University of B
Prof. G. Zachmann ROV reme'n
o School of Computer Science
T. ei en.e ter CGVR Group
. Hudcovic May 7, 2025

Summer Semester 2025

Assignment on Advanced Computer Graphics - Sheet 2

Due Date 22.05.2025

In this assignment we will raytrace Constructive Solid Geometry (CSG). On the website you can find
an adapted version of the already known RaytracingFramework which now supports scenes containing
CSG trees.

Figure 1: How the four example scenes CSG Union, CSG Intersection, CSG Difference A and CSG
Difference B should look like after the task is done correctly. For each of these scenes it is necessary
to implement only one of the functions (corresponding to its name) to be rendered correctly.

Exercise 1 (Constructive Solid Geometry, 12 Credits)

In the framework you will find the new files CSGPrimitives and CSGTree, which contain all classes
and structures relevant for this task. A few notes about the classes that are implemented there:

e CSGTree implements the tree structure and has a CSGNode as root node.

e CSGNode implements a node of the CSG tree containing either a CSGPrimitive (if the node type
is set to LEAF_NODE) or two child nodes (when one of the other node types is set).

e CSGSphere and CSGCube are classes that inherit from CSGPrimitive and implement an intersection
test that return all intersection points (instead of just the first one). Since these objects are convex,
there are at most two intersection points.

e CSGIntersectionInterval is a struct that stores both (a) the intersection point when the ray
enters the object and (b) the intersection point when it leaves, including the ray scalar t as well
as the normal of the surface.

To raytrace CSGTrees correctly, it is not enough to find only the first intersection point. All in-
tervals of entry and exit points along a ray of the CSG Tree must be found. Depending on the
operation (union, intersection, difference), these intervals must then be combined in different ways
while traversing the tree from bottom to top. In the framework, both the intersection test and the
traversal of the tree are given — i.e. you don’t have to deal with recursions. You can also assume
the intervals are initially being passed sorted. Ideally, your solution keeps the sorting order (if not,
resort at the end).



Your only task in this assignment sheet is to implement the merging of the intervals of entry
and exit points, which differ depending on the operation (Union, Intersection and Difference),
which are declared by the functions CSGTree::csgUnion, CSGTree::csglntersection and CS-
GTree: :csgDifference. After you implemented all three functions, the CSG Complex scene should
look like shown in Figure 2. For this exercise you can refer to slides "Constructive Solid Geometry
(CSG)?, "The CSG Tree by Way of an Example”, and "Rendering CSG Objects Using Raytracing”
in the lecture on Non-Polygonal Object Representations.

—== W, ——

Figure 2: How the scene CSG Complexr should look like after all three functions have been imple-
mented.

Hint: Make sure to test your solutions in the various scenes, as well as to move the camera in the
scene, to spot possible artifacts.



