Graphics 20 June 2013 SS

The Naive "draw-and-wait" Approach

Sort items about the depth in
Create query sequence
while some objects are not rendered:
 For each object in query sequence:
 BeginQuery
 Render bounding volume
 EndQuery
 For each object in query sequence:
 GetQuery
 if #pixel drawn > 0:
 Render object

G. Zachmann 58 Culling Advanced Computer Graphics 20 June 2013 SS

§  Problems of the naive approach:
§  Very high response time (latency) for a query:

-  long graphics pipeline,
-  some time by the execution of the queries (rasterization), and
-  transfer the result back to the host.

§  Sequence: "CPU stalls" and "GPU starvation"

D1

D1

Q2 Q3 Q4

Q2 Q3 Q4

Latency due to
render state change

R2 R3 R4 D2 D4

V I V

CPU

GPU

D = "draws"
Q = "query"
R = "response"
V/I = "visible" / "invisible"

D2

G. Zachmann 59 Culling Advanced Computer Graphics 20 June 2013 SS

Sort the Object List

§  Observation: Depending on the order in which you render the
objects, you get a high culling rate or not

§  Solution: sort the list by distance to the object Viewpoint

worst case:

best case:

4

1

3

2

2

3

1

4

1

2

3 7

5

6 4

G. Zachmann 60 Culling Advanced Computer Graphics 20 June 2013 SS

Aggressive Approximate Culling

§  Often only conservative culling :

§  Even if only one pixel of the BVs is visible
also one pixel of the object can be visible →
draw object

§  Disadvantage: Often outer parts of the BVs
are visible where no object pixel are located

§  Idea: Ignore barely visible objects

§ Object probably (!) not visible if only a few
pixels of the BVs are visible

§  Heuristics: Draw object only if query

 result ≥ threshold

§  Potentially "small" holes in or between
objects

G. Zachmann 61 Culling Advanced Computer Graphics 20 June 2013 SS

Coherent Hierarchical Culling (CHC & CHC++) [2008]

§  Here in a simplified representation (a.o. without hierarchy)

§  Given: Set of objects

§  Here: Object = Amount of useful contiguous polygons

§  Ideas:

§  Perform a queue with stored hardware occlusion queries

§  First assumption: if an object was visible in the last frame, it is also
visible in the current frame

§  If an object was invisible, first check its visibility

§  Do not wait for result, go further through the query

§  Edit query results as soon as they are available

G. Zachmann 62 Culling Advanced Computer Graphics 20 June 2013 SS

The algorithm

L = list of all objects (incl. BVs)
Q = queue for occlusion queries (initally empty)

sort L from front to back with respect to current viewpoint

repeat:

 // process list of objects
 if L not empty:
 O = L.front
 if O inside view frustum:
 issue occlusion query with BV(O)
 append O to Q
 if O is marked "previously visible":
 render O
 end if
...

G. Zachmann 63 Culling Advanced Computer Graphics 20 June 2013 SS

...
 // process queries
 while Q not empty and
 result of occlusion query Q.front available
 V = Q.pop
 if num. visible pixels of query V > threshold:
 V.obj = "visible"
 if V.obj is not marked "previously visible":
 render V.obj
 else:
 V.obj = "invisible"
 end while

until Q empty and L empty

Below: gradual improvement of this algorithm

G. Zachmann 64 Culling Advanced Computer Graphics 20 June 2013 SS

Fusion (Potentially) Hidden Geometry

§  Observation :

§  If we knew that a lot of objects in the current frame is hidden, then we
could verify this by exactly one occlusion query

§ Objects that were hidden in many frames are probably obscured in the
current frame (temporal coherence of visibility)

§  Idea:

§  Invent an "oracle" that can predict for a given set of objects with high
probability whether the coherence of visibility is satisfied

§  If the probability is high enough, test this set by 1

 Query:

glBeginQuery(GL_SAMPLES_PASSED, q);
 render BVs with the set of objects ...
glEndQuery(GL_SAMPLES_PASSED);
glGetQueryObjectiv(q, GL_QUERY_RESULT, *samples);

This will be called
in the following:
Multiquery!

G. Zachmann 65 Culling Advanced Computer Graphics 20 June 2013 SS

§  Definition: Visibility persistence

where I(t) = number of objects, which were constantly covered in
previous t frames

§  Interpretation: p(t) = " probability ", that one object, which was
covered t frames, will also be covered in the following frames

§  Observation: is amazingly

 independent from object and scene

§  Consequence: can be approximated

 well by analytic function!

p(t) =
I(t + 1)

I(t)

p(t) ⇥ 0.99� 0.7e�t

G. Zachmann 67 Culling Advanced Computer Graphics 20 June 2013 SS

§  If tO = Number of previous frames which the object O was
covered

§  Define an "oracle" for a set M of objects i(M) := the „probability“
that all objects from M in the actual frame will be invisible (only
a heuristic!):

§  Define that

§  Costs of an occlusion multiquery (in the batch):

§  Expected benefits of a multiquery:

i(M) =
Y

O2M

p(tO)

C (M) = 1 + c1|M |

B(M) = c2i(M)

X

O2M

num polygons of O

G. Zachmann 68 Culling Advanced Computer Graphics 20 June 2013 SS

§  Thus defining the expected value of a multiquery:

§  f the I-queue is full at some point:

§  Sort the objects Oi in the I-queue tO → {O1 , … , Ob }

§  Simple greedy search the maximum

§  Set on a multiquery for these first n objects from the I-queue

§  Repeat until the I-queue is empty

V (M) =
B(M)

C (M)

max

n=1...b

�
V ({O1, . . . , On}

G. Zachmann 69 Culling Advanced Computer Graphics 20 June 2013 SS

Tighter Bounding Volumes

§  Observation: As greater the BV in relation to the object as more
probable that the occlusion query returns a "false positive"
(claims "visible", but in truth "invisible")

§  Objective: close as possible BVs
§  Boundary conditions:

§  BVs must be very fast to render
§  BVs may not cost a lot of memory

§  Idea:
§  Decompose object
 into cluster
 (cluster of polygons)
§ Wrap a BBox around each
 clustert (AABB)
§  Use as BV foreach object
 the union of the small
 BBoxes

G. Zachmann 70 Culling Advanced Computer Graphics 20 June 2013 SS

§  Question: how small should the "small" AABBs (or cluster) be?

§  Observation: the greater the number of small AABBs, ...

§  ... the greater the probability that "invisible" is correctly recognized,
but

§  ... the greater the surface → onger rendering time of the resulting
occlusion queries

§  Strategy for the construction of the "narrow AABBs":

§  Devide clusters recursively

§  termination criterion: if

§  Parameter σ depends on the graphics card (σ ≈ 1.4 seems OK)

�
Oberfläche der kleinen AABBs > � · Oberfläche der großen AABB

G. Zachmann 71 Culling Advanced Computer Graphics 20 June 2013 SS

Altogether

§  The queues in CHC++:

rendering queue

v-queue (visible nodes) i-queue (invisible nodes)

query queue

Multiquery

OpenGL

G. Zachmann 72 Culling Advanced Computer Graphics 20 June 2013 SS

Results

§  Walkthrough the power plant model:

G. Zachmann 73 Culling Advanced Computer Graphics 20 June 2013 SS

G. Zachmann 74 Culling Advanced Computer Graphics 20 June 2013 SS

G. Zachmann 75 Culling Advanced Computer Graphics 20 June 2013 SS

G. Zachmann 76 Culling Advanced Computer Graphics 20 June 2013 SS

G. Zachmann 77 Culling Advanced Computer Graphics 20 June 2013 SS

Another Special Case: Architectural Models

G. Zachmann 78 Culling Advanced Computer Graphics 20 June 2013 SS

Cells and Portals (Portal Culling)

§  Scenario: Walkthrough of buildings and cities

§  Transparent portals connect the cells

§  doors, windows, holes, ...

§  Observation: cells see each other only through the portals

§  Which cell is included in the PVS?

§  The cell which contains the Viewpoint

§  And these cells, which have a portal to the initial cell

A
D

H

F C B

E

G

G. Zachmann 79 Culling Advanced Computer Graphics 20 June 2013 SS

Example scene

G. Zachmann 87 Culling Advanced Computer Graphics 20 June 2013 SS

Result

§  Example scene :

§  Speedup is highly dependent on the model and viewpoint

§  Frame rate is 1-10-fold the frame rate without Cells & Portals method

§  For typical viewports the method removes 20 - 50% from the model

G. Zachmann 89 Culling Advanced Computer Graphics 20 June 2013 SS

§  Field of applications

§  Computer games

§  Buildings

§  Cities

§  Ships (inside)

§  Not suitable for CAD data

§  Aircrafts

§  Industrial facilities

§  Not suitable for natural objects

§  Plants

§  Forests

G. Zachmann 90 Culling Advanced Computer Graphics 20 June 2013 SS

Detail Culling

§  Idea: Objects that occupy less than N pixels in the projection are
not shown

§  This approach also removes parts that would be visible in the
final image

§  Advantage: trade-off quality / speed

§  Particularly suitable for camera motion (the faster, the more
details can be culled)

de
ta

il
cu

lli
ng

 o
ff

de
ta

il
cu

lli
ng

 o
n

G. Zachmann 91 Culling Advanced Computer Graphics 20 June 2013 SS

Estimating the Projected Size of an Object

§  Estimate the size of the BVs in screen space from:

(eye) e

(near plane)

v (normalized view direction)

r

c

n

(distance along v)

(Estimate of the projected radius)

estimated area of the projected sphere

d = v·(c� e)

r̂ = r · n

d
�r̂2 =

