
Advanced Computer Graphics
Real-Time Rendering by
Advanced Visibility Computations

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 2 Culling Advanced Computer Graphics 5 June 2013 SS

Bottlenecks in the Rendering Pipeline

§  Remember the graphics pipeline

§  A pipeline always has the throughput of its slowest link!

§  Possible bottlenecks in the graphics pipeline :

§  In rasterizer → "fill limited"

§  In geometry stage → "transform limited"

§  Bus between app. and graphics hardware → "bus limited"

§  If the graphics card is faster than the application can provide geometry
→ "CPU limited" (recognizable by 100% CPU usage)

Application Geometry Stage (3D) Rasterizer (2D)

G. Zachmann 3 Culling Advanced Computer Graphics 5 June 2013 SS

Classification of Visibility Problems

§  Problem classes within "visibility computations":

1.  Hidden Surface Elimination: which pixels (parts of polygons) are
covered by others?

2.  Clipping: which pixels (parts of polygons) are inside the viewport?

3.  Culling: which polygons cannot be visible? (e.g., because they are
located behind the viewpoint)

§  Difference: HSE & clipping are rather used to render an accurate
image, culling is rather used to accelerate the rendering of large
scenes

§  Note: the boundary is blurred

G. Zachmann 4 Culling Advanced Computer Graphics 5 June 2013 SS

Culling

§  Let A = set of all primitives;
let S = set of visible primitives.

§  Many rendering algorithms operate on the entire set A, i.e., they
have a minimum effort of O(|A|)

§  No problem if |S| ≈ |A|

§  Also no problem, if the number of primitives is small compared
to the number of pixels

§  Reminder: depth complexity

§  "to cull from" = "sammeln [aus …] / auslesen"
"to cull flowers" = Blumen pflücken

G. Zachmann 5 Culling Advanced Computer Graphics 5 June 2013 SS

§  But for complex visual scenes, the number of visible primitives is
typically much smaller than the total number of primitives!
(i.e., |S| << |A|)

§  Culling is an important optimization technique (as opposed to clipping)

G. Zachmann 6 Culling Advanced Computer Graphics 5 June 2013 SS

§  For |S| << |A| , existing rendering algorithms are not efficient

§  Culling algorithms attempt to determine the set of non-visible
primitives C = A \ S (or a subset thereof), or the set of visible
primitives S (or superset thereof)

§  Definition: potentially visible set (PVS) = a superset

§  Goal: compute PVS S' as small as possible, with minimal effort

§  Trivial PVS (with trivial effort) is, of course, A

S � � S

G. Zachmann 7 Culling Advanced Computer Graphics 5 June 2013 SS

Kinds of Culling

View frustum culling Detail culling

Backface culling

Portal culling Occlusion culling

G. Zachmann 8 Culling Advanced Computer Graphics 5 June 2013 SS

Back-Face Culling

§  Definition: a solid = closed, opaque object = non-translucent
object with non-degenerate volume

§  Observations:

§ With solids, the back faces are never visible

§  For convex objects, there is exactly one contiguous back side

§  For non-convex solids, there may be several unconnected back sides

G. Zachmann 9 Culling Advanced Computer Graphics 5 June 2013 SS

n

x

y

z

§  Backface Culling = not drawing the
surface parts that are on the far side, with
respect to the viewpoint

§ Only works with solids!

§  Compute normal n of the polygon

§  Compute view vectors v from the
viewpoint to all points p of the polygon

§  Perspevtive projection: v = p – eye

§ Orthogonal projection: v = [0 0 1]T

§  Polygon is back facing (don't draw), iff
angle between n and v < 90°
 ⇔ n

.
 v > 0

G. Zachmann 10 Culling Advanced Computer Graphics 5 June 2013 SS

Example

N2 = (�3, 1,�2) N1 = (2, 1, 2)

V = (�1, 0,�1)

N2 ·V = (�3, 1,�2)·(�1, 0,�1)

= 5 > 0

⇥ N2 back facing

N1 ·V = (2, 1, 2)·(�1, 0,�1)

= �4 < 0

⇥ N1 front facing

G. Zachmann 11 Culling Advanced Computer Graphics 5 June 2013 SS

Backface Culling in OpenGL

§  Just enable it:

glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);

G. Zachmann 12 Culling Advanced Computer Graphics 5 June 2013 SS

Demo

G. Zachmann 13 Culling Advanced Computer Graphics 5 June 2013 SS

Normal Masks

§  Central idea: replace the scalar product by classifying all normals

§  Preprocessing: create classes over the set of all normals

§  Enclose the sphere of normals (aka. Gaussian sphere) with cube
(direction cube)

§  Results in 6.N2 classes (N = number of partitions along each axis)

§  Classification of a normal is very easy

§ With each polygon store the class of its normal

u
v

u

v

d

G. Zachmann 14 Culling Advanced Computer Graphics 5 June 2013 SS

§  Encoding a normal (pre-processing):

§  The entire direction cube ≜ bit string of length 6.N2

§  A normal ≜ bit string with only one 1, otherwise 0

§  Encode this as offset + part of the bit string that contains the 1

§  E.g.: subdivide bit string in bytes, offset = 1 Byte,
results in 256×8 = 2048 Bits

§  Save those 2 bytes for each polygon

§  E.g.: choose N = 16

§  Results in 6.16.16 = 1536 classes for the set of all normals

typedef struct PolygonNormalMask
{
 Byte offset, bitMask;
};

0….000001000000…..0

offset
(in Bytes) bitMask

G. Zachmann 15 Culling Advanced Computer Graphics 5 June 2013 SS

§  Culling (initialization):
§  Identify all those normal classes whose normals are all backfacing

§ With orthographic projection:

§ With perspective projection:
which normals are backfacing
depends on normal direction
and position of the polygon!

§  Therefore: determine a "conservative" set of classes which are
backfacing – regardless of the location of the polygon

"frontfacing"

"backfacing"

G. Zachmann 16 Culling Advanced Computer Graphics 5 June 2013 SS

§  Graphical derivation
how to estimate this
conservative set
of classes:

§  In practice:

§  Test each class in all four corners of the view frustum

§  Test for a class = test of 4 normals, which are pointing to the corners of
the cell (on the direction cube) that represents that class

α α/2 α/2

back-
facing

α/2

back-
facing

α/2

"conservative
set"

G. Zachmann 17 Culling Advanced Computer Graphics 5 June 2013 SS

§  Represent this conservative set of classes as a bit string (e.g. 2048
Bits = 256 Bytes) in a byte array:

§  Culling (runtime): test for each polygon

§  Further acceleration:

§  Divide view frustum into sectors

§  Render the scene "sector by sector"

§  Thus, the angle α/2 in each sector is smaller

§  For each sector, compute its own BackMask[]

Byte BackMask[256];

if ((BackMask[byteOffset] & polygon.bitMask) == 1)
 render polygon

G. Zachmann 18 Culling Advanced Computer Graphics 5 June 2013 SS

Example

216 classes ("clusters") 1536 classes ("clusters")

BackMask for the current viewpoint
(green = backfacing)

G. Zachmann 19 Culling Advanced Computer Graphics 5 June 2013 SS

Speedup

Number of normals classes

Result: speedup factor ~1.5 compared to OpenGL backface culling

G. Zachmann 20 Culling Advanced Computer Graphics 5 June 2013 SS

Clustered Backface Culling

§  Reminder: some simple rules for min/max

§  In the following, ni and pi are the normal and a
vertex of a polygon from a cluster (a set) of
polygons; let e be the viewpoint

§  Attention: in the following, we use the "inverted"
definition for backfacing!

n·(e� p) ⇥ 0

max

i

�
xi + yi

 max

i

�
xi

+max

i

�
yi

max

i

�
xi � yi

 max

i

�
xi

�min

i

�
yi

max

i

�
kxi

=

(
k maxi

�
xi

, k � 0

k mini

�
xi

, k < 0

G. Zachmann 21 Culling Advanced Computer Graphics 5 June 2013 SS

§  Assumption: cluster (= set) of polygons is given

§  All polygons in cluster are backfacing if and only if

§  Upper bound for (1) is

§  Set d := min{ ni.pi } (pre-computation)

§  Write (2) as

(1)

(2)

(3)

⌅i : ni
�
e� pi

⇥
⇥ 0 ⇤

max
⇤
ni

�
e� pi

⇥ ⌅
⇥ 0

max
⇤
ni

�
e� pi

⇥ ⌅
⇥ max

⇤
eni

⌅
�min

⇤
nipi

⌅

max
⇤
ni

�
e� pi

⇥ ⌅
⇥ max

⇤
exn

i
x + eyn

i
y + ezn

i
z

⌅
� d

⇥ max
⇤
exn

i
x

⌅
+ max

⇤
eyn

i
y

⌅
+ max

⇤
ezn

i
z

⌅
� d

G. Zachmann 22 Culling Advanced Computer Graphics 5 June 2013 SS

§  Assumption: e is located in the positive octant, i.e., ex, ey, ez ≥ 0;
then we can give an upper bound of (3):

§  Analogously, for ex, ey, ez ≤ 0:

max
⇤
ni

�
e� pi

⇥ ⌅

⇥ ex·max{ni
x} + ey·max{ni

y} + ez·max{ni
z}� d

⇥ m·e� d , mit m =

⇧

⌥
max{ni

x}
max{ni

y}
max{ni

z}

⌃

�

max

�
ni

�
e� pi

�
 m0 ·e� d , with m0

=

0

@
min{ni

x

}
min{ni

y

}
min{ni

z

}

1

A

G. Zachmann 23 Culling Advanced Computer Graphics 5 June 2013 SS

§  For all other octants, combine min and max appropriately

§  We can write this with kind of a "combination" operator on vectors

§  This allows us write the (conservative) test as:

§  Pre-computation: for each cluster determine m, m' and d

§  Memory requirements per cluster: 28 Bytes (2 vectors + 1 scalar)

(4)

comb(u, v; e) := w with w↵ =

(
u↵ , e↵  0

v↵ , e↵ > 0

, ↵ 2 {x , y , z}

comb(m0
,m; e)·e� d  0) cluster is backfacing

G. Zachmann 24 Culling Advanced Computer Graphics 5 June 2013 SS

Geometric Interpretation

§  Inequality (4) defines 8 planes (one per octant)

§  The 4 planes of adjacent octants intersect at one point, which lies
on the coordinate axis "between" the 4 octants

§  Example: Consider the 4 planes in the octants with ex ≥ 0

§  All 4 planes have normals of the form n = (mx, ⋅ , ⋅)

§  So, they all intersect the x-axis at the point .

§  Those 8 planes form a closed volume, the so-called culling
volume

If the viewpoint is in the culling volume,
then the cluster is completely backfacing

(d
mx

, 0, 0)

G. Zachmann 25 Culling Advanced Computer Graphics 5 June 2013 SS

Further Optimization: Test Local Coordinates

§  Problem: if the polygons are far away from the origin, and the
origin is located on the positive side of the normal, then d is very
much negative ⟶ the test is never positive

§  Solution: run the test in a local coordinate system by

§  Move the local origin c such that

is as large (and positive) as possible

§  Wanted is the optimal c

§ Question: Will rotation achieve something?

§  In practice: Try the center and corner of the BBox of the cluster as c

§  Save c with the cluster, then test

d = min
⇤
ni ·

�
pi � c

⇥ ⌅

comb(m0
,m; e� c)·(e� c)� d  0

G. Zachmann 26 Culling Advanced Computer Graphics 5 June 2013 SS

Hierarchical Clustered Backface Culling

§  Two clusters can be combined to form a joint cluster:

§  These two vectors and provide a conservative estimate

§  I.e.: if the joint cluster is invisible, then the two original clusters are
guaranteed to be invisible, too → cluster hierarchy

§  If a hierarchy of clusters is created, define a front-facing test,
analogously to the backfacing test:

§  Stop testing, if a complete joint cluster is front- or back-facing

§ Otherwise: test the children for being completely front- or back-facing

d̂ = min (d1, d2)

m̂0
=

0

@
min(m01

x

,m02
x

)

min(m01
y

,m02
y

)

min(m01
z

,m02
z

)

1

A m̂ =

0

@
max(m1

x

,m2
x

)

max(m1
y

,m2
y

)

max(m1
z

,m2
z

)

1

A

d̂

G. Zachmann 27 Culling Advanced Computer Graphics 5 June 2013 SS

Generating the Clusters

§  For the evaluation of cluster candidates in an algorithm, we need
a measure of the "performance" of a cluster

§  Here: probability P that the cluster will be culled

§  Use a heuristic to calculate P :

§  Vol(C) can be computed exactly

§  For U choose the BBox of the entire scene

§  If local culling coordinates are used:
choose U = c

. Bbox(cluster)
("near-culling probability")

U

C

Vol(culling volume)

Vol(all possible viewpoint position)

=

Vol(C)

Vol(U)

G. Zachmann 28 Culling Advanced Computer Graphics 5 June 2013 SS

§  Question: given two clusters A , B;
 Is it faster to test and to render A and B separately,

 or is it faster to test the joint cluster first?
 (on average!)

§  Let T(A) be the expected(!) time to test cluster A and render it in
case of (possible) visibility. Then

where P(A) = probability, that cluster A gets culled,
R(A) = time to render A (without further tests), and
t = time for backface test of a cluster

C = A [B

T (A) = t + (1� P(A))R(A)

G. Zachmann 29 Culling Advanced Computer Graphics 5 June 2013 SS

§  So, combining clusters A and B is worth it, if and only if

§  Ratio t/r depends on the machine; but can easily be determined
experimentally and automatically in advance
(depends on graphics card, number of light sources, textures, …)

Assumption:
R(A) = nA

.r,
r = constant effort
for one polygon

T (C) < T (A) + T (B) ,

t + (1� P(C))R(C) < 2t + (1� P(A))R(A) + (1� P(B))R(B) ,

P(C) >
�t + P(A)R(A) + P(B)R(B)

R(A) + R(B)
,

P(C) >
P(A)nA + P(B)nB � t

r

nA + nB

