Bremen

),
=@
..

Advanced Computer Graphics
Acceleration Data Structures
(for Raytracing et al.)

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

L7)
. %
[2

[]

<N

N9

Aaa

- S
Y The Costs of Ray-Tracing ‘%

u

cost height * width *

num primitives *

intersection cost *

size of recursive ray tree *

num shadow rays * Can we decrease that?
num supersamples *

num glossy rays *

num temporal samples *
num focal samples *

"Rasterization is fast, but needs cleverness to support complex visual effects.
Ray tracing supports complex visual effects, but needs cleverness to be fast."
[David Luebke, Nvidia]

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 3

U A Taxonomy of Acceleration Techniques

Ray Tracing Acceleration Techniques

Fast Fewer Generalized
Intersections Rays Rays
Faster Fewer
ray-object ray-object
intersection intersections
Examples: 1 Examples: 2 Examples: 3 Examples: 4
Object bounding Bounding volume Adaptive tree-depth Bean tracing
volumes hierarchies control
Cone tracing
Efficient intersectors Space subdivision Statistical
for parametric optimizations for anti- Pencil tracing
surfaces, fractals, etc. Directional techniques| |aliasing

G. Zachmann

Advanced Computer Graphics SS

May 2013

Acceleration Data Structures

LS

The Light Buftfer g

= Observation: when tracing shadow rays, it is sufficient to find any
intersection with an opaque object

= |dea: for each light source, and for each direction, store a list of
polygons lying in that direction when "looking" from the light

source
A Light buffer

= The data structure of the 5 e

| ig h t b Uffe re /1:,// /,’/ Cell that shadow feeler intersects

. . i' source f > OCC uc in I polygons
the "direction cube" e | T P
system igl
. . JORLCS Shadow feeler
= Construct either during / y: v
. Eye

preprocessing (by scan

conversion on to th € Cell record Current intersection point

cu be ! SS i d eS)’ or con StrU Ct Object label |Polygon label| Depth

"on demand" (i.e., insert
occluder whenever found one)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 5

Beam and Cone Tracing

The general idea: try to accelerate by shooting several or "thick" rays at once

Beam Tracing:

= Represent a "thick" ray by a pyramid

= At the surfaces of polygons, create new beams
= Cone Tracing:

= Approximate a thick ray by a cone

= Whenever necessary, split into smaller cones

Problems:
= What is a good approximation?

= How to compute the intersection of beams/cones
with polygons?

Conclusion (at the time): too expensive!

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

Bremen

U Beam Tracing

Initial beam
cross-section

\

Clipped beam
cross-section

\.

Eye

Polygonal
nhetrurtinm

Reflected beam

:kﬁ-ﬁ
riginal beam

i

wé_};i,
.

omre |

T

Clipped polygon

Reflection \
plane h

Virtual eye

G. Zachmann Advanced Computer Graphics

SS May 2013

Acceleration Data Structures

.

<n

0

e

eeeee

Bounding Volumes (BVs)

= Basic idea: save costs by precomputations on the scene and
filtering of the rays during run-time

Bounding volume (BV)

"false
positive"

= |f the ray misses the BV, then it must also miss the enclosed object

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

eeeeee

“
e

=,
<n
=0
By

Reqgular 3D Grids 4

= Construction of the grid:
= Calculate BBox of the scene
= Choose a (suitable) grid resolution
(nx, ny, nz)
= For each cell intersected by the
ray:
= |s any of the objects intersecting
the cell hit by the ray?

= Yes: return closest hit

= No: proceed to next cell A 7

«

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 9

eeeeee

= Precomputation: for each cell store all objects intersecting that
cell in a list with that cell— "insert objects in cells"

= Each cell has a list

that contains

A

pointers to objects

= How to insert objects:

use bbox of objects

= Exact intersection

tests are not worth z

the effort

= Note: most objects Izl

are inserted in many
cells

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

10

eeeeee

Y Problems ? .

= Objects could be referenced from many cells

1. Consequence: a ray-object intersection need not be the closest
one (see bottom right)

= Solution: disregard a hit, if the intersection point is outside the current
cell

2. Consequence: we need a method to prevent the ray from being
intersected with the same object several times (see bottom left)

o

G. Zachmann Advanced Computer Graphics SS May 2013

Acceleration Data Structures 11

eeeeee

Y

The Mailbox Technique

= Solution: assign a mailbox with each object (e.g., just an integer
instance variable), and generate a unique ray ID for each new ray

= For the ray ID: just increment a counter in the constructor of the ray
class

= After each intersection test with an object, store the ray ID in the
object's mailbox

= Before an intersection test, compare the ray ID with the ID stored
in the object's mailbox:

= Both IDs are equal — the intersection point can be read out from the
mailbox;

= |Ds are not equal — perform new ray-object intersection test, and
save the result in the mailbox (together with the ray ID)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

. co =
VR

12

eeeeee

Optimization of the Mailbox Technique

= Problems with the naive method:
= Writing the mailbox invalidates the cache

= You cannot test several rays in parallel

= Solution: store mailboxes seperately from geometry

= Maintain a small hash-table with each ray that stores object IDs
- Works, because only few objects are hit by a ray

- So, the hashtable can reside mostly in level 1 cache
= A simple hash function is sufficient
= Now, checking several rays in parallel is trivial
= Remark: this is another example of the old question, whether one

should implement it using an
"Array of Structs" (AoS) or a "Struct of Arrays" (SOA)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

. co =
VR

13

Bremen

W Traversal of a 3D Grid

= Simple idea: utilize 2 synchonized DDA's — 3D-DDA

= Just like in 2D, there is a "driving axis"

= In 3D, there are now two "passive axes"

G. Zachmann

passive
axis 1

passive
axis 2

X

;;;;;;;':7JZ.=W>
N I (R I Y R -t
Ly Q _:__l__L-
I | | I I | | |

— k= —l= O__l/

| | | O__I I__] Z:f(X,y)
O O Coo !

- I N

r = _ 1 _ L _ 1

[T T T R B

- ’z:f(x)

Ll ok o ke e ke o ke -

: grid cells identified by Bresenham's DDA

: additional grid cells pierced by ray

Advanced Computer Graphics SS May 2013

Acceleration Data Structures

14

eeeeee

8 Better Grid Traversal Algorithm

7"
“
e

% "‘

<n

= |Intersect ray with Bbox
of the whole scene

= Warning: the ray's
origin can be inside /
the Bbox! /
= Determine first cell /

= "Jump" with line

Cell[ij]

parameter t from one
xty

grid plane to the next

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 15

= |s there a pattern in the cell transitions?

= Yes, all horizontal and all vertical transitions have the same
distance (among themselves)

9x

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 16

Y

The Algorithm

if tnext x < tnext y
i += sy
tmin = tnext__x
thext x += dtx
else: -
J += sy

tmin = tnext_y

Cellli, j] \

/ Cell[i+1, j]

G. Zachmann Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

<n

17

oo

e

Storage

= Lots of empty cells — represent grid by hash table

()

C

G. Zachmann

/7 SN
Advanced Computer Graphics SS May 2013

Hash Function

h(i,j,k)

Hash-Table

Acceleration Data Structures

18

eeeee

{208

<n
1)
e

= Dense grid — use blocking (aka memory bricking)
= Partition grid into blocks, store each block in a contiguous memory region,
such that 1 block =1 L1 cache line
= Aggregate blocks to "macro blocks", so that one macro block fits entirely
into L2 cache

4 |5 6 II
/ I I
8 0 112(3[4/5/6|7]8|9
III IV

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 19

eeeeee

The Optimal Number of Voxels

= Too many cells — slow traversal, heavy memory usage, bad
cache utilization

= Too few cells — too many objects per cell

= Good rule of thumb: choose the size of the cells such that the
edge length is about the average size of the objects (e.g.,
measured by their bbox)

= |f you don't know it (or it's too time-consuming to compute),
then choose cell edge length = v/

= Another good rule of thumb: try to make the cells cuboid-like

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

20

eeeee

The Teapot in a Stadium Problem

= Problem: regular grids don't adapt well to different local
"densities" of the geometry

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

.

% CG

VR

21

Wi Recursive Grids

" |dea:
= First, construct a coarse grid
= Subdivide "dense" cells again by a finer grid

= Stopping criterion: less than n objects in the cell,
or maximum depth

= Results in a k3-ary tree
= How do you store nodes that have k3 child
pointers?
= Additional Feature:
subdivision "on demand", i.e.,
= |n the beginning, create only 1-2 levels

= If any ray hits a cell that does not fulfill the
stopping criteria, then subdivide cell by finer grid

G. Zachmann Advanced Computer Graphics SS May 2013

N S

Nested Grids

Acceleration Data Structures 22

eeeeee

Y

Hierarchical Uniform Grid (HUG) [1994]

= Problem: if the variance among object sizes is very large, then the
average object size is not a good cell size
"= |dea:
= Group objects by size — "size clusters"
= Group objects within a size cluster by location — local size clusters
= Construct grid for each local size cluster

= Construct hierarchy on top of these elementary grids

= Example:

grid n+1

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

' CG e
VR

23

eeeee

..

<n

e

0

balls gears mount
Uniform, D=1.0 0.19 0.38 0.26
_ # voxels
Uniform, D = 20.0 0.39 1.13 0.4 ## objects
Recursive Grid 0.39 5.06 1.98
HUG 0.4 1.04 0.16
Quelle: Vlastimil Havran, Ray Tracing News vol. 12 no. 1, June 1999, http://www.acm.org/tog/resources/RTNews/html
G. Zachmann Advanced Computer Graphics SS Acceleration Data Structures 24

rings teapot tetra tree
Uniform, D=1.0 0.35 0.3 0.13 0.22
Uniform, D=20.0 0.98 0.65 0.34 0.33
Recursive Grid 0.39 1.55 0.47 0.28
HUG 0.45 0.53 0.24 0.48

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 25

eeeeee

Balls Gears Mount
Uniform, D=1.0 244.7 201.0 28.99
Uniform, D = 20.0 38.52 192.3 25.15
Recursive Grid 36.73 214.9 30.28
HUG 34.0 242.1 62.31
Advanced Computer Graphics SS May 2013 Acceleration Data Structures

G. Zachmann

<n
0

26

e

eeeeee

Rings Teapot Tetra Tree
Uniform, D=1.0 129.8 28.68 5.54 1517.0
Uniform, D = 20.0 83.7 18.6 3.86 /781.3
Rekursiv 113.9 22.67 7.23 33.91
HUG 116.3 25.61 7.22 33.48
Adaptive 167.7 43.04 8.71 18.38
G. Zachmann Advanced Computer Graphics May 2013 Acceleration Data Structures

27

eeeeee

Y Proximity Clouds [1994] gl

= Thought experiment:

" The general idea is called
empty space skipping

Assumption: we are sitting on the ray at point P and we know that
there is no object within a ball of radius r around P

Then, we can jump directly to the point . d
r
X=P+ +—d
Id|]

Assumption: we know this "clearance" radius
for each point in space

Then, we can jump through space from
one point to its "clearance horizon"
and soon ...

Comes in many different guises

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 28

eeeeee

= The idea works with any other metric, too

" Problem: we cannot store the clearance
radius in every point in space

= |dea: discretize space by grid

= For each grid cell, store the minimum
clearance radius, i.e., the clearance radius
that works in any direction (from any point
within that cell)

» This data structure is called a H H
. . 1 1 1 1
distance field 220202
= Example: BN
1 1 1
.

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

29

eeeeee

W General Rules for Optimization

= "Premature Optimization is the Root of All Evil" [Knuth]
= first, implement your algorithm naive and slow, then optimize!
= After each optimization, do a before-after benchmark!
- Sometimes/often, optimization turn out to perform worse
= Only make small optimizations at a time!
= Do a profiling before you optimize!

- Often, your algorithm will spend 80% of the time in quite different places
than you thought it does!

= first, try to find a smarter algorithm,
then do the "bit twiddling" optimizations!

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

. co =
VR

30

eeeeee

W The Octree / Quadtree

= |dea: the recursive grid taken to the extreme

= Construction:
= Start with the bbox of the whole scene
= Subdivide a cell into 8 equal sub-cells

= Stopping criterion: the number of objects, and
maximal depth

= Advantage: we can make big strides through
large empty spaces

= Disadvantages:
= Relatively complex ray traversal algorithm

= Sometimes, a lot of subdivisions are needed to
discriminate objects

G. Zachmann Advanced Computer Graphics SS May 2013

VA~

ANEANEAVZAAN

Acceleration Data Structures

31

. (Y
Wy g .
VR =

= What about large objects in octrees?
= Must be stored with inner nodes, or ...

= |n leaves only, but then they need to be stored in many nodes

-
A

Octree/(Quadtree)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 32

eeeeee

Y

The 5D Octree for Rays

= What is a ray?
= Point + direction = 5-dim. object
= Octree over a set of rays:

= Construct bijective mapping between
directions and the direction cube:

S D= -1, —|—1]2 X {+x,ty, +z}

= All rays in the universe U = [0, 1]°
are given by theset: R=UXxD

= A node in the 5D octree in R = beam in 3D:

G. Zachmann Advanced Computer Graphics SS May 2013

[Arvo u. Kirk 1987]

iz

Acceleration Data Structures

. cc

33

eeeeee

= Construction (6x):
= Associate object with an octree node « object intersects the beam
= Start with root= U x [—1, +1]* and the set of all objects
= Subdivide node (32 children), if

- too many objects are associated with the current node, and

- the cell is too large.

- Associate all objects with one or more children
= The ray intersection test:
= Map ray to 5D point
= Find the leaf in the 5D octree

= Intersect ray with its associated objects

= Optimizations ... J

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

VR

34

S

' CG e
=

S

4‘.’"_3 :
) Remarks bk

The method basically pre-computes a complete, discretized
visibility for the entire scene

= |.e., what is visible from each point in space in each direction?
= Very expensive pre-computation, very inexpensive ray traversal

= The effort is probably not balanced between pre-computation and
run-time

= Very memory intensive, even with lazy evaluation

Is used rarely in practice ...

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 35

eeeeee

kD-Trees 8.

= Problem with grid: "teapot in a stadium"

= Probem with octrees: 1t
= Very unflexible subdivision scheme —+—T

(always at the center of the father cell)

= But subdivision in all directions is not always necessary

= Solution: hierarchical subdivision that can adapt more flexibly to
the distribution of the geometry

= |dea: subdivide space recursively by just one plane:

= Subdivide given cell with a plane

= Choose plane perpendicular to one coordinate axis, otherwise arbitrary
= "Best known method" [Siggraph Course 2006]

= .. at least for static scenes

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 36

eeeeee

" |nformal definition:

= A kd-tree is a binary tree, where
- Leaves contain single objects (polygons) or a list of objects;

- Inner nodes store a splitting plane (perpendicular to an axis) and child
pointer(s)

= Stopping criterion:
- Maximal depth, number of objects, some cost function, ...
= Advantages:
= Adaptive
= Compact nodes (just 8 bytes per node)
= Simple and very fast ray traversal
= Small disadvantage:

= Polygons must be stored several times in the kd-tree

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

ALE

' CG e
VR

37

Bremen

Y

Example

G. Zachmann

A

A AA

Advanced Computer Graphics SS May 2013

[Slide courtesy Martin Eisemann]

Acceleration Data Structures

=

VR

38

eeeee

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

39

eeeeee

Ray-Traversal through a Kd-Tree

= |ntersect ray with root-box — tmin, tmax

= Recursion:

= Intersect ray with splitting plane — typ)it

= We need to consider the following three cases:

a) First traverse the "near", then the "far" subtree
b) Only traverse the "near" subtree

c) Only traverse the "far" subtree

~_ far near
s ~—
™~ ™~~~ near
\\\\ ~_
\\
T~
(a) (b)

G. Zachmann Advanced Computer Graphics SS May 2013

&
7. cc
\ - tmax
\ tmin
tsplit [~
- far
\
\\
(s}
Acceleration Data Structures 40

Y

Pseudo-Code fur die Traversierung

traverse(Ray r, Node n, float t min, float t max):
if n is leaf:
intersect r with each primitive in object list,
discarding those farther away than t max
return object with closest intersection point (if any)

t split = signed distance along r to splitting plane of n
near = child of n containing origin of r // test signs in r.d
far = the "other" child of n
if t split > t max:

return traverse(r, near, t min, t max) // (b)
else if t split < t min:

return traverse(r, far, t min, t max) // (c)
else: // (a)

t hit = traverse(r, near, t min, t split)

if t hit < t_split:

return t hit // early ray terminat'n

return traverse(r, far, t split, t max)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

.

<n
0

41

e

eeeeee

Optimized Traversal [1999]

= Observation:
= 90% of all rays are shadow rays
= Any hit is sufficient

= Consequence:

= The order the children of the kD-tree are visited does not matter (in the
case of shadow rays) — perform pure DFS

= |dea: Replace the recursion by an iteration

" Transform the tree to achieve that:

= = =

O[O0 | Nw N
A 1 A

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

42

eeeee

= Algorithm:

traverse(Ray ray, Node root):
stopNode = root.skipNode
node = root
while node < stopNode:
if intersection between ray and node:
if node has primitives:
if intersection between primitive and ray:
return intersection
node ++
else:
node = node.skipNode

return "no intersection"

G. Zachmann

Qplomarbeit>

Advanced Computer Graphics SS May 2013

Acceleration Data Structures

L 20

<n

0

43

e

eeeeee

W Construction of a kD-Tree

= Given:
= An axis-lined BBox in the scene ("cell)
= At the root, the box encloses the whole universe.
= List of the geometry primitives contained in this cell
" The procedure:
1. Choose an axis-aligned plane, with which to split the cell

2. Distribute the geometry among the two children

= Some polygons need to be assigned to both children

3. Do a recursion, until the stopping criterion is met

= Remark: Each cell (whether leaf or inner node) defines a box,
without the box ever being explicitly stored anywhere

= (Theoretically, such boxes could be half-open boxes, if we start at the
root with the complete space)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 45

eeeeee

U A Stopping Criterion

= How to decide whether or not a split is worth-while?

= Consider the costs of a ray intersection test in both cases:

= No split = costs= ¢;\/

= Split —costs= ¢, | ti(PB Ng + PCNC)
where t; = time for 1 ray-primitive test
t = time for 1 intersection test of ray with
splitting plane of the kD-tree node
pg =probability, that the ray hits cell B
N = number of primitives

= We make the following simplifying assumptions:

= tj = const for all primitives
"t : t, = 80 ; 1 (determined by experiment)

= We will determine pgin a minute

G. Zachmann Advanced Computer Graphics SS May 2013

N
A
\\

B C
Ss
m —_—

PB SA

Acceleration Data Structures

46

eeeeee

Y On Selecting a Splitting-Plane

= Naive Selection of the Splitting-Plane:
= Splitting-Axis:
- Round Robin (x, y, z, x, ...)
- Split along the longest axis
= Split-Position:
- Middle of the cell
- Median of the geometry

= Better: Utilize a Cost Function

= We should choose a splitting plane such that the expected costs of a
ray test are distributed equally among both subtrees

= Try all 3 axes
= Search for the minimum along each axis

= Choose the axis and split-position with the smallest minimum

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

. co =
VR

47

eeeee

Motivation der Kostenfunktion

G. Zachmann Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

48

eeeeee

= Splitin the middle:

A

= The probability of a ray hitting the left or the right child is equal

= But, he expected costs for handling the left or the right child are very
different!

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

49

eeeeee

= Split along the geometry median:

A

= The computational efforts for left or right child are equal

= But not the probability of a hit

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

50

eeeee

cG
VR

= Cost-optimized heuristic:

A

= The total expected costs are approximately similar

- Probability for a left hit is higher, but on the other hand there are less
polygons in the left child

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 51

eeeeee

W The Surface-Area-Heuristic (SAH) [1990]

= Question: How to measure the Costs of a given kD-Tree?

= Expected Costs of a Ray Test:
= Assume, we have reached cell B during the ray traversal

= Cell B has children B1, B> ™
= Expected costs (~ time): B B\z
C(B) =P|[Schnitt mit B;|-C(B5)

+P[Schnitt mit B;]- C(B>)

= Assumptions in the following:

= All rays have the same, far away origin

= All rays hit the root-BV of the kD-tree

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

53

eeeeee

= The probability is:

0 A B
P[Schnitt mit By | Schnitt mit B] = — ~ rea(B1)

§ ~ Area(B)
where e% is the spherical angle spanned by B and. B, resp.
= Explanation: The surface of a sphere is

A = 4rr?

and if the origin of the rays is far away, then

r ~sin(f) ~ 6 B,

]

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 54

eeeeee

= Solution of the "recursive" Equation:
= How to compute C(B7) and C(B)) respectively?

= A simple heuristic: set

C(B;) ~ Anzahl Dreiecke in B;

= The complete Surface-Area-Heuristic :
minimize the following function when distributing the set of

polygons
C(B) = Area(Bl)-N(Bl) + Area(Bg)-N(Bz)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 55

eeeeee

= Warning: for other queries (e.g. points, boxes,...) the surface
area is not necessarily a good measure for the probability!

= A straight-forward, better (?) heuristic:

make a ,,look-ahead” -
C(B) =P|[Schnitt mit By]-C(Bx) B, | Bx [

(
+P[Schnitt mit By]-C(B>)

=P[Bi]-(P[B11] C(B11) + P[B12] C(B12)
+P[B;]-(P[B21]C(Bo1) 4+ P[B| C(Bs2)

Qplomarbeit>

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 56

)
)

eeeeee

W Remarks

= |t suffices to evaluate the cost function (SAH) only at a finite set of
points
= The points are the borders of the bounding boxes of the triangles

= In-between, the value of the SAH must be worse

= Sort all the Bboxes by their boundary coordinates, evaluate the
SAH at all these points (plane sweep)

= Sorting allows interval bisection and, thus, a faster evaluation

——— — — — — — — — — — — — — — — —

l |
— |
dg by a; b,

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

57

eeeeee

= |f the number of polygons is very large (> 500,000, say) — only
try to find the approximate minimum [Havran et al., 2006]:

= Sort polygons into "buckets"

= Evaluate SAH only at the bucket borders

A __B _______________ T 7
Nall '
|‘ V '
I I
_________ | I R
| - L -
a by a; b!1 C c:

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

58

eeeeee

Zusatzliche Kriterien [2005]

= Teste vor der SAH folgende Regel:
= Falls eine leere Kind-Zelle abgespalten werden kann, dann erzeuge
diese (Uberspringe SAH)
= Teste folgendes zusatzliches Abbruchkriterium:

= Falls das Volumen der aktuellen Zelle zu klein ist, dann keine
Aufteilung

= Kriterium ftr "zu klein" (z.B.): Vol(Zelle) < 0.1-Vol(Root)
= Sinn: solche Zellen werden wahrscheinlich sowieso nicht getroffen

= Spart Speicherplatz, ohne Laufzeit zu kosten

= Fir Architekturmodelle:

= Falls es eine Splitting-Plane gibt, die komplett von Polygonen bedeckt
wird, dann verwende diese; schlage diese Polygone der kleineren Zelle
zu

= Sinn: dadurch passen sich die Zellen eher den "Raumen" an (s.a.

G. ZachrrEn(r?rtal g%’v/aqugggomputer Graphics SS May 2013 Acceleration Data Structures

eeeeee

U Storage of a kD-Tree

= The data needed per node:
= One flag, whether the node is an inner node or a leaf

= If inner node:
- Split-Axis (uint),
- Split-position (float),
- 2 pointers to children
= |f leaf:
- Number of primitives (uint)

- The list of primitives (pointer)
= Naive implementation: 16 Bytes + 3 Bits — very cache-inefficient
= Optimized implementation:
= 8 Bytes per node (!)

= Yields a speedup of 20% (some have reported even a factor of 10!)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

7 cG
VR

60

= |dea of optimized storage: Overlay the data

= Assemble all flags in 2 bits

¥ co
VR =

= Qverlay flags, split-position, and number of primitives

innerer Knoten — | S exponent mantissa
1 8 23 00 = "Blatt"
o flags 01 = "X-Achse"
Beide 2 10 = "Y-Achse"
Anzahl 11 ="Z-Achse"
Blatt 30
union
{
unsigned int m flags; // both
float m split; // inner node
unsigned int m nPrims; // leaf
};
G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 61

= Fdr innere Knoten: nur 1 Zeiger auf Kinder

= Verwalte eigenes Array von kd-Knoten (nichtmalloc () oder new)
= Speichere beide Kinder in aufeinanderfolgende Array-Zellen; oder

= speichere eines der Kinder direkt hinter dem Vater.

= Uberlagere Zeiger auf Kinder mit Zeiger auf Primitive

= Jusammen:

Falls m_nPrims == 1

Falls m_nPrims > 1

~

class KdNode
{
private:
union {
unsigned int m flags; // both
float m split; // inner node
unsigned int m nPrims; // leaf
};
union {
unsigned int m rightChild; // inner node
Primitive * m onePrim; // leaf
Primitive ** m primitives; // leaf

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

62

eeeeee

= Achtung: Zugriff auf Instanzvariablen naturlich nur noch Gber Kd-
Node-Methoden!

= Z.B.: beim Schreiben von m_split mul} man darauf achten, dal} danach
(nochmals) m_flags geschrieben wird (ggf. mit dem urspriinglichen
Wert)!

= Beim Schreiben/Lesen von m_nPrims mul ein Shift durchgefihrt
werden!

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

7 cG
VR

63

eeeeee

G. Zachmann Advanced Computer Graphics SS May 2013

Spatial KD-Trees (SKD-Tree) [1987/2002/2006] C“:%

= A variant of the kD-Tree

= Other names: BoxTree, "bounding interval hierarchy" (BIH)

= Difference to the reqular kd-tree: min(R) max(L)

= 2 parallel splitting planes per node L i

= Alternative: the 2 splitting planes
can be oriented differently

= Advantage: "straddling" polygons
need not be stored in both subtrees

= With regular kD-trees, there are

2-3-N more pointers to triangles than
there are trianles,

N = number of triangles in the scene

= Disadvantage: Overlapping child boxes — the traversal can not
stop as soon as a hitin the "near" subtree has been found

Acceleration Data Structures 64

eeeeee

Y Oversized Objects

= Problem:

= manchmal sind die GroRRen der Dreiecke sehr verschieden (z.B.
Architektur-Modelle)

= Diese erschweren das Finden von guten Splitting-Planes
= LOsung: ternarer Baum
= Aufbau:

= Vor jedem Splitting: filtere "oversized objects" heraus
= Falls viele "oversized objects": baue eigenen kd-Tree

= Sonst: einfache Liste

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

7 cG
VR

65

eeeeee

U Zwei-stufige Datenstrukturen

= Beobachtung:
= Oftist nur ein Teil der Szene dynamisch

= Die dynamischen Teile sind oft sog. "articulated bodies", d.h., sie
bestehen aus starren, miteinander beweglich verbundenen Teilen (z.B.
Roboter)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 66

= |dee:

= Verwende fir jedes in sich starre Teil ein eigenes Gitter (oder eine
andere DS)

= Verwende ein globales Gitter, in dem die einzelnen Teile als
elememtare Objekte einsortiert werden

= Bei Bewegung der Figur muf} nur dieses globale Gitter aktualisiert
werden

Articulated Body Gitter fur jedes Teil Ray-Tracing-Zeit pro Pixel

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

67

eeeeee

U Spatial Partitioning vs. Object Partitioning

= So far: acceleration data structure subdivided space, objects
(=triangles) are associated afterwards to the cells

= Now: partition the set of objects, associated a bounding volume
(= subset of space) with each

= |n reality, the borders between the two categories are not clear-
cut!

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 68

eeeeee

Bounding Volumes (BVs)

. CG X
VR

..

= General idea: approximate complex,

geometric objects, or sets of objects, by
some outer "hull"

= Requirements:

= The objects must be completely inside the BV

= More to come ...

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 69

. 3
Y Examples of Bounding Volumes ‘%

20

Cylinder Box, AABB (R*-trees) Convex hull
[Weghorst et al., 1985] [Beckmann, Kriegel, et al., 1990] [Lin et. al., 2001]
Sphere Prism OBB (oriented bounding box)
[Hubbard, 1996] [Barequet, et al., 1996] [Gottschalk, et al., 1996]

. s : .
Y ;o
. Ky & N
AN S
. ‘. o g
\J ‘e, ot Q
L et A *

*y Tteasaasrt *

* *

K

............... k-DOPs / Slabs Schnitt mehrerer

Spheri[ca]l shell [Zachmann, 1998] anderer BVs

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 70

eeeeee

= Examples:

6-DOP
(AABB)

18-DOP

G. Zachmann Advanced Computer Graphics

SS

14-DOP

26-DOP

May 2013

Acceleration Data Structures

71

eeeeee

W The Costs of BVs g

= Costs of a ray intersection with a subset of the scene, enclosed in a

BV:
I'=nB+m-I|
I'= total costs
n= number of rays tested against the BV
B = costs for one ray-BV intersection test
m = number of rays that actually intersect the BV
I = costs for testing the objects in the BV

" Goal: minimze T

= Consequence: 2 incompatible requirements on BVs:

= BVs should be simple (e.g., sphere or box) = small costs for ray tests, B;
downside: number of ray hits, m, is usually large

= BVs should be compact (e.g., exact, convex hull) = small m; downside:
intersection costs, B, are high

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 72

eeeee

= Qualitative comparison:

Better approximation,
higher build and update costs

sphere AABB DOP OBB convex hull

Smaller computational costs
for overlap test

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 73

eeeeee

W The Bounding Volume Hierarchy (BVH)

= Definition:
A BVH over a set of primitives, 2, is a tree where each node are
associated
= a subset of P; and

= a BV B, that encloses all primitives in the subset.

= Remark:

= Often, we use the BV as a synonym for the node in the BVH
= Primitives are usually stored only at child nodes

- Feel free to experiment; exceptions can make sense

= Most of the time, primitives are partitioned, i.e., if Pis the set of
primitives associated with a node, and P; are the subsets of primitives
associated with the children, then

P=PiU...UP,

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

. co =
VR

74

eeeeee

= Schematic example: @

/ \
&0 B
/ \ /] N\
% @\.. .-
" Parameters: - &

= The kind of BV used
= "Arity" (degree of the nodes)
= Stopping criterion (inparticulr, number of triangles per leaf)

= Criterion for partitioning the primitives (guiding the construction)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

75

Examples

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

76

eeeeee ’
8 Example for the Traversal of a BVH with a Ray f%

. 9 13
\\‘\ 10 ®

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 77

eeeeee

€
s«.rgh
o

B

<n
=

= Test 13 — yes

= Test 9 — yes

- Test T — no

- Test 2 — no

- Test 3 — yes

= Test 10 — yes, but intersection

point is farther away

» Result: only 3 instead of 8 tests with
objects, plus 3 tests with BVs

= Question: why did we start with BV 9?7

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 78

eeeeee

Y

Better Hierarchy Traversal

= Problem: the order by which nodes are visited with pure depth-
first search (DFS) depends only on the topology of the tree

= Better: consider the spatial layout of the BV's, too

Criterion: distance between origin of ray and intersection with
BV (estimated distance)

= Consequence: can't use simple recursion / stack any more

= Use priority queue

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

79

eeeeee

Algorithm

= Berechne die Distanz zwischen dem Strahlursprung und dem
Schnittpunkt eines Strahls mit dem aktuell besuchten BV

= |st die Distanz groRer als die Distanz zu einem bereits
gefundenen Schnittpunkt mit einem Obj, so kann dieses BV und
dessen Teilbaum ignoriert werden

= Sonst: Rekursion

= Sortiere alle noch zu testenden BVs gemal} ihrer Distanz zum
Strahlursprung in einem Heap

= Einflgen eines Elementes und Extrahieren des minimalen Elements
haben Aufwand von O(log n)

= Als nachster Kandidat wird immer dasjenige BV gewahlt, das dem
Strahlursprung am nachsten ist

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 80

eeeee

G. Zachmann

Advanced Computer Graphics

Test with 13 — yes, insert

13

Pop front of queue — 13
= Test with 9 — no

= Test with 10 — yes, insert

10

Pop front of queue — 10
= Test with 11 — yes
= Test with 12 — yes

12 | 11

12 herausnehmen
= Schnitt mit4 = Ja
= Schnitt mit5 2> Ja

B

5 herausnehmen, Test mit Primitiv

6 herausnehmen, Test mit Primitiv
11

= 11 herausnehmen ...

SS May 2013 Acceleration Data Structures

81

eeeeee

Y Remarks ™"

= We don't need a complete ordering among the BV's in the
priority queue, because in each step, we only need to extract the
BV that has the closest intersection (among all others in the
queue)

= This can be implemented efficiently with a heap

= Warning: the closest ray-BV intersection and the closest ray-
primitive intersection can happen in different BV's!

£

N

AN

— X

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 82

U How Much Do We Gain?

< “; A_ A:‘ ::: (
N\ y M S > s
o} WP A o &
Number of
10 91 820 7381 66430
spheres
Brute-force 2.5 11.4 115.0 2677.0 24891.0
Goldsmith/
2.3 2.8 4.1 5.5 7.4
Salmon BVH
Rendering times in seconds, Athlon XP 1900+
(Markus Geimer)
G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

S

. co =
VR

84

eeeeee

1. Given by modeling process (e.g., in form of scene graph)

2. Bottom-up:
= Recursively combine objects/BV's and enclose in (larger) BV

= Problem: how to choose the objects/BV's to be combined?

3. Top-down:

= Partition the set of primitives recursively

= Problem: how to partition the set?

4. lterative Insert:
= Heuristic developed by Goldsmith/Salmon

'QVA
2
A

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

Y The Construction of BV Hierarchies

86

eeeeee QY;J. §
Y Example for the Construction of a BVH b E

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)
" |n the following, work only with those elementary BVs
= Partition the set of objects in two sub-sets

4 QA
L A

v = @

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 90

= Recurse

eeeeee Q}}J §
Y Example for the Construction of a BVH b E

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)
" |n the following, work only with those elementary BVs

= Partition the set of objects in two sub-sets

= Recurse

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 91

Y Example for the Construction of a BVH g—ssé

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)
= |n the following, work only with those elementary BVs

= Partition the set of objects in two sub-sets

= Recurse

1
G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 92

Y Example for the Construction of a BVH §§

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)
= |n the following, work only with those elementary BVs

= Partition the set of objects in two sub-sets

= Recurse

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 93

eeeeee

Example for the Construction of a BVH

= Enclose each object (= primitives) by an elementary BV (e.g., AABB)
= |n the following, work only with those elementary BVs

= Partition the set of objects in two sub-sets

= Recurse

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

94

eeeeee

—

. Construct BV around all objects

2. Sort all objects according to their
"center" along the x-axis

3. Partition the scene along the
median on the x-axis; assign half
of the objects to the left and the
right sub-tree, resp.

1. Variant: cyclically choose a different
axis on each level

2. Variant: choose the axis with the
longest extent

4. Repeat 1-3 recursively

= Terminate, when a node contains
less than n objects

G. Zachmann Advanced Computer Graphics SS May 2013

Acceleration Data Structures

95

eeeeee

Y

lterative Insert [Goldsmith & Salmon, 1987]

= Start with an empty root node

= |teratively insert one triangle after another into the BVH, possibly

thereby extending the BVH:

= Let the triangle "sift" to the bottom of the BVH
- VergroRere dabei ggf. das BV der Knoten

= |st das Dreieck an einem Blatt angekommen —
- Ersetze das Blatt durch einen inneren Knoten

- fuge das neue und das alte Dreieck als dessen Kinder an

= Steht man an einem inneren Knoten — treffe eine der
folgenden Entscheidungen:

- fige das Dreieck am aktuellen (inneren) Knoten an

- lasse das Dreieck in den linken / rechten Teilbaum sickern

G. Zachmann Advanced Computer Graphics SS May 2013

Acceleration Data Structures

§ =
GO
. co =

VR

96

eeeeee

Beispiel fur Goldsmith und Salmon

= Szene vor der Erzeugung

der Hierarchie

= Jedes Objekt wird durch---------

sein Bounding Volume

umgeben

= Das gestrichelte Viereck ist
die gesamte Szene

G. Zachmann

Advanced Computer Graphics

SS

May 2013 Acceleration Data Structures

97

Bremen

Y

1. Iteration

G. Zachmann

Gegenwartiger Baum

L]

Mdoglichkeiten

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

.

<n

0

98

e

Y

2. lteration

Gegenwartiger Baum

Mdoglichkeiten

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

<n

oo

99

e

Y

3. lteration

Gegenwartiger Baum

Mdoglichkeiten

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

..

<n

0

100

e

Y

4. lteration

Gegenwartiger Baum

G. Zachmann Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

101

eeeeee

W 5. Iteration

Gegenwartiger Baum

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 102

eeeee

5. Iteration

Gegenwartiger Baum

Mdoglichkeiten

5

G. Zachmann Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

..

<n
oo

103

e

eeeeee

Y

Bemerkungen

S

' CG e
VR X

= Die Reihenfolge, in der die Objekte eingefligt werden, hat einen
sehr grof3en Einfluss darauf, wie gut der Baum wird

= Goldsmith/Salmon experimentierten mit:

= Reihenfolge wie im geladenen Modell

= zufdllig (shuffled)

= Sortiert entlang einer Koordinatenachse

Zahl der Schnitt-Berechnungen pro Strahl bei verschiedenen Testszenen

User Supplied 594 199 129 10.1 32.0 63.2
Sorted 6.53 20.0 159 13.3 320 55.2
Average Shuffled 6.21 199 143 9.4 40.5 44.8
Best Shuffled 594 199 124 8.7 36.7 424
Worst Shuffled 6.32 199 17.4 18.3 48.2 47.2
G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures

104

eeeeee

W Die entscheidende Frage

= Bei Salmon/Goldsmith (inkrementell):
Zu welchem Teilbaum soll ein Dreieck hinzugefiigt werden?

= Bei top-down Aufbau:
Welches ist, zu einer geg. Menge von Dreiecken, die optimale
Aufteilung in zwei Teilmengen? (wie bei kd-Tree)

= Verwende die Surface-Area-Heuristic (SAH):
teile B so auf, dal®

C(B) = Area(B1)-N(By) + Area(B,)-N(B)

minimal wird

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 105

eeeeee

. co =
VR

= Anwendung auf Salmon/Goldsmith:

= Propagiere das Objekt in denjenigen Unterbaum, der dadurch die
geringste Kostenerhdohung fur das Ray-Tracing verursacht

= Falls beide die gleichen Kosten verursachen (z.B. 0), verwende eine
andere Heuristik, z.B. Anzahl Dreiecke im Teilbaum

= Falls alle Unterbaume zu hohe Kosten verursachen (z.B. Flachen-
zunahme auf 90% der Flache von Vater), hange Objekt als direktes
Kind an den aktuellen Knoten (BVH ist also nicht notwendig binar)

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 106

eeeeee

= Anwendung auf rekursive top-down BVH-Konstruktion:

= Berechne BV zu gegebener Menge von Objekten (= elem. BVs)

= Partitioniere Menge der Objekte in 2 Teilmengen (oder mehr)

= Konstruiere BVH fur jede der Teilmengen

= Gesucht: optimale Aufteilung

o - / /
C(B) = B/r€n7|3r(1B) C(B', B\B")

wobei B = Menge der Polygone im Vater-BV
= |st naturlich nicht praktikabel

G. Zachmann Advanced Computer Graphics SS May 2013

Acceleration Data Structures 107

eeeeee

= Heuristischer Aufbau einer BVH:

= Reprasentiere Objekte (Dreiecke) durch deren
Mittelpunkte

= Bestimme die Achse der groRten Ausdehnung
= Sortiere die Punkte entlang dieser Achse

= Suche entlang dieser Achse das Minimum
gemald Kosten-Heuristik mittels Plane-Sweep:

k = arg min

- A 7
B,A, 4

\
A ° °
° | . . °
e o - e o °
° \
'\.o

e
—

) +
Area(B) /
wobei die b; € B die elementaren BVs sind
und j bzw. (n-j) die Anzahl der Objekte in B,

bzw. B,).

Jj=1...n

G. Zachmann Advanced Computer Graphics SS May 2013

{Area(bl c. bj)] Area(bjﬂ ce bn)

s -(n—f)}

Acceleration Data Structures

108

eeeeee

= Laufzeit:

T(n)= T(an)+ T((1 —a)n)+ O(nlogn)

e O(nlog® n)

= Bemerkungen:
= Abruchkriterium bei top-down Verfahren: analog zum kd-Tree

= Top-down-Verfahren liefert i.A. bessere BVHs als iteratives Verfahren

G. Zachmann Advanced Computer Graphics SS May 2013 Acceleration Data Structures 109

eeeee

Vergleich verschiedener Datenstrukturen

100000

[Havran, 2001(?)]

410000

89450

20000 e

5241

6820

89800

BTB
BT_R
OT_B+TR

O93A

= Achtung: mit Vorsicht geniel3en!

G. Zachmann Advanced Computer Graphics

SS

May 2013

BVH

Acceleration Data Structures

..

<n

0

110

e

Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Acceleration Data Structures

=

cG
VR

111

