
Advanced Computer Graphics
Towards Realtime Ray-Tracing

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 2 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Parallelization

§  Simple (trivial) parallelization:
§  "Course grain" parallelization = distribution among multiple CPUs/Cores

§ → hence also "thread-level parallelism" (TLP)

§  Implementation:

-  Multiple threads (≈ processes), shared memory

-  Multiple processes are distributed among multiple computers, copy scenes onto
all of the computers

-  Every process/thread receives an image tile as work packet

-  Pro: no synchronization necessary (only at the very end)

§  Dynamic Load Balancing:
§  Divide the image into k.n tiles, n = # procs, k = 10 … 100

§  Every processor (worker) fetches the next work packet (an image tile)
from the pool as soon as it is finished with the old one

§  Hence the (wrong) saying: “Ray tracing is embarrassingly parallel."

§  More on this in the lecture about massively parallel algorithms

G. Zachmann 3 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Another type of parallelization: Instruction-Level Parallelism (ILP)

§  Example:

§  Note:
§  Nowadays, CPUs & Compilers do this on their own

§  Gets us nowhere with the kd-tree (for example):
§ Work per node on the traversal =

-  Load the float

-  Branch (for axis splitting x, y, z)

-  Div. & Add.

-  Branch (which child first)

§  Branches cancel out ILP

int a = x + y; // process 1
int b = u + v; // process 2
int c = a + b; // wait for proc 1 & 2

G. Zachmann 4 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Yet another type of parallelization: data parallelism

§  SIMD (single instruction multiple data) parallelism

§  All registers (Float/Int) of a CPU are present in 4-fold
→ registers = 4-vectors

§  An operation can be simultaneously applied on all 4 components

§  I.e.: all computer operations are equally time-consuming, regardless of
whether on a single float or 4-vector

G. Zachmann 5 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Typical SIMD instruction set (AltiVec, SSSE):

§  All Float/Int operations (Add., Mult., Comp., Round., Load/Store, …)
work component-wise on a pair of vectors (intra-element operations)

§  Inter-element operations (permute, pack/unpack, merge, splat, …)

§  "Horizontal” operations = reductions (horizontal subtract, add, …)

§ More complex operations: dot product (SSE4)
in

tr
a-

el
em

en
t o

pe
ra

tio
ns

G. Zachmann 7 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Example of a 3D Scalar Product

1 Scalar Product 4 Scalar Products

G. Zachmann 8 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Application to kd-tree Traversal

1.  Variant: 1 Ray, 4 Objects

§  Problem: Data “objects" must be of the
same type

§  Control flow must be the same

2.  Variant: 4 Rays (Ray Packet), 1 Object

§  Data “objects" are all the same

§  Enough rays are present

§  In order for the control flow to be the
same, the rays have to be located as
closely as possible to one another

1

2

3

4

G. Zachmann 9 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

SIMD-Algorithm for Intersection Test Ray-Packet & Box

§  Reminder: cut the ray successively against the slabs

// A/B = linke/rechte Seite der Bbox
// d = Richtungsvektor, O = Aufpunkt des Strahls
// d' = 1 / d
// alle Operationen, auch min/max, sind komponentenweise!

loop a = x, y, z:

return ! all_ge(tmin, tmax) && all_le(tmax, 0)

Returns 1, if all 4 components of tmin are larger than the
respective components in tmax

G. Zachmann 10 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Frustum Tracing in the kd-Tree [2005]

§  Goal: more than only 4 rays at a time

§  Trace the whole ray bundle through the kd-tree

§  Idea: represent ray bundles as frustum

§  Up until now: during traversal, a decision was made for only one
ray e.g.: ”only the left subtree" / ”only the right subtree”

§  Whith packet/frustum tracing: make an ”OR” decision for all rays

§  E.g.: if 1 ray meets the left subtree → trace the entire packet through
the left subtree; ditto for the right subtree

G. Zachmann 11 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  First (problematic) idea:, check only
the corner rays

§  Counterexample:

§  Rays B, C, D, E are the four corners of
the ray bundle

§  Ray A is located in the same plane as
B and C

§  All 4 corner rays intersect only the
right cell; but ray A intersects the left!

O

A

C D

E B

G. Zachmann 12 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Better idea:

§  Use the technique of view frustum culling

§  Test: box (= kd-tree cell) intersects frustum?
(frustum = BV of the ray packet)

§  Possible algorithm: just like with view
frustum culling [Möller, see VR lecture]

§  Problems:

§  Frustum here is long & small → many "false
positives"

§  We’re doing too much work:

-  We already know that the frustum intersects the
father cell!

Frustum

Zelle

G. Zachmann 13 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Idea: test frustum against the splitting
plane ("inverse frustum culling")

§  Example:
§  di = direction of the rays

§ 
§  Frustum intersects the father

§  Let the splitting plane be x=1

§  Let the y-coord. of all of the intersection
points of all rays < y-coord. of the cell (*)

§  Case differentiation:
-  → only the red child cell

-  → only the blue child cell

§  Note: here the four corner rays are
really sufficient!

�i : di
x > 0

�i : di
y < 0

�i : di
y > 0

G. Zachmann 14 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Problem: there are still "false positives"

§  Goal: a more exact box-frustum test that is still suitable for SIMD

§  First idea: extend the intersection test box-ray to 4 rays

§  Reminder: test the ray against the series of slabs

-  We obtain one "t entry" and one "t exit" per ray

§  Problem: could lead to "false negatives”

§  Example: see the example three slides earlier

§  Here "false negative" =
test says "frustum is not intersecting,”
but it actually is!

G. Zachmann 15 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Idea: project frustum onto xy plane und test
there
§ One does not have to identify the 2 border rays

in 2D; simply execute the calculations with all 4
(projected) corner rays (is just as expensive,
since SIMD)

§  Let yientry be the y-coord. of the “enter” inter-
section point of the rays (in 2D) with the planes
of the boundary sides y=const of the AABB

§  Ditto yiexit

§  Ditto for x → xientry , xiexit

§  There are 8 cases, 2 tests are sufficient:

dy < 0

dy > 0

min{y entry
i } > max{xexit

i } � (1,3,6,8)

min{xentry
i } > max{y exit

i } (2,4,5,7)

G. Zachmann 16 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Adaptive Tile / Frustum Splitting

§  Start with ”large" ray bundles (= frusta) as ”primary rays"
§  Try to traverse the kd-tree
§  Split the frustum, if the conditions (*) for the frustum-cell test are

no longer given

(C
ou

rt
es

y
Re

sh
et

ov
 e

t a
l.)

G. Zachmann 18 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Dynamic Scenes

§  Problem:

§  All vertices move (animation/simulation)

§  Kd-tree/grid/BVH become invalid (virtually all acceleration data
structures)

§  Naïve idea:

§  Build acceleration data structures anew in every frame (after the new
positions of the vertices have been calculated)

§ One can do this with a grid, but it’s too expensive for all other
acceleration data structures

G. Zachmann 19 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

What is so special about grids?

§  Since the 70s: many acceleration data structures

§  Of all of the above, only the grid is non-hierarchical!

BVH Octree

Grid Kd-tree

G. Zachmann 20 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Coherent Grid Traversal [2006]

§  Goal: accelerate ray packets by using a grid (with SIMD)

§  Problem: traversal is incompatible with packet tracing

§  In which order does one visit the cells? ABCD or ABDC?

§  Incremental traversal algorithms (midpoint, 3D DDA) are no longer
SIMD-capable when rays diverge

-  Decision variables for different rays in the same packet differ!

§  Splitting up packets degenerates quickly into
single-ray traversals

§  Idea:

§  Packets do not work with a grid…

§  … but frusta do.

D

A B C

E F

G

G. Zachmann 21 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Determine the coordinate axes to which the given ray packet is ”the
most perpendicular;” planes perpendicular to that are called Ei

§  Determine the upper/lower/left/right frustum plane for the ray packet
§  The upper frustum plane should be chosen such that an intersection with an

Ei plane produces a horizontal line

§  Determine the other frustum planes analogously

§  Traverse the grid with the
frustum layer by layer
§  Determine an "overlap box" between

frustum und grid level
§  Round up to integer (i.e., grid) indices
→ covered cells

§  Intersect rays with all triangles in
covered cells

1 2 3 4

G. Zachmann 22 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  One can maintain the overlap box incrementally, from layer to
layer

§  Trivial, since the bounding planes
of the frustum are known and
parallel to the axes

§  Per step, a total of only 4 additions
are needed (= 1 SIMD operation)

-  Independent of the number of rays
in the frustum!

§  Combine that with SIMD frustum
culling in order to remove triangles that don’t
intersect the frustum

Your Thesis Topic ? …

G. Zachmann 23 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Notes

§  Expensive setup phase

§  Calculate frustum, setup of incremental algorithms

§  Very cheap update step from layer to layer

§  Very well suited to dynamic scenes:
§  Rebuilding = few milliseconds for ~100.000 triangles (1 Proc)

§  Rebuilding is easy to parallelize: 10 MTris in ~150 ms (16 Opterons)

§  Just as few intersection calculations (ray-obj.) as with kd-tree

§  Small con: one must use mailboxes (MB)
-  Grid w/o FC & MB : 14 M ray-tri intersections

-  Grid with FC & MB : .9 M ray-tri intersections (14x less)

-  Kd-tree : .85M ray-tri intersections (5% less than with grid)

§  All in all: grid is only ~2x slower than BVH and kd-tree, but for that
we get dynamic scenes!

G. Zachmann 24 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Towards Choosing the Optimal Packet Size

§  The costs of the traversal steps are mostly independent of the
number of rays →

§  Larger packets = more potential for amortization (pro)

§  More rays/packets = larger frustum →

§ More visited cells, more triangles that must be tested against all rays in
the packet (con)

§  "Sweet spot":

§  The best is 4x4 (green)
or 8x8 (blue)

G. Zachmann 25 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Results

§  Dual-Xeon 3.2GHz, 1024x1024, without shading, pure animation

“Hand”
16K triangles
34.5/15.3 fps

“Runner”
78K triangles
15.8/7.8 fps

“Marbles”
8.8K triangles
57.1/26.2 fps

“Toys”
11K triangles
29.3/10.2 fps

X/Y fps:
X=raycast only
Y=raycast+shade+texture+shadows

G. Zachmann 26 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Video (fairy)

§  174k tris, 1024x1024
Pixels, 16-core Opteron
(180 GFLOPs)

-  CELL = 256 GFLOPs

-  ATI X1900 ~ 1000
GFLOPs

§  3.4 fps (raycast only)

§  1.2 fps (raycast + shade
+ texture + shadows)

G. Zachmann 27 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Idea: if we know all of the positions of a triangle during the course
of the animation …

§ … then we can enclose the space of the positions of the triangle in only
one BV

à Every triangle recieves a "space-time box" (or space-time BV)

§  Then build only one k d-tree over all of the space-time boxes:

§ Is correct throughout the entire time span

§ As always, do a ray test at the leaves

- Beforehand, one needs only to calculate the position of the vertices at
the current point in time

§  But: it is only performant if the space-time boxes are small!

Space-Time kd-Trees [2006]

G. Zachmann 28 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Idea: if we know all of the positions of a triangle during the
course of the animation …
§ … then we can enclose the space of the positions of the triangle in

only one BV

§  Every triangle receives a space-time box (or space-time BV)

§  Then build only one kd-tree
over all of the space-time BVs:
§  Is correct throughout

the entire time span

§  As always, do a ray test at the
leaves

-  Beforehand, one needs only
to calculate the position of the
vertices at the current point in time

§  But: this is only efficient if the space-time boxes are small!

G. Zachmann 29 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Idea of Motion Decomposition

§  Observation:

§ Many “real” animations are “mostly” hierarchical

§ … plus a small residual deformation

§  Example:

§  Consider only special deformations:

§  Base Mesh Deformation (constant connectivity)

§  All frames in the animations are known ahead of time

§  Locally coherent movement

G. Zachmann 30 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Overview of the Method

§  Motion decomposition

§  Affine transformation + residual motion

§  Clustering

§  So that all vertices within a cluster move

 locally coherently

§  Space-time kd-tree

§  For the treatment of residual movement

G. Zachmann 31 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Movement Decomposition

§  Dynamic scenes:
Ball thrown onto the
floor

§  Affine Transformation

§ With shearing for the
"squash” effect

§  Extraction of the
residual movement

residual movement

G. Zachmann 32 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

only affine transformations additional residual movement

affine transformation

Example

G. Zachmann 33 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Space-time kd-Tree

§  Enclose the polygons in
the common coordinate
system in space-time BVs
that are “large enough”

§  Build kd-tree over the triangles' space-time
boxes

§  thereby valid for the entire animation

Space-time
boxes

movie →

G. Zachmann 34 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Assumption: the model is already divided into subsets, whereby
all triangles in the subset move "similarly"

§  Now how does one calculate an affine transformation for the entire
subset from one point in time t1 to another t2?

à Compute PCA over vertices at point t1, PCA at point t2 →
two coordinate systems, affine transformation in between

§  How does one group the triangles?

à Clustering

???

G. Zachmann 35 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Choose w.l.o.g. the coordinate system at point t0 (first key frame)
as a common coordinate system for all vertices in the same cluster

§  Assumption: a vertex v is member of a cluster that moves from
point t0 to t1 with the affine transformation M(t1):

whereby v(t₀) = position at t0 (= rest position),
and δ(t1) = residual movement

§  That is:

§  Transformation into the common coordinate system:

v(t1) = M(t1)·v(t0) + �(t1)

M(t0) = I , �(t0) = 0

ṽ := M�1(t1)·v(t1) = v(t0) + M�1 ·�(t1)

G. Zachmann 36 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

The Clustering Algorithm

§  Goal: efficient ray tracing
§  Thus, try to minimize the size of the space-

time boxes
§  Cluster triangles that move "similarly"
§  Trade-off between number of clusters und size

of the space-time boxes

§  Clustering by the k-means algorithm
§  Represent triangles by their mid-points
§  Use straight-forward Euclidean distance

-  Other distance measures are conceivable

§  On determining the number of clusters:
§  Begin with 1 cluster (= all triangles)
§  Find affine transform. for every cluster
§  Insert new cluster

-  Initialize with the triangle with the largest residual
movement

§  Until enhancement is below a threshold

G. Zachmann 37 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

G. Zachmann 38 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  Termination criterion:

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

re
s
id

u
a

l
m

o
ti
o

n

number of clusters

Residual Motion

Ben
Chicken

Cow
Dolphin

Hand

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18

s
u

rf
a

c
e

 a
re

a
number of clusters

Surface Area of Fuzzy Boxes

Ben
Chicken

Cow
Dolphin

Hand

Surfaces Residual Movement

G. Zachmann 39 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

The Two-Level Data Structure

§  Test the ray against the root BV of each cluster

§  For each cluster that is hit:

§  Transform the ray into the local coordinate system of that cluster

§  Traverse its space-time kd-tree

G. Zachmann 40 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Videos

G. Zachmann 41 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

§  One CPU (Opteron 2.8 GHz), 1024×1024 px, including
shading(?):

§  With texturing, shading, shadows: 2.2 fps

§  Compare to static kd-tree: 4.1 fps

Performance

G. Zachmann 42 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Comparison to a Static kd-Tree

§  In comparison with a new (static) kd-tree per frame, which all
were constructed before the ray-tracing of the animation

§  Traversal steps: factor 1.5–2 more with the space-time kd-tree

§  Intersection calculations (with triangles): factor 1.2–6 more

§  Average frames/sec: factor 1.2–2.6 slower

§  Not including the time it takes for the construction of the static kd-trees!

§  Memory:

§ Only 1 space-time kd-tree

§  Against # frames many static kd-trees

G. Zachmann 43 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

Notes

§  Fully compatible with other kd-tree techniques

§  E.g. frustum tracing

§  The authors name their boxes at the leaves "fuzzy boxes" and
they call the kd-tree "fuzzy kd-tree" — but this is just nonsense

§  The data structure has nothing to do with the concept of "fuzziness"
known from fuzzy logic

§  The idea of space-time BV’s has been around for quite awhile

§  The whole thing only works with so-called "articulated bodies”

§  That is, if one builds clusters over the set of triangles such that the
movement within the clusters is similar, then the clusters have to be
small in terms of volume

G. Zachmann 44 Realtime Ray-Tracing Advanced Computer Graphics 1 May 2013 SS

