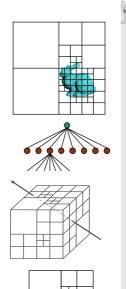


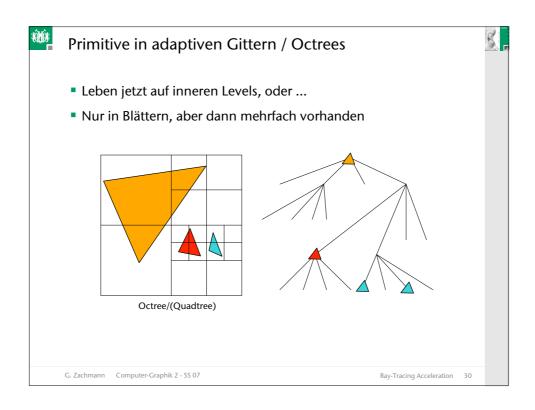
Allgemeine Regeln zur Optimierung

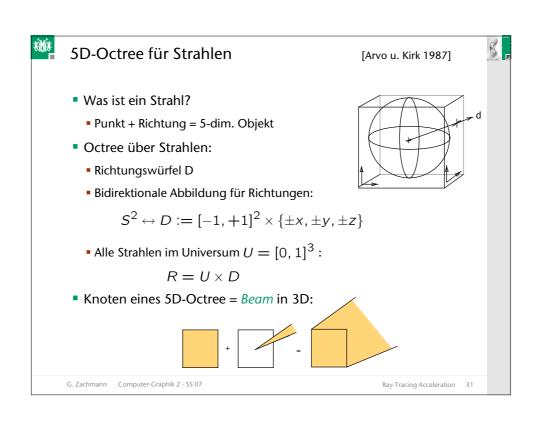
- "Premature Optimization is the Root of All Evil" [Knuth]
 - Erst naïv und langsam implementieren, dann optimieren!
 - Nach jeder (möglichst kleinen) Optimierung einen Benchmark machen!
 - Manchmal/oft stellen sich "Optimierungen" als Verlangsamungen heraus
 - Vor einer Optimierung Profiling machen!
 - Oft wird 80% der Zeit wo ganz anders verbraten
 - Erst nach schlaueren / einfacheren / effizienteren Algos suchen, dann
 "Bit-Knipsereien" betreiben

G. Zachmann Computer-Graphik 2 - SS 07


Ray-Tracing Acceleration 28

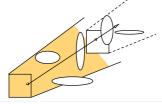
. . .


Octree / Quadtree


- Idee: extreme Variante der rekursiven Gitter
- Aufbau:
 - Mit BBox der gesamten Szene beginnen
 - Voxel in 8 gleiche Sub-Voxels rekursiv unterteilen
 - Abbruchkriterien: Zahl der restlichen Primitive und maximalen Tiefe
- Vorteil: lässt große Traversal-Schritte in den leeren Regionen zu ("empty space skipping")
- Nachteile:
 - Rel. komplizierte Traversalalgorithmen
 - Benötigt manchmal sehr viele Unterteilungen zur Auflösung versch. Objekte

Ray-Tracing Acceleration

G. Zachmann Computer-Graphik 2 - SS 07



- Aufbau (6x):

 - Start mit Wurzel = $U \times [-1, +1]^2$ und Menge aller Objekte
 - Teile Knoten (in 32 Kinder) wenn
 - zu viele Objekte, und
 - zu große Zelle.
 - Ordne Objekte den Kindern zu
- Strahltest:
 - Konvertiere Strahl in 5D-Punkt
 - Finde Blatt des Octree
 - Schneide Strahl mit assoziierten Objekten
- Optimierungen...

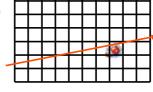
G. Zachmann Computer-Graphik 2 - SS 07

Ray-Tracing Acceleration 32

Bemerkungen

- Die Methode führt im Prinzip eine ungefähre Vorberechnung der Visibility für die komplette Szene durch
 - Was ist von jedem Punkt in jede Richtung sichtbar?
- Sehr teure Vorberechnung, billiges Traversal
 - Unangemessener Kompromiss zwischen Precomputation und Laufzeit
- Speicherhungrig, sogar mit lazy evaluation
- Wird selten in der Praxis verwendet

G. Zachmann Computer-Graphik 2 - SS 07


Ray-Tracing Acceleration

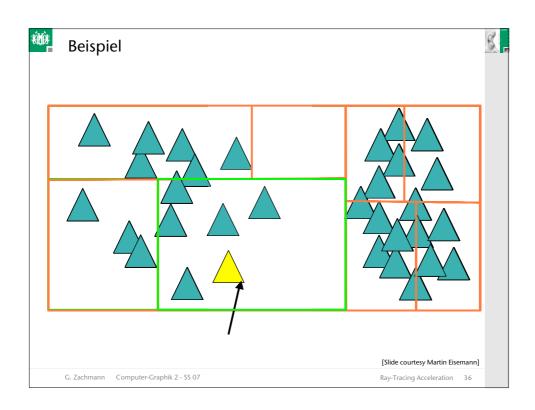
kD-Trees

- Problem der Gitter: "teapot in a stadium"
- Probem der Octrees:
 - zu starr bei der Plazierung der Unterteilung (immer Mittelpunkt)

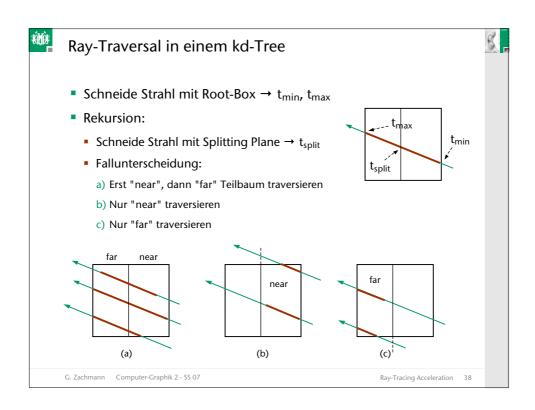
- Unterteilung in allen Richtungen nicht immer nötig
- Lösung: hierarchische Raumunterteilung, die die lokale "Auflösung" der Geometrie lokal und möglichst flexibel anpasst
- Idee: rekursive Raumunterteilung durch eine Ebene:
 - Unterteile gegebenes Teilvolumen mit einer Ebene
 - Wähle Ebene senkrecht zu einer Koordinatenachse, aber sonst beliebig
- "Best known method" [Siggraph Course 2006]
- ... jedenfalls für statische Szenen

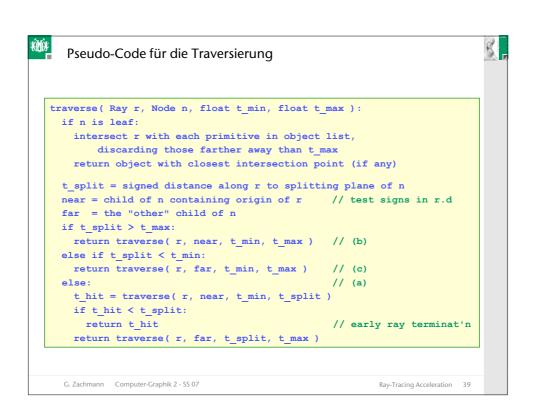
G. Zachmann Computer-Graphik 2 - SS 07

Ray-Tracing Acceleration 34

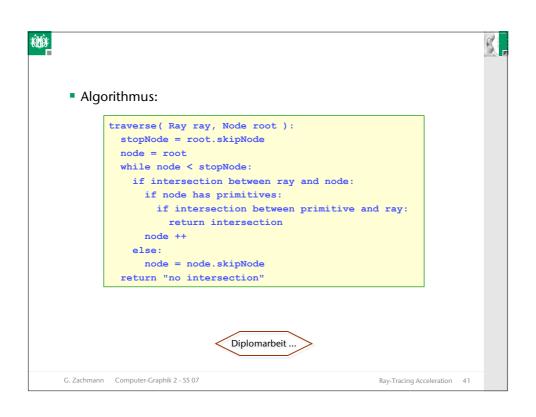


Informelle Definition:


- Binärer Baum:
 - Blätter: enthalten einzelne Objekte oder Objektliste
 - Innere Knoten: Splitting Plane (senkrecht zu einer Achse) und Kindzeiger
- Abbruchkriterium:
 - Maximale Tiefe, Zahl der Objekte, Kostenfunktion, ...
- Vorteile:
 - Adaptiv
 - Kompakt (nur 8 Bytes pro Knoten notwendig)
 - Einfacher und schneller Traversal
- Kleiner Nachteil:
 - Polygone müssen oft mehrfach im Baum gespeichert werden


G. Zachmann Computer-Graphik 2 - SS 07

Ray-Tracing Acceleration 35



Aufbau eines kD-Trees

- Gegeben:
 - Achsenparallele BBox der Szene ("Zelle")
 - Liste der Geometrieprimitive in dieser Zelle
- Ablauf:
 - 1. Wähle eine achsenparallele Fläche, um die Zelle in zwei aufzuspalten
 - 2. Verteile die Geometrie auf die beiden Kinder

 evtl. einige Polygone (konzeptionell) aufspalten
 - 3. Rekursion, bis Abbruchkriterium erfüllt ist
- Bemerkung: jede Zelle (Blatt oder innerer Knoten) definiert eine Box, ohne daß diese explizit irgendwo gespeichert ist
 - (Theoretisch, wenn man an der Wurzel mit dem ganzen Raum startet, können dieses Boxes sogar halb-offen sein)

G. Zachmann Computer-Graphik 2 - SS 07

Ray-Tracing Acceleration 43

43

Ein Abbruchkriterium

- Wie trifft man die Entscheidung, ob sich eine weiterer Split lohnt?
- Betrachte die Kosten beim Strahltest für 2 Fälle:
 - Kein Split \rightarrow Kosten = $t_i N$
 - Split \rightarrow Kosten = $t_t + t_i(p_B N_B + p_C N_C)$

wobei t_i = Zeit für 1 Schnittest Strahl—Primitiv

t_t = Zeit für 1 Schnittest Strahl—Split-Ebene eines kd-Knoten

 p_B = Wahrscheinlichkeit, daß Strahl Zelle B trifft N = Anzahl Primitive

Vereinfachende Annahmen dabei:

 $p_B \propto \frac{S_B}{S_A}$

- t_i = const für alle Primitive
- t_i : $t_t = 80:1$ (festgestellt durch Experimente)
- p_B werden wir später ermitteln

G. Zachmann Computer-Graphik 2 - SS 07

Ray-Tracing Acceleration