Bremen

Y

Advanced Computer Graphics
Advanced Shader Programming

N
G. Zachmann

University of Bremen, Germany
cgvr.cs.uni-bremen.de

remen | | Pﬁ:
Y Recap (see Bachelor'sComputer GraphicsCourse for more!) *«i

¥ Today's GPUs contain programmable vertex und fragment processorgand more)
¥ Texture memory = general storage for any kind of data you want
¥ Balancing the pipeline is now the programmer's (your) job

glEnable, glVertexAttribPointer, \ Status
. Memory
|
% U>)\ \ 4 \ 4
58 | £ veex | cip | Asemble | pagment | | Per o pame 2
T £ > | Transform & Project Rasterize || Processing Operations Buffer &
O © Primitive =
O a) 1
[=2
Texture -
Memory
Pixel Pack T
| &Unpack |
glTeximage

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 2

Bremen

@ A More Abstract Overview of the Programmable Pipeline £ 23
Vertices Vertices
(in model coord) (in view.coord)
: ’ Vertex Primitive
[Vertex- °
Attribgoiﬁ{e‘?x o —_— Shader . m— [Assembly}

|

\\
glUniformE = oo Uniforms | OpenGL \O(a\NPé\eme“ / Primitives
S\SAY

State

| l
- Zaalys

Neue Fragment 7 Rasterizati
Fragmente iﬂ el Shader [l S [aserlzalo}

N

l Fragmente

Fragment/Framebuffe
Tests & Operations

r} === Framebuffer

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 3

Bremen

Y Passing Vertex Attributes Down the Pipeline

¥ Vertex = set of attributes, fragment = set of attributes, rasterizer interpolates:

"Assemble| -
pd

o N ¢ | And | = 1 __ | Fragmen
o ° Rasterize di Processing
myAttribute myAttribute

Declarations in the vertex shader: Declarations in the fragment shader:

¥ EStabIIShlng the In vec3 vertex_modelSpace; struct fragmentAttributes
connection In in vec3 normal_modelSpace; {

vec4 position_camsSpace;
vec3 normal_camSpace,

m e

modern GLSL syntax struct vertexAttributes
(" #version 330 "):

G. Zachmann Computergraphics 2

{

vec4 position_camSpace,;
vec3 normal_camSpace;
vec4 color;

1

out vertexAttributes vertexOut:

SS June 2021

vec4d color;

1

In fragmentAttributes frag;

out vec4 fragColor;

Advanced Shader Programming

Bremen

Y

¥ The connection in old GLSL syntax ("#version 210 " or WebGL1):

G. Zachmann

Declarations in the vertex shader:

attribute vec3 vertex_modelSpace;
attribute vec3 normal_modelSpace;

varying
varying
varying

vec4 position_camSpace;
vec3 normal_camSpace;
vec4 color;

Computergraphics 2

SS

Declarations in the fragment shader:

varying vec4 position_camSpace;
varying vec3 normal_camSpace;
varying vec4 color;

/[out vec4 gl FragColor is predefined!

June 2021 Advanced Shader Programming

Bremen

Y More Versatile Texturing by Shader Programming

¥ Declare texture in the shader (vertex or fragment):

uniform sampler2D myTex,;

¥ Load and bind texture in OpenGL program as usual:

giBindTexture(GL_TEXTURE_2D, myTexture);
giTeximage2D(...);

¥ Establish a connection between the two:

uint mytex = glGetUniformLocation(prog, "myTex"),
glUniform1i(mytex, 0); // O = texture unit, not ID

¥ Access In fragment shader:

vec4 c = texture2D(myTex, gl_TexCoord[0].st);

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

Bremen

Y Example: A Simple "Gloss" Texture

¥ Ildea: expand the conventional
Phong lighting by introducing a
specular ré ection coef cientthat is
mapped from a texture on the
surface

[owt = (rgcos @ + r. cos? ©)-I;

re = rs(u, v)

G. Zachmann Computergraphics 2 SS June 2021

e ——— - _——

Advanced Shader Programming

Bremen

Y Procedural Textures Using Shader Programming e

e

¥ Goal: Brick texture ¥ Simpli! cation & parameters:

BrickColor

MortarColor

d A
(A |

BrickStepSize.x BrickPercént.x

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 8

Overview of Approach

¥ Vertex shader: normal lighting calculation
¥ Fragment shader:

¥ For each fragment, determine if the point lies in the brick or in the mortar on the
basis of the x/y coordinates of the corresponding point in objects space(!)

¥ After that, multiply the corresponding color with intensity from lighting model

¥ First three steps towards a complete shader program:

brickl.frag brick2 brick3

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 9

Noise

¥ Most procedural textures look too "clean”
¥ Real objects show signs of dirt, grime, dents, random irregularities, etc.

¥ |dea: add all sorts of noise

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

ulllad uuay

10

ldeal qualities of a noise function f

¥ At least G2-continuous

¥ ItOs sufcient, if it looks random

¥ No obvious patterns or repetitions

¥ Repeatable (same output with the same input)
¥ Convenient range, e.g. [-1,1]

¥ Can be de! ned for 1,...,4 dimensions

¥ Isotropic (invariant under rotation)

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

11

Why we don't just use a noise texture

Sphere rendered with a 3D texture to
provide the noise.
Notice the artifacts from linear interpolation.

G. Zachmann Computergraphics 2 SS June 2021

Sphere rendered with procedural noise.

Advanced Shader Programming

12

Simple Idea: Value Noise

1.Choose random y-values from
[-1,1] at the integer positions

2.Interpolate in-between, e.q.
cubically (linearly isnOt
sufl cient)

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

13

3. Generate multiple noise
functions with different
frequencies

4.Add them all up: produces
noise at different "scales"

G. Zachmann Computergraphics 2

SS

June 2021

Advanced Shader Programming

14

¥ Persistence= successive scaling of amplitude on successive octaves

perlin(x) = Zpin;(Qix) . x €]0,1],p € [0, 1]

1
[Scaling along x for octaves
Persistence

¥ Example:

¥ Persistence =" | pink noise,

persistence = 1! white noise

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

15

¥ Same thing in 2D:

¥ Straight-forward generalization to higher dimensions

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

16

Gradient Noise

¥ Specify the gradients, instead of values,
at integer x-points

¥ Interpolate to obtain values y = f(X):

¥ At position X, calculate yo and y; as values
of the lines through x=0 and x=1 with
the previously speci! ed (random)
gradients

=

¥ Interpolate yy and y; with a sinusoidal /c :
blending function, %
e.0. h(x)=3x*—2x '

or q(x)=06x>—15x" 4 10x°

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 17

¥ Advantage of the quintic blending function:
| the entire noise function iIs C2-continuous

¥ Example where one can easily see this:

Cubic
Interpolation

Ken Perlin

G. Zachmann Computergraphics 2 SS June 2021

q//(o)

q//(l)

Quintic
Interpolation

Advanced Shader Programming

18

Gradient Noise in 2D, f :R* - R

¥ Set gradients atinteger grid points

¥ Gradient =2D vector (not necessarily of length 1)
¥ Interpolation (as in 1D):

¥ Wilog., at P = (x,y) ! [0,1]x[0,1]

¥ Let the following be the gradients:
Joo = gradient at (0,0), go; = gradient at (0,1),

010 = gradient at (1,0), gu = gradient at (1,1) 1 S \@

¥Ca|CU|ate the Values Z|J Of the "gradlent rampS" g” y S R ’ —————————————————————————— -------------
at point P = (x,y) : | ;

w=s(y) a-ar(*,)
00 = 800 y 10 10 v

I | X S | x —1 0 — g
01 = 801 y—1 11 — 811 y—1 0 « 1

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

¥ Blending of 4 z-values through bilinear interpolation:
zxo = (1 — q(x))z00 + q(x)z10 zx1 = (1 — q(x))

Zey = (1 = a(y))z0 + a(y)za

¥ Analogous in 3D:
¥ Specify gradients on a 3D grid

¥ Evaluate 2 = 8 gradient ramps

¥ Interpolate these with tri-linear interpolation
and the blending function as weights

¥ And in d-dim. space?! complexity is O(d2-29) !

G. Zachmann Computergraphics 2 SS June 2021

an
nn®

-
nnt®
e

as

.
ant®
IIIIII
.
nnt®

as

LE]
Ly]
"
a
X]
"y

e
L]
......

"a
X]
"y
e
R]
X]
"y

Total lerps =4 +

a
a
L]
a
L]
"
]

L]
......
a
"
L]
"
L]
L}

-
nn®
sut®
nn®
ant®
nnt®
wut®
s

ann®

""""

+1=7

Advanced Shader Programming

20

Simplex Noise

¥ The d-dimensional simplex :=

barycentre combination of d+1 af! nely independent points

¥ Examples:

¥ 1D simplex = line, 2D simplex = triangle,
3D simplex = tetrahedron

¥ In general:
¥ Points Py, E, Py are given
¥ d-dim. simplex = all points Xwith

d
X = PO—I—ZS,'U,'

_ i=1
with d

U,':P;—Po,S,'ZO,ZS;S].
=0

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

21

Simplicial Tesselation

¥ In general, the following is true: it Is possible to partition d-dimensional
space (tessellation with equilateral d-dimensional simplices

¥ Using equilateral d-dimensional simplices, one can partition a cube that was
suitably "compressed" along one of its diagonals

¥ Such a "compressed"” d-dimensional cube contains d! many simplices

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

22

Construction of the Noise Function

¥ Given: a simplex tessellation (hence "simplex noise") and gradients at each
node/vertex

1. Determine the simplex in which a query point Plies
2.Determine all of its vertices and the gradients there

3.Determine (as before) the value of these
"gradient ramps" in query point P

4.Generate a weighted sum of these values

¥ Choose weighting functions
so that the OirtuenceO of a
simplex grid point only
extends to its incident simplices

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

23

¥ Advantage: has only complexity O(d)
¥ For detalls see "Simplex noise demystl ed" (on the homepage of this course)

¥ Comparison between classical value noise and simplex noise:

classical

simplex

2D 3D 4D

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

24

¥ Four noise functions are de! ned in the GLSL standard:

float noisel(gentype) , vec2 noise2(gentype)

vec3 noise3(gentype) , vecd noise4d(gentype)

¥ Calling such a noise function:
V=noise2(f*x +t, f*y +1)

¥ With f, one can control the spatial frequency;,
with t, one can generate a shifting animation (t="time").

¥ Analogous for 1D and 3D noise
¥ Caution: range is [-1,+1]
¥ Cons: are not implemented everywhere

¥ Often very sloooooooow E

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

25

Example (cont'd): Application of Noise to our Procedural Brick Texture

The code for this example

IS on the course's homepage
(after unpacking the archive,
it is in directory
vorlesung_demos

I les brick.vert and
brick[4-7].frag)
4) Color var. (low freq.) 5) High-freq. variations
6) Black spots /) Curvy brick edges

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 26

Example In Movies

G. Zachmann Computergraphics 2

SS

June 2021

Advanced Shader Programming

27

Other Examples for the Applications of Noise

Ken Perlin's famous Procedural bump mapping, done by
solid textured marble computing noise in the pixel shader and
vase, 1985 using that for perturbing the surface normal

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

28

G. Zachmann

Computergraphics 2

g = a * perlin(x,y,z)
grain = g - int(g)

SS June 2021

Advanced Shader Programming

29

Warped Noise FY

¥ Sometimes, you need different frequencies in different parts of the noise
Image/domain

¥ General iIdea: perform image warping
¥ Method:

¥ De! ne polylines where noise image should "contract" (increases frequency)

¥ Use generalized barycentric coordinates to move original pixels closer to
"borders"”

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

30

Digression on Randomness

Michael Noll, 1962:

Computer Composition withLines
Based on Piet MondrianOs
Composition with Lines

Piet Mondiran, 1917

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

31

G. Zachmann

Random-dot stereograms. 3D object hidden in random images.
[Bela Julesz, Hungarian psychologist |

Computergraphics 2 SS June 2021 Advanced Shader Programming

32

G. Zachmann

Is it random? What makes it random?

Computergraphics 2 S5

June 2021

Advanced Shader Programming

S

IS Your Random Number Generator Random?

¥ Spectral test:
¥ Calculate x; = rand(), for i =1, E, N (N large)
¥ Create 2D scatter plot of all points (Xi, Xi+1)

¥ Or in 3D using (X, Xi+1, Xi+2)

Apple's rand() function in C IBM's RANDU function

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

34

G. Zachmann

Computergraphics 2

Eudaemons= Name of a group of physics graduates from
University of Santa Cruz who understood that roulette
wheels obey Newtonian physics, but is just very sensitive
to initial conditions.

Using miniaturized computers, hidden in special shoes,
they could capture the state of the ball and the wheel,
and could increase their odds by 44%.

[Thomas A. Bass The Eudaemonic Pigl985]

SS June 2021 Advanced Shader Programming

35

Ambient Occlusion

¥ Motivation:
¥ Remember the rendering equation ~L $*“ % >
* R e v
LG)= " LX) cos@)d! | AR

¥ Assume that" and incoming light is constant from/in every direction

| ambient occlusion:

A(X) = | V(X,! i)néiid!i

where v(x,#) = {0, 1} = visibility in direction #

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 36

¥ Further simpli! cation: only check for self-
occlusion! object-space ambient
occlusion

¥ Can be pre-computed per object as kind of
a "light map"

¥ Independent of light direction and other
objects in scene

¥ Can be multiplied with texture at run-time
per fragment

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

,S13]9394 uoISN|220,

37

Ambient Occlusion Effect Depends on Length of Occlusion Feelers

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

38

Screen-Space Ambient Occlusion

¥ Principle idea: sample neighborhood around each point on a surface, calculate
ambient occlusion term, use in the lighting model as a factor
¥ One solution: use deferred shading, I.e., render into G-buffer in ! rst pass

¥ In second pass: for each receiver (= fragment), use z-buffer to check visibility of
sample points around receiver (wrt. viewpoint!)

¥ Approximate the occlusionterm A! bt o, Nd
¥ Then evaluate lighting model

>

Viewing direction (-z axis)

RN AN

o e

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 39

Method 2

¥ Re-project every pixel in frame buffer to the 3D
point (iIn camera space!) ! recelver point p

¥ Convert neighborhood radius Rto radius on
screen, consider all pixels within, reproject !

sample points (;

¥ Approximate surface around sample points by
disks w/ radius ri, oriented towards receiver

¥ Project onto hemisphere around receiver

¥ Accumulate

! . . ! I:) .
Al Fndqi " p)= d—'zna(qi p)

lgi! pI<R Igi! p|l<R |

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programminig

40

Experiment!

¥ Change parameters: size of neighborhood R, radius of disksr;

¥ Specl cally for method 2:
¥ Place spheres around samples? (project these onto hemi-sphere of receiver point)
¥ Should radius of sample disks/spheres depend on distance d;?

¥ Compute area of spherical cap on hemi-sphere covered by sample disks (don't just
scale areahk of the disks)

¥ Orient disks perpendicular to normal in sample points, not towards receiver pt?

¥ How to account for parts of surface around p that are visible from p, but invisible
from viewpoint?

¥ Does method 1 or method 2 produce more aesthetically pleasing results?

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 41

Results

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

42

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

43

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

44

Effects Appear Usually Exaggerated Compared to Global lllumination

Ambient Occlusion
Full Global lllumination

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

45

Light Refraction

¥ With shaders, one can implement simple
approximations of global effects

¥ Example: light refraction
¥ What do we need to calculate the refracted ray?
¥ Snell's Law: nysinf; = nysin by
¥ Needed: n, v, ny, Ny
¥ Everything Is available in the fragment shader!
¥ S0, one can calculatet per pixel
¥ So why Is rendering transparent objs dif ! cult?

¥ In order to calculate the correct intersection points of
the refracted ray, one needs the entire geometry!

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

46

¥ Approximation: one entry point, one exit
point in/out of transparent object

1. Step: determine the exit point
P> = P; + dt

¥ |dea: approximate d

¥ To do that, render a depth map of the back-
facing polygons in the ! rst pass, from the
viewpoint

¥ Use binary search to! nd a good approximation
of d (ca. 5 iterations suf! ce)

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

a7

Detalls on the binary search for ! nding the distance between P; and P,

¥ Situation: given aray t, witht ; <0, and two

"bracket” points A © and BO (in camera space), O §Viewpoim>

between which the intersection point must be;
and a precomputed depth map

¥ Compute midpoint M ()
¥Use (M, M) to index the depth map! ¢

¥ifd> M2 1 setA® = MO
¥if d< M? 1 setB® = MO

¥ Repeat until convergence or max iterations

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

48

2. Step: determine the normal in P>

¥ To do that, render a normal map of all back-
facing polygons from the viewpoint (yet
another pass before the actual rendering)

¥ Project P, with respect to the viewpoint into
screen space

¥ Index the normal map
3. Step:
¥ Determine t,

¥ Index an environment map

G. Zachmann Computergraphics 2 SS June 2021

Normal map

Advanced Shader Programming

49

¥ Many open challenges:

¥ When depth complexity > 2:

¥ Which normal/which depth value should be stored in the depth/normal maps?

¥ Approximation of distance

¥ If object is highly non-convex, the approximation method can fail

¥ Combination of re #ected and refracted rays with Fresnel terms

¥ Alilasing

G. Zachmann Computergraphics 2

SS June 2021

Advanced Shader Programming

50

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

51

Examples

With large number (5?) of internal re #ections

G. Zachmann Computergraphics 2

SS

June 2021

With different number of internal re #ections

Advanced Shader Programming

52

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

53

The Geometry Shader

¥ Situated between vertex shader and rasterizer
¥ Essential difference to other shaders:

¥ Per{primitive processing

¥ The geometry shader can produce variable-length
output!

¥ 1 primitive In, Kk primitives out

¥ |s optional (not necessarily present on all GPUS)
¥ Note on the side: features stream out

¥ New, ! xed function

¥ Divert primitive data to buffers

¥ Can be transferred back to the OpenGL program
("Transform Feedback")

G. Zachmann Computergraphics 2 SS June 2021

il

Input
Assembler

1

VAO / VBO

Vertex
Shader

!

Texture

Geometry
Shader [~

Stream

~ QOut —>

Setup/
Rasterization

Pixel

Shader

Texture

Feedback
Buffer

GPU
Memory

Texture

Framebuffer
(depth,
color, ...)

Advanced Shader Programming

54

Features / Purposes of the Geometry Shader

¥ The geometry shader's principle function:

¥ In general "amplify geometry"

¥ More precisely: can create (or destroy) primitives
on the GPU

¥ Input = one complete primitive (optionally with
adjacency)

¥ Output: zero or more primitives (max 1024)
¥ Example application:

¥ Silhouette extrusion for shadow volumes

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

55

¥ Another feature of geometry shaders: can render the same geometry to
multiple targets

¥ E.g., render to cube map in a single pass:
¥ Treat cube map as 6-element array A

Render Target A

¥ Emit primitive multiple times

o

Array A

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

Some More Technical Detalls

¥ Input / output: ~

G. Zachmann

Application
generates these = <
primitives

Points, Lines, Line Strip, Line Loop,Lines with
Adjacency Line Strip with Adjacency,
Triangles, Triangle Strip, Triangle Fan,
Triangles with Adjacency,

Triangle Strip with Adjacency

Driver feeds these one-at-
a-time into the Geometry

Shader

Geometry Shader
generates (almost) as
many of these as it wants

Computergraphics 2

|

Point, Line, Line with Adjacency,
Triangle , Triangle with Adjacency

|

Geometry Shader

l

~—
< Points, Line Strips,
Triangle Strips
-
SS June 2021 Advanced Shader Programming

S7

¥ In general, you must specify the type of the primitives that will be input and
output to and from the geometry shader

¥ These need not necessarily be the same type

¥ Input type:

glProgramParameteri(shader_prog_name,
GL _GEOMETRY _INPUT_TYPE, int value);

¥ value = primitive type that this geometry shader will be receiving

¥ Possible values: GL_POINTS, GL_TRIANGLES, E (more later)

¥ Output type:

glProgramParameteri(shader_prog name,
GL_GEOMETRY_OUTPUT_TYPE, int value);

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

Data Flow of the Principle Prede! ned Varying Variables

If a Vertex Shader then the Geometry Shader and will write them to the
writes variables as: will read them as: Fragment Shader as:
gl_Position gl_PositionIn[] gl_Position
gl_TexCoord|[s] gl_TexCoordIn[=] gl_TexCoord[a]
gl_FrontColor gl_FrontColorin[d gl_FrontColor

myAttrib myAttrib[o myAttrib

"varying" "varying in" "varying out"

= gl _Verticesln

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

¥ If a geometry shader Is part of the shader program, then passing

iInformation from the vertex shader to the fragment shader can only happen

via the geometry shader:

G. Zachmann

Vertex Shader

Geom. Shader

Fragm. Shader

varying vec4 gl _Position;
varying vec4 VColor;

varying in vec4 gl_PositionIn[3];
varying in vec4 VColor[3];

varying out vec4 gl _Position;
varying out vec4 FColor,

varying vec4 FColor;

Grey = already declared for you
Computergraphics 2 SS June 2021

\Vertex shader code
\VVColor = vec4(...),

[Primitive Assembly J

gl_Position = gl_PositionIn[0];
FColor = VColor[O]:
Emitvertex();

[Rasterizer J

Fragment shader code

Advanced Shader Programming

60

Caveats

¥ Since you may not emit an unbounded number of points from a geometry
shader, you are required to let OpenGL know the maximum number of
points any instance of the shader will emit

¥ Set this parameter after creating the program, but beforelinking:

glProgramParameteri(shader_prog_name,
GL_GEOMETRY_VERTICES OUT, intn);

¥ A few things you might trip over, when you try to write your !rst geometry
shader:

¥ It 1s an error to attach a geometry shader to a program without attaching a
vertex shader

¥ It is an error to use a geometry shader without specifying
GL GEOMETRY_VERTICES OUT

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 61

¥ The geometry shader generates geometry by repeatedly calling
EmitVertex() and EndPrimitive()

¥ Note: there Is no BeginPrimitive() routine. It is implied by
¥ the start of the Geometry Shader, or

¥ returning from the previous EndPrimitive() call

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

62

A Very Simple Geometry Shader Program

#version 120
#extension GL_EXT geometry shader4 : enable void
main(void)
{
float d = 0.04;
gl_Position = gl_PositionIn[0] + vec4(0.0, d, 0.0, 0.0);
gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);
EmitVertex();
gl_Position = gl_PositionIn[0] + vec4(d, -d, 0.0, 0.0);
gl_FrontColor = vec4(0.0, 1.0, 0.0, 1.0);
EmitVertex();
gl_Position = gl_PositionIn[0] + vec4(-d, -d, 0.0, 0.0);
gl_FrontColor = vec4(0.0, 0.0, 1.0, 1.0);
EmitVertex();
EndPrimitive();

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

63

Examples

¥ Shrinking triangles:

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

64

Displacement Mapping

¥ Geometry shader extrudes prism at each face
¥ Fragment shader ray-casts against height! eld

¥ Shade or discard pixel depending on ray test

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

65

Intermezzo: Adjacency Information

¥ In addition to the conventional primitives (GL_TRIANGLE et al.), a few new
primitives were introduced with geometry shaders

¥ The most frequent one: GL_TRIANGLES WITH ADJACENCY

6N vertices are given

(where N is the number of triangles to draw).
Points O, 2, and 4 de! ne the triangle.

Points 1,3, and 5 tell where adjacent triangles are.

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

66

Shells & FIns

¥ Suppose, we want to generate a " #uffy"”, ghost-like
character like this

¥ |dea:

¥ Render several shells (offset surfaces) around the
original polygonal geometry

¥ Can be done easily using the vertex shader

¥ Put different textures on
each shell to generate a volumetric, yet "gaseous"
shell appearance

—

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming 67

¥ Problem at the silhouettes:

¥ Solution: add " ! ns" at the silhouette

¥ Fin = polygon standing on the edge between
2 silhouette polygons

¥ Makes problem much less noticeable

G. Zachmann Computergraphics 2 SS June 2021

8 shells

+

l NS

Advanced Shader Programming

68

¥ Ildea:! ns can be generated in the geometry shader

¥ How it works:
¥ All geometry goes t

¥ Geometry shader c

nrough t

ne geometry shader

necks w

has a silhouette edge:

silhouette |

nether or not the polygon

ent>0" enn <O

where e = eye vector, from edge to eye

¥ If edge = silhouette edge, then the geometry shader
emits a! n polygon and the input polygon

¥ Else, It jJust emits the input polygon

¥ Do we need to check the "other orientation” of signs?

G. Zachmann Computergraphics 2

SS June 2021

Advanced Shader Programming

69

Demo

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

70

Example Application: Lost Planet Extreme Condition

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

71

¥ More tricks are usually needed to make it look really good:

G. Zachmann

Texture for color

Computergraphics 2

Texture for angle of

fur hairs

SS

June 2021

Noise texture for
length of fur hairs

Furthermore,
one should

try to render
self-shadowing
of strands of fur
hairs E

Advanced Shader Programming

72

¥ Typically, what you as a
programmer need to do Is
to write the shader and
expose the parameters via a
GUI to the artists, so they
can determine the best look

G. Zachmann Computergraphics 2

SS

June 2021

Advanced Shader Programming

/3

Silhouette Rendering

¥ Goal:

G. Zachmann Computergraphics 2

SS

June 2021

Advanced Shader Programming

4

Technique: 2-pass rendering

1. Pass: render geometry regularly

2. Pass: switch on geometry shader for silhouette rendering
¥ Switch to green color for all geometry (no lighting)
¥ Render geometry again
¥ Input of geometry shader = triangles
¥ Output = lines

¥ Geometry shader checks, whether triangle contains silhouette edge

¥ With tolerance to make silhouette thicker

¥ Ifyes! outputline

¥ Ifno! output no geometry

G. Zachmann Computergraphics 2 SS June 2021 Advanced Shader Programming

Hedgehog Plots

G. Zachmann

Computergraphics 2

SS

June 2021

Advanced Shader Programming

76

Concluding Demos

G. Zachmann Computergraphics 2

SS

June 2021

Advanced Shader Programming

77

Bachelor- / Master-Theses

Impossible Objects

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

/8

The Future of GPUSs?

Pre 1986:
pure software
rendering

Pre 2001.:
complete,
efl cient
HW pipeline

G. Zachmann Computergraphics 2

OpenGL 3.x: No ! xed
| rst real function
programmab any more?

lity

SS June 2021

Pure software
rendering?

Advanced Shader Programming

79

Resources on Shaders

¥ Real-Time Rendering; 3 edition
¥ The tutorial on this course's home page

¥ OpenGL Shading Language Reference:
https.//www.khronos.org/opengl/

¥ On the geometry shader in particular:

https://www.khronos.org/opengl/wiki/Geometry Shader

G. Zachmann Computergraphics 2 SS June 2021

Advanced Shader Programming

80

