Bremen

ff"iw;

%

Advanced Computer Graphics
Real-Time Rendering by
Advanced Visibility Computations

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

<ﬁ

N9

Aaa

eeeeee

Bottlenecks in the Rendering Pipeline

= Remember the graphics pipeline

Application

Geometry Stage (3D)

Rasterizer (2D)

=

= A pipeline always has the throughput of its slowest link!

= Possible bottlenecks in the graphics pipeline :

In rasterizer — "fill limited"

In geometry stage — "transform limited"

Bus between app. and graphics hardware — "bus limited"

If the graphics card is faster than the application can provide geometry
— "CPU limited" (recognizable by 100% CPU usage)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

L 20

<
E15)

e

eeeeee

W Classification of Visibility Problems

= Problem classes within "visibility computations":

1. Hidden Surface Elimination: which pixels (parts of polygons) are
covered by others?

2. Clipping: which pixels (parts of polygons) are inside the viewport?

3. Culling: which polygons cannot be visible? (e.g., because they are
located behind the viewpoint)

= Difference: HSE & clipping are rather used to render an accurate
Image, culling is rather used to accelerate the rendering of large
scenes

= Note: the boundary is blurred

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

eeeeee

U Culling

= Let A = set of all primitives;
let § = set of visible primitives.

= Many rendering algorithms operate on the entire set A, i.e., they
have a minimum effort of O(|A|)

= No problem if |§]| = |A]|

= Also no problem, if the number of primitives is small compared
to the number of pixels

= Reminder: depth complexity

= "to cull from" = "sammeln [aus ...] / auslesen"
"to cull flowers" = Blumen pfltcken

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

eeeee

.

= But for complex visual scenes, the number of visible primitives is
typically much smaller than the total number of primitives!
(i.e., |S| << |A])

= Culling is an important optimization technique (as opposed to clipping)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

% CG

VR

eeeeee

= For |§| << |A|, existing rendering algorithms are not efficient

= Culling algorithms attempt to determine the set of non-visible
primitives C=A \ § (or a subset thereof), or the set of visible
primitives S (or superset thereof)

= Definition: potentially visible set (PVS) = a superset S’ O S
= Goal: compute PVS §' as small as possible, with minimal effort

= Trivial PVS (with trivial effort) is, of course, A

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

eeeeee

Y

Kinds of Culling

A

..

<n

View frustum culling

@Detail culling

Backface culling

yion culling

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 7

eeeeee

Back-Face Culling

= Definition: a solid = closed, opaque object = non-translucent
object with non-degenerate volume

= Observations:
= With solids, the back faces are never visible
= For convex objects, there is exactly one contiguous back side

= For non-convex solids, there may be several unconnected back sides

s
ol

G. Zachmann Advanced Computer Graphics SS June 2013

Culling

L 208

<n

0

e

eeeeee

= Backface Culling = not drawing the

surface parts that are on the far side, with
respect to the viewpoint

= Only works with solids!

= Compute normal n of the polygon

= Compute view vectors v from the

viewpoint to all points p of the polygon

= Perspevtive projection: v=p — eye

= Orthogonal projection: v=[00 1]T

= Polygon is back facing (don't draw), iff
angle between n and v < 90°

G. Zachmann

S nv>0

Advanced Computer Graphics

SS

June 2013

Culling 9

eeeeee

Y Example

Ni-V=(21,2)(-1,0,-1)
= —4 <0

= N front facing

NV =(-3,1,-2)-(—1,0,-1)
=5>0

= N, back facing

Ny =(-3,1,-2) Ny =(2,1,2)

N

V =(-1,0,-1)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 10

<n

U Backface Culling in OpenGL

oo

= Just enable it:

glCullFace(GL BACK) ;
glEnable(GL _CULL FACE);

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 11

e

W Demo _§

'Rohr [~]
[rohr.x]: 80 vertices, 80 faces
: | _|Fill Faces
V|BackFaces
ViWireframe

_|Face Normals
_|EOF Render VIHigh Quality
[Clear Object | | Refresh |

Rotate view:

normal mode: move Mouse
OEF render: drag Mouse
Scale (Zoom): Mouse-Wheel

Load Meshes by selecting an item from
the ComboBox above.

Fill Faces: Draw filled faces

Back faces: Draw faces viewed from
behind

Wireframe: Draw lines around all Faces
Face Normals: Draw small lines for each|
face showing in the face's direction
OEF Render: Render"onEnterFrame"
High Quality: Flash Players output
quality

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 12

- 4 §

U Normal Masks bk

= Central idea: replace the scalar product by classifying all normals

= Preprocessing: create classes over the set of all normals

= Enclose the sphere of normals (aka. Gaussian sphere) with cube
(direction cube)

4&
}3 s/
\ P L
B P
4 L
|~
|~
\

= Results in 6:N2 classes (N = number of partitions along each axis)
= Classification of a normal is very easy

= With each polygon store the class of its normal

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 13

eeeeee

= Encoding a normal (pre-processing):
= The entire direction cube 2 bit string of length 6:N2
= A normal # bit string with only one 1, otherwise O
= Encode this as offset + part of the bit string that contains the 1

= E.g.: subdivide bit string in bytes, offset = 1 Byte,
results in 256x8 = 2048 Bits

typedef struct PolygonNormalMask 0....000001000000.....0
¢ offset T

Byte offset, bitMask; (in Bytes) bitMask
};

= Save those 2 bytes for each polygon
= E.g.: choose N=16

= Results in 6:16:16 = 1536 classes for the set of all normals

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 14

¥, cc =
VR I

e

= Culling (initialization):
= |dentify all those normal classes whose normals are all backfacing

= With orthographic projection:

v
4
N

v

v
N \
-3
/

= With perspective projection:
which normals are backfacing
depends on normal direction
and position of the polygon!

. "frontfacing"

"backfacing"

= Therefore: determine a "conservative" set of classes which are
backfacing — regardless of the location of the polygon

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 15

-
z
n
3
n
H]
FOTES

Y ot

= Graphical derivation
how to estimate this

conservative set

of classes:) .
conservative

set"

= In practice:
= Test each class in all four corners of the view frustum

= Test for a class = test of 4 normals, which are pointing to the corners of
the cell (on the direction cube) that represents that class

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 16

eeeeee

= Represent this conservative set of classes as a bit string (e.g. 2048
Bits = 256 Bytes) in a byte array:

Byte BackMask[256];

= Culling (runtime): test for each polygon

if ((BackMask[byteOffset] & polygon.bitMask) == 1)
render polygon

= Further acceleration:
= Divide view frustum into sectors
= Render the scene "sector by sector"
= Thus, the angle a/2 in each sector is smaller

= For each sector, compute its own BackMask[]

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 17

Bremen

Y Exam ple it

216 classes ("clusters™) 1536 classes ("clusters")

BackMask for the current viewpoint
(green = backfacing)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 18

eeeeee

Speedup

Percentage of Culling and Speedup

216 384 600 864 1176 1536 1944

Number of normals classes

Result: speedup factor ~1.5 compared to OpenGL backface culling

G. Zachmann Advanced Computer Graphics SS June 2013

Culling

<n

19

eeeeee

Clustered Backface Culling

= Reminder: some simple rules for min/max

max {x,- +y,-} < max {x,-} + max {y,-}
max {x; — yi} < max{x;} —min{y}

max { kx; } = {km.aX’ {xi} k=0
i kmln,- {Xi} , k<0

" In the following, n’ and p’ are the normal and a
vertex of a polygon from a cluster (a set) of
polygons; let e be the viewpoint

= Attention: in the following, we use the "inverted"
definition for backfacing!

n-(e—p) <0

G. Zachmann Advanced Computer Graphics SS June 2013

Culling 20

eeeeee

= Assumption: cluster (= set) of polygons is given

= All polygons in cluster are backfacing if and only if
Vi:ni(e—pi) <0 <
max{ni (e—pi)} <0)
= Upper bound for (1) is
max{n' (e —p') } <max{en'} — min{n'p'})

= Set d :=min{n"p'} (pre-computation)
= Write (2) as
max {ni (e — pi) } < max {exn; + eyn;', + ezn;} —d
< max {exn;} + max {eyn;} + max {ezn;} —d O

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 21

eeeeee

= Assumption: e is located in the positive octant, i.e., ey, ey, €, 2 0;
then we can give an upper bound of (3):

max {n' (e —p') }

< eemax{n’} + ey-max{n;} + e;max{n.} — d

max{n’ }
<m-e—d, mit m=|max{n }
max{n’}
"= Analogously, for ey, ey, e, <O:
| | min{n’}
max{n'(e—p') } <m'e—d, with m'= | min{n}
min{n’}

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 22

eeeeee

= For all other octants, combine min and max appropriately

= We can write this with kind of a "combination" operator on vectors

u, ,€,<0

comb(u,v;e) :=w with w, = - L ac{x,y, z}
v, ,€,>0

= This allows us write the (conservative) test as:

comb(m’,m;e)-e —d <0 = cluster is backfacing (4)

= Pre-computation: for each cluster determine m, m' and d

= Memory requirements per cluster: 28 Bytes (2 vectors + 1 scalar)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

. co =
VR

23

eeeeee

Geometric Interpretation

= |[nequality (4) defines 8 planes (one per octant)

= The 4 planes of adjacent octants intersect at one point, which lies
on the coordinate axis "between" the 4 octants

= Example: Consider the 4 planes in the octants with ex = 0

= All 4 planes have normals of the form n=(my, -, -)
= So, they all intersect the x-axis at the point (-, 0,0) .

= Those 8 planes form a closed volume, the so-called culling

volume

If the viewpoint is in the culling volume,
then the cluster is completely backfacing

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

7 cG
VR

24

eeeeee

Further Optimization: Test Local Coordinates

= Problem: if the polygons are far away from the origin, and the
origin is located on the positive side of the normal, then d is very
much negative — the test is never positive

= Solution: run the test in a local coordinate system by

Move the local origin ¢ such that
d = min {ni-(pi — c) }

is as large (and positive) as possible

Wanted is the optimal ¢

= Question: Will rotation achieve something?

= |In practice: Try the center and corner of the BBox of the cluster as ¢
= Save c with the cluster, then test

comb(m’, m;e —c)-(e—c)—d <0

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

25

eeeeee

Y

Hierarchical Clustered Backface Culling

= Two clusters can be combined to form a joint cluster:

) min(m’}, m'%) max(m}, m?)
m’ = | min(m';, m’g) m = | max(mj, m’)
min(m’L, m'?) max(m;, m?)

C? = min (dl, d2)

= These two vectors and d provide a conservative estimate

= |.e.: if the joint cluster is invisible, then the two original clusters are
guaranteed to be invisible, too — cluster hierarchy

= |f a hierarchy of clusters is created, define a front-facing test,
analogously to the backfacing test:

= Stop testing, if a complete joint cluster is front- or back-facing

= Otherwise: test the children for being completely front- or back-facing

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

eeeeee

Generating the Clusters

= For the evaluation of cluster candidates in an algorithm, we need
a measure of the "performance" of a cluster

= Here: probability P that the cluster will be culled
= Use a heuristic to calculate P:

Vol(culling volume) ~ Vol(C)
Vol(all possible viewpoint position) Vol(U)

= Vol(C) can be computed exactly

= For U choose the BBox of the entire scene U

= |f local culling coordinates are used: C
choose U = c-Bbox(cluster)

("near-culling probability")

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 27

eeeeee

= Question: given two clusters A, B;
s it faster to test and to render A and B separately,
or is it faster to test the joint cluster C = AU B first?

(on averagel!)

= Let T(A) be the expected(!) time to test cluster A and render it in
case of (possible) visibility. Then

T(A)=t+ (1 - P(A) R(A)

where P(A) = probability, that cluster A gets culled,
R(A) = time to render A (without further tests), and
t = time for backface test of a cluster

G. Zachmann Advanced Computer Graphics SS June 2013 Culling 28

eeeeee

= So, combining clusters A and B is worth it, if and only if
T(C)< T(A)+ T(B) &

t+(1—P(C)R(C)<2t+(1—-PA)RA)+(1—-P(B)R(B) <

P(C
\€)> R(A) + R(B) =
P(C) > P(A)na + P(B)ng — * ?gj;r:nstZn:
Na + Np T r = constant effort

for one polygon

= Ratio t/r depends on the machine; but can easily be determined
experimentally and automatically in advance
(depends on graphics card, number of light sources, textures, ...)

G. Zachmann Advanced Computer Graphics SS June 2013 Culling

29

