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Motivation 

§  Definition: 

§  The dynamic range of an image is the contrast ratio between the 
brightest and darkest parts 

§  The dynamic range of a display or optical sensor is the ratio of the 
brightest representable or perceived luminance to the darkest  

§  The dynamic range of the human visual system: 

sRGB 

Human simultaneous range 

Human range with adaptation 
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Sources of High Dynamic Range Images (HDRI) 

§  Ray-Tracing: physically 
accurate synthetic images 

§  Photography: 

§  Several shots with different 
exposure times 

§  "Blending" together  
(needs 
calibrated 
response 
curve from 
camera) 
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Display of HDR Images  

§  Use either real HDR displays ... 

§  ... or LDR displays;  then you need: 

§  Tone mapping (TM) / tone reproduction = Map of the real 
potential "high dynamic range" (HDR) luminances on a "low 
dynamic range" (LDR) displays with a limited luminance 
bandwidth. 

Background illumination of HDR display 
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Informal Statement of the Problem 

Physically correct 

Best effort rendering on LDR display 
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Naïve Tone-Mapping 

Luminous densities in real world or HDRI, cd/m2 
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Result of the Naive Mapping 

Scale by 1/max Clamp to 1 Exp. mapping 



G. Zachmann 8 Tone Mapping Advanced Computer Graphics 16 May 2013 SS 

An Important Class of Tone Mappings 

§  First consider pure „point functions": 

§  Determine a transfer function  y = T (x) 

-  Also called tone mapping operator 

§  T only depends on the pixel position x and its color; it is completely 
independent of the neighborhood around x  

§  Examples: 

Linear scaling 
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The Luminance Histogram 

§  Images with "unbalanced" histograms do not use the full 
dynamic range 

§  Balanced histograms results in a more pleasant image and 
reflects the content much better 
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§  The histogram of an image contains valuable information about 
the grayscale 

§  It contains no spatial information 

§  All of the following images have exactly the same histogram! 
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§  First presented by Abu Yusuf Ya'qub ibn Ishaq al-Sabbah Al-Kindi 
as a tool for deciphering a (simple) substitution cipher 

§  Now called frequency analysis method 

§  Breakthrough at this time, 850 n. Chr. [Simon Singh: The Code Book, 
1999] 

Historical Note: Histograms for Decrypting 
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Histogram Stretching 

§  Linear scaling = "histogram stretching": 
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Interpretation of an Image Histogram 

§  Treat all pixels as i.i.d. random variables , i.e., each pixel = one RV 

§  i.i.d. random variables = independent, identically distributed RVs 

§  Histogram = discrete approximation of the probability density 
function (PDF) of a pixel in the image 
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Discrete (Histogram) vs. Continuous Formulation (PDF/CDF) 

Discrete world: 

 
 

Histogram: 

 
Cumulative histogram: 

 

Continuous world: 

 
 

Probability distrib. funct. (PDF): 

 
Cumul. distrib. function (CDF): 

 

 

x � [0, 1]x ⇥ 0, . . . , L� 1

H(x) =
x�

u=0

h(u) P(x) =

� x

0
p(u)du

x

p(x) 

P(x) 
P(x) 

p(x) 

y

x

h(x)
H(x)

h(x) 

H(x) 

L = # levels

h(x) = # pixels with level x

p(x) = “density” at level x
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§  Clearly: 

§  Therefore h (x) respectively H (x) is often normalized with 

§  Let X be a random variable; 
the probability that the event "X ≤ x" occurs is 
 
 

    or (in the discrete world) 

1
N

P[X � x ] = P(x) =

� x

0
p(u)du

H(L� 1) =

L�1X

u=0

h(u) = N = number of pixels

P[X  x ] = H(x) =
1

N

xX

0

h(u)
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Example Histogram (or, rather, PDF) 

§  How did bots (= agents) or, rather, programmers compare according 
to programming language in the Google AI challenge 2010: 
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Can We Do Better Than Histogram Stretching? 

§  Example with different transfer function: 

§  How can we find algorithmically the optimal transfer function? 
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Histogram Equalization 

§  Given: a random variable X with certain PDF  

§  Wanted: function T such that the random variable Y = T(X) has a 
uniformly distributed PDF    

§  This transformation is called histogram equalization 

h(x) 
or 

p(x) 

x y 

y = T(x) 

h(y) 
or 

p(y) 

pX

pY � const
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§  Conjecture: the transfer function 
 
 
performs exactly this histogram equalization 

x 
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1. Version of a Proof  

§  To prove: 

§  I.e., the image after the transformation 
by the transfer function has a flat histogram 

§  Proof by inserting: 

1 

1 

PY 

y 

PY (y) = y

PY (y) = P[Y � y ]

= P[T (X ) � y ]

= P[PX (x) � y ]

= P[x � P�1
X (y)]

= y

= PX (P�1
X (y))
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2. Version of a Proof  

§  Let  X  be a continuous random variable 

§  Let  Y = T(X)   (so Y is a continuous RV, too) 

§  Let  T  be 𝒞1 and monotonically increasing 

§  Consequently, there exist T' and T-1 

§  Because T  maps all  
to             , 
we have 

  

§  So, for small       , we have 
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§  When                  , then the approx'ion becomes an exact equation: 

§  Combined: 
 

 

�x � 0

lim
�x�0

�y

�x
= lim

�x�0

T (x + �x)� T (x)

�x
= T ⇥(x)

pY (y) = lim
�x�0

pX (x)
�x

�y
= pX (x) lim

�x�0

1

�y/�x

pY (y) =
pX (x)

T

0(x)
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§  Now, inserting                         results in 

 

§  Side result: now we know how to convert distribution functions, 
if a random variable is a function of another random variable.  

§  Continue with the histogram equalization …  

x = T�1(y)

pY (y) =
pX (T�1(y))

T ⇥(T�1(y))
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§  Sought is a function T, such that  

§  Inserting our previous results yields 

§  Inserting                         results in 

§  Sought was T, so integration yields: 

pX (T�1(y))

T ⇥(T�1(y))
= 1

T ⇥(T�1(y)) = pX (T�1(y))

x = T�1(y) T �(x) = pX (x)

pY (y) � 1

T (x) =

� x

0
T �(u)du = PX (x)
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Examples 

Orig. Image Histogram Result 
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Equalization in RGB 

Equalization in HSV 

a.k.a. 
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A Problem of Histogram Equalization 

§  Problematic case: a very narrow histogram of the input image 



G. Zachmann 28 Tone Mapping Advanced Computer Graphics 16 May 2013 SS 

§  Result: unwanted contrast 

Transfer 
function 

Resulting 
histogram 
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Tone Reproduction by Ward et al.         [1997] 

§  Problem of histogram equalization: 

§  Very steep sections of the transfer function T  
can produce visible noise 

§  Idea: limit the slope of T 

§  Algorithm: 

1.  Determine the histogram h 

-  Reminder:  

2.  Clamp too large bins to a value            , where                              ,   
N = number of pixels,  B = number of bins 

3.  Let                                      

4.  Use this to perform equalization and repeat a few times  

p T 

h � p = T �

� � 0.5 . . . 1.5�· N
B

N ⇥ =
�L�1

i=0 h(xi )
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Excursion: The Weber-Fechner Law     [~1850] 

§  By experiment, we find: 

§  The just noticeable difference (JND) of a stimulus (e.g., weight) 
depends on the level of the stimulus (differential threshold of 
noticeability) 

§  The ratio of the JND over the level of the stimulus is constant 
(depending on the kind of stimulus) 

§  The mathematical formulation of these findings: 

§  Let  S  be the level of the stimulus,  and let ΔS  be the JND at this level 

§  Now, Weber's law says: 

�S

S
= const
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§  The Weber-Fechner law:  
Let  E  be the level of the perceived sensation of S  (e.g., perceived 
weight), and let ΔE  be the JND of E. 
Then we have 

§  Integration results in: 

§  Here, c  is a constant that describes the minimum stimulus S0 , with 
which just a sensation                is created  (threshold stimulus): 

§  Combined: 

E � 0

�E = k
�S

S

E = k ·lnS + c

c = �k ·lnS0

E = k ·ln S

S0

dE

dS
= k

1

S
⇒ 
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Excursion2: The Stevens Power Function 

§  Another plausible assumption seems (IMHO) the following: 

§  Transformation results in: 

�E

E
= k

�S

S

1

E
dE � k

1

S
dS = 0 ln E–k ln S = c

ln
E

Sk
= c

E

Sk
= ec = c 0

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

1

E
�E � k

1

S
�S = 0
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§  Finally results in Stevens' power law: 
 
 
where E = sensation strength ("perceived weight"), S = stimulus 
(a physical value), c and k = constants, which depend on the 
sense organ 

§  For many stimuli, k < 1  
(for brightness k ≈ 0.5,  
for volume k ≈ 0.6) 

§  For some stimuli, k > 1  
(for temperature k ≈ 1-1.6,  
for electric shock k ≈ 2-3) 

E = cSk

k 

k 
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Notes on the Laws 

§  The Weber-Fechner law describes (apparently) better the 
perception of stimuli in the middle range, the Stevens power law 
better in the lower and upper range 

§  Research on the two laws is still in full swing  

§  There are early indications that neural networks and cellular 
automata also show this behavior, if sensory perception 
(excitation + transport) is simulated with them! 


