
Advanced Computer Graphics
Introduction to Ray-Tracing and

Physically-Based Rendering

G. Zachmann
University of Bremen, Germany

cgvr.cs.uni-bremen.de

http://cgvr.cs.uni-bremen.de

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025

– Pliny the Elder, 5th century B.C.

“Parrhasios, it is recorded, entered into a competition with Zeuxis, who
produced a picture of grapes so successfully represented that birds flew
up to the stage buildings [in the theater, which served at that time as a

public art gallery]; whereupon Parrhasios himself produced such a
realistic picture of a curtain that Zeuxis, proud of the verdict of the

birds, requested that the curtain should now be drawn and the picture
displayed; and when he realized his mistake, with a modesty that did

him honor he yielded up the prize, saying that whereas he had
deceived the birds, Parrhasios had deceived him, an artist.”

2

The Ongoing Quest for Realistic Images

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Examples from the History of Fine Art

3

Willem Claesz. Heda, circa 1600-1663 Alma-Tadema: A Solicitation

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

By Contrast ...

4

Claude Monet's Haystacks

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Effects Needed for Physically Correct Rendering?

5

https://www.menti.com/86xyuy7f9e

https://www.menti.com/86xyuy7f9e

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Effects Needed for Physically Correct Rendering

• Remember one of the local lighting models from CG1

• All local lighting models fail to render one or more of the following effects:

• Soft Shadows (Halbschatten)

• Hard shadows (Schlagschatten) can be done using multi-pass OpenGL rendering (see CG1)

• Indirect lighting (sometimes also in the form of "color bleeding")

• Reflection of the scene on glossy surfaces, e.g., mirrors, polished surfaces, etc.

• Refraction, e.g., through water or glass surfaces

• Diffraction (Beugung)

• Participating media, e.g., fog, haze, dust in air

• …

➢Global Illumination

6

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

The Principle of Ray-Tracing vs. Principle of Polygonal Rendering

7

for each polygon:

 for each pixel:

 ...

for each pixel:

 for each polygon:

 ...

Raytracing can be considered an

"inverse mapping" approach

Polygonal rendering (think "OpenGL")

is a "forward-mapping" approach

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Probably the Oldest Conception of "Ray-Tracing"

8

Emission theory
(conjectured by most Greek scientists

and held until around 1500 among Western scientists)

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Albrecht Dürer's "Ray Casting Machines" [16th century]

9

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025 10

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Examples of Ray-Traced Images

11

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 12

Je
n

se
n

,
Li

g
h

ts
ca

p
e

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 13

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Intermission: Giorgio Morandi

14

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 15

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Ray Tracing in the Animation Industry

16

Doc Hudson’s chrome bumper
with two levels of ray-traced reflection.
(Copyright 2006 Disney/Pixar)

Ray-traced wine glasses from Ratatouille.
(Copyright 2007 Disney/Pixar)

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Fake or Real?

17

https://www.menti.com/86xyuy7f9e

https://www.menti.com/86xyuy7f9e

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Rendering Equation

• Goal: photorealistic rendering

• The "solution": the rendering equation

Li = the "intensity" of light incident on x from direction ωi

Le = the "intensity" of light emitted (i.e., "produced") from x

into direction ωo

Lo = the "intensity" of light reflected from x

into direction ωo

ρ = function of the reflectance coefficient

= BRDF (to be def'd properly later)

ω = (!,") = a direction (two polar angles)

Ω = hemisphere around the normal

18

LiLo
!i

x
"i

!o

"o

Kajiya

ρ (typ.)
Li

n
r

<latexit sha1_base64="Sd1jND77DL0ZY4Wg5GUuLACQHi8=">AAADQXicZVLNbtQwEPYGCqVAu4UjBwwV0q7YrjaLgF6QKuihh0oUif5I9SpynMmuVceObAe6inLhDXgNTrwDT8GJMzfElQuTdBe67UiOPn/f/GXGca6k84PB91Zw7frSjZvLt1Zu37m7utZev3foTGEFHAijjD2OuQMlNRx46RUc5xZ4Fis4ik/f1PrRB7BOGv3eT3MYZXysZSoF90hF7eleZDpnPWYyGPPIdOkruhfBAvOUMql9VLK3NVNRZicXQ+ZAdjFS/hfwzoRxHeYn4JsrZT3KduZy1N4Y9AeN0asgnIGN7ddHXz497H7ej9ZbX1liRJGB9kJx507CYe5HJbdeCgXVCisc5Fyc8jGUzWQq+gSphKbG4tGeNuxFv5PCp1ujUuq88KAFBlAU00JRb2g9L5pIC8KrKeVCYOGCe0woJtxy4XGuC0Wzacb9pE6So2Q0V7QmHNbNMq4T16PK8ITGgB0BdVy7Wn+0kGTO4qDncIVZ0PBxlqVkKc+kmiaQ8kL5qmQunePFTLLQ0p8h6aQDX+QltrWZmQRwy2n9A/gEUMVgfD3NbMpY8aIq7TiuykE/fN5rPuElJwvJP58tdBngGZ77sJ2S1S3brEyqCnccXt7oVXA47Icv+s/e4bJ3ybktkwfkMemQkLwk22SX7JMDIsiP1lJrtbUWfAt+Br+C3+euQWsWc58sWPDnLx2NDRA=</latexit>

Lo(x ,!o) = Le(x ,!o) +

Z
⌦

⇢(x ,!o ,!i)Li(x ,!i) cos(✓i) d!i

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 19

InputsOutput

Geometry Material/Reflectance Illumination

<latexit sha1_base64="pHeXkOBFhk57lYRQgHGvS4GkAfk=">AAADF3icZVJLb9QwEPaGV1leWzhywFAhtWJZJYuAXpAq6KGHSi0S21aqV5HjTHatOnZkO8AqyoV/wJG/wIkLZ26IK0fEFf4Hk32gbjuSo8/ffPPwTJJCSefD8FcruHDx0uUrK1fb167fuHmrs3r7wJnSChgIo4w9SrgDJTUMvPQKjgoLPE8UHCYnrxr/4VuwThr9xk8KGOZ8pGUmBfdIxZ293djQF3Q3BvqIMql9XLG9HEa8psyODWVdJlLjWRcl8tSNCePWmR+D5xu0uW8z04TFnbWwF06NngfRHKxtvTz8/OHexsf9eLX1haVGlDloLxR37jjqF35YceulUFC3Wemg4OKEj6CavremD5FKaWYsHu3plD2tOy59tjmspC5KD1pgAEVnVirqDW2mQFNpQXg1oVwILFxyjwnFmFsuPE5rqWg+ybkfN0kKdBnNFW0Ih3XznOvUdakyPKUJYEdAHdeu8d9fSrJgcawL2GYWNLybZ6lYxnOpJilkvFS+rpjLFng5kyy19O+RdNKBL4sK23qcmxRwj1nzAFwsejEY/4npbKpE8bKu7Cipq7AXPe1OP9EZkYX0v2YTJSGe/kzDtivWtGzzKq1r3HF0dqPnwUG/Fz3rPXmNy94hM1shd8kDsk4i8pxskR2yTwZEkK/kN/lD/gafgm/B9+DHTBq05jF3yJIFP/8BOzP/Iw==</latexit>

Lo = Le +

Z
⌦

⇢ · Li · cos(✓) d!

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Approximations to the Rendering Equation

Turner Whitted,
Microsoft Research

• Solving the rendering equation is impossible!

• Observation: the rendering equation is a recursive function

• Consequently, a number of approximation methods have been developed

that are based on the idea of following rays:

• Ray tracing (Whitted, Siggraph 1980,

"An Improved Illumination Model for Shaded Display")

• Lots of variations today:

e.g., photon mapping, bi-directional path tracing

• Current state of the art:

• Ray-tracing (aka. path tracing), combined with photon tracing,

combined with Monte Carlo methods, combined with denoising filter

20

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Simple "Whitted-Style" Ray-Tracing

• Synthetic camera = viewpoint + image plane in world space

1. Shoot rays from camera through every pixel into scene (primary rays)

2. Compute the first hit with any of the objects in scene

3. From there, shoot rays to all light sources (shadow feelers)

4. If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.
Otherwise, evaluate a lighting model, e.g., Phong (see CG1)

5. If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) → recursion

6. If the hit object is transparent, then shoot refracted ray → more recursion

21

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Ray Tree

• Basic idea of ray-tracing: construct ray paths from the light sources to the

eye, but follow those paths "backwards"

• Leads (conceptually!) to a tree, the ray tree:

22

E1 = primary ray
Ri = reflected rays
Ti = transmitted rays
Si = shadow rays

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Each recursive algorithm needs a criterion for stopping:

• In case the maximum recursion depth is reached (fail-safe criterion)

• If the contribution to a pixel's color is too small (decreases with depthn)

23

Max ray depth = 128 (!)

https://renderman.pixar.com/stories/piper

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025 24

E
xc

e
rp

t
fr

o
m

 "
P

ip
e
r"

,
P

ix
a
r

2
0

17

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Visualizing the ray tree can be very helpful for debugging

25

Incoming ray

reflected ray

shadow ray

transmitted (refracted) ray

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

A Little Bit of Ray-Tracing Folklore

26

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B) double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D)); else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),
U=vcomb(255., trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}
/*minray!*/

(Also won the International Obfuscated C Code Contest)!

Paul Heckbert's business card (back), ca. 1994: Another ray tracer in 256 lines of C++:

https://github.com/ssloy/tinyraytracer

https://github.com/ssloy/tinyraytracer

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

The First Ray-Traced Movie

27

Turner Whitted, 1978? 1980?

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 28

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Basic Definition of Terminology

• Ray tracing = geometric algorithm to compute intersections of rays with the

scene (aka. ray-based visibility)

• Path tracing = algorithm to compute global illumination by shooting rays in

all kinds of (random) directions (aka. random sampling, aka. Monte Carlo

integration)

29

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Basic Ingredients Needed for Ray-Tracing

1. Primary rays ⟶ camera model

2. Secondary rays and shadow feelers ⟶ (geometric) optics laws

3. Combining all incoming light into "one" outgoing light ⟶ lighting models

• Note: shadow feelers are special types of rays, are usually handled special

• So, we have 3 types of rays

30

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

A Simple Camera Model (Ideal Pin-Hole Camera)

31

def gen_prim_rays(vec3 a, vec3 b,

 vec3 A, vec3 C):

 for i = 0 .. hor_res:

 for j = 0 .. vert_res:

 ray.from = A

 s = (i/hor_res - 0.5) * h

 t = (j/vert_res - 0.5) * w

 ray.at = C + s*a + t*b

 vec3 color = traceRay(0, ray)

 putPixel(x, y, color)

The main loop of ray-tracers

near

h/2

#

w

A

a

b

C

c

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Probably the Oldest Depiction of a Pinhole Camera

32

R. Gemma Frisius, 1545

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Camera Obscura

33

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Digression: Johannes Vermeer

34

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Other Strange Cameras

• With ray-tracing, it is easy to implement non-standard projections

• For instance: fish-eye lenses, projections on a hemi-sphere (= the dome in

Omnimax theaters), panoramas

35

Quiz:
How was
this funny
projection
achieved?

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

A Local Lighting Model

• We will use Phong (for sake of simplicity)

• The light emanating from a point on a surface:

kd = reflection coefficient for diffuse reflection

ks = reflection coefficient for specular reflection

Ij = light coming in from j-th light source

n = number of light sources

• Of course, we add a light source only, if it is visible!

36

l

v

n
l'

$ #

In case you want to recap the Phong model:

go to https://cgvr.cs.uni-bremen.de/

⟶ "Teaching" ⟶ "Computergraphik"

⟶ chapter "Lighting & Shading", slides 18-31

https://cgvr.cs.uni-bremen.de/

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Generation of Secondary Rays

• Assumption: we found a hit for the primary ray with the scene

• Then the reflected ray is:

37

assuming

-v

v

n

r

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Specular Reflection

• Additional term in the lighting model:

Lr = reflected light coming in from direction r

 i.e, here we consider only specular reflection (i.e., no scattering)

ks = material coefficient for specular reflection (the "color" of the object)

38

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Refracted Ray (a.k.a. Transmitted Ray)

• Law of refraction [Snell, ca. 1600] :

• Computation of the refracted ray:

39

Air Water Glass Diamond

1.0 1.33 1.5 - 1.7 2.4

Typical indices of refraction (IOR)

Medium
after

Medium
before

(1)

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

FYI: Derivation of the Equation on the Previous Slide

40

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Total reflection occurs ⇔ equation (1) has no solution ⇔

 RHS of (1) < 0

41

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Specular Transmission

• The complete lighting model (for now):

Lt = transmitted light coming in from direction t

kt = material coefficient for refraction

 (the "color" of the transparent material)

• Lr and Lt are calculated recursively, of course!

42

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Which One is the "Correct" Normal?

• Food for thought: do the computations of the reflected and transmitted rays

also work, if the normal of the surface is pointing in the "wrong" direction?

• Which direction is the wrong one anyway?

43

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Glitch Pictures Showing Incorrect Refraction

44

Source: yiningkarlli (http://igad2.nhtv.nl/ompf2)

http://igad2.nhtv.nl/ompf2

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Digression: Glitch Art (aka "Dirty Art")

45

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Which Effect Can We Not Simulate Correctly (Yet)?

46

Remember our naïve summation of all incoming lights:

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Fresnel Terms for Translucent/Transparent Objs

• The reflectivity ρ depends on the refractive indices of the involved materials,

and on the angle of incidence:

• The correct summation of the incoming lights is:

47

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Example: Air (n = 1.0) to glass (n = 1.5), angle of incidence = perpendicular

• I.e., when moving perpendicularly from air to glass, 4% of the light is reflected,

the rest is refracted

• Common approximation of the Fresnel term [Schlick 1994]:

where ρ0 = Fresnel term for perpendicular angle of incidence (just measure material),

and ! = angle between incoming ray and normal in the thinner medium

 (i.e., the larger angle)

48

⇢(✓) ⇡ ⇢0 + (1� ⇢0) (1� cos ✓)5 , ⇢0 =

✓

n2 � 1

n2 + 1

◆2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Demo for Refraction Including Fresnel Terms

49

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Attenuation (Dämpfung) in Participating Media

• When light travels through a medium, its

intensity is attenuated, depending on the length

of its path through the medium

• The Lambert-Beer Law governs this attenuation:

 with α = some material constant, and

 s = distance travelled in medium

50

I(s) = I0e
�↵s

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Scattering in Participating Media

1. Mie scattering

• Shape of distribution

• Size of particles > wavelength

(e.g., haze or dust particles)

• Scattered energy does not depend on

wavelength

2. Rayleigh scattering

• Shape of distribution

• Size of particles < 0.1 * wavelength,

i.e. molecules (O2, NO)

• Scattered energy does depend on wavelength
51

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Equation of Rayleigh scattering:

• Blue sky, white sky, red sky:

• Remember, the atmosphere is a relatively thin hull!

• During sunset, the path
through air is "long"

• "In-scattering" and
"out-scattering"
(blue vs. red sky)

52

!

M
o

le
cu

le
s

Haze (water droplets),
or dust particles

Mie and Rayleigh

Air
molecules

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Dispersion, Spectral Raytracing

• In reality, the refractive index n depends on the wavelength!

• This effect cannot be modelled any more with simple "RGB light"; this

requires a spectral ray-tracer

• Instead of 3 channels, we simulate 10+ channels

53

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025 54

Giovanni Battista Pittoni, 1725,
"An Allegorical Monument to Sir
Isaac Newton"

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Example with Fresnel Terms and Dispersion (RGB only)

55

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection Computations Ray against Primitive

• Amounts to the major part of the computation time

• Given: a set of objects (e.g., polygons, spheres, …)

and a ray

• Wanted: the line parameter t of the first intersection point

P = P(t) with the scene

56

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection of Ray with General Polygon

• Intersection of the ray (parametric) with the supporting

plane of the polygon (implicit) → point

• Test whether this point is in the polygon:

• Takes place completely in the plane of the polygon

• 3D point is in 3D polygon ⇔ 2D point is in 2D poly

• Project point & polygon:

• Along the normal: too expensive

• Orthogonal onto coord plane: simply omit one of the 3 coords
of all points involved

• Test whether 2D point is in 2D polygon:

• Odd-even test using another (2D) ray

• If triangle ⟶ barycentric coord test

57

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Interludium: the Complete Ray-Tracing-Routine

58

traceRay(ray):

 hit = intersect(ray)

 if no hit:

 return no color

 reflected_ray = reflect(ray, hit)

 reflected_color = traceRay(reflected_ray)

 refracted_ray = refract(ray, hit)

 refracted_color = traceRay(refracted_ray)

 for each lightsource[i]:

 shadow_ray = compShadowRay(hit, lightsource[i])

 if intersect(shadow_ray):

 light_color[i] = 0

 overall_color = shade(hit,

 reflected_color,

 refracted_color,

 light_color)

 return overall_color

hit is a data structure (a
struct or an instance of a
class) that contains all infos
about the intersectin between
the ray and the scene, e.g.,
the intersection point, a
pointer to the object, normal, …

The intersect function can be
optimized compared to the one at
the beginning; in addition, only
intersection points before the light
source are relevant.

Evaluates the lighting model for
the hit object

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection of Ray with Triangle [Badouel 1990]

• Use same method like ray—polygon; or

• Be clever: use projection and barycentric coords

• Intersect ray with plane (implicit form) → t → point in space

• Project point & triangle on coord plane

• Compute barycentric coords of 2D point

• Barycentric coords of 2D point (α,%,γ) =

barycentric coords of orig. 3D point! (w/o proof)

• 3D point is in triangle ⇔ α,%,γ > 0 , with α + % + γ = 1

• Alternative method: see Möller & Haines "Real-time Rendering"

• (Faster method exists, if intersection point is not needed [Segura & Feito])

59

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Alternative Intersection Method for Ray—Triangle [Möller]

• Line equation:

• Plane equation:

• Equate both → system of linear equations:

• Write it in matrix form:

where

60

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Use Cramer's rule:

• Cost: 2 cross products + 4 dot products

• Yields both line parameter t and barycentric coords r,s of hit point

• Still need to test whether r,s in [0,1] and r+s <= 1

61

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection of Ray and Box

• Box is most important bounding volume

• Here: just axis-aligned boxes (AABB = axis-aligned bounding box)

• AABB is usually specified by two extremal points

 (xmin, ymin, zmin) and (xmax, ymax, zmax)

• Idea of the algorithm:

• A box is the intersection of 3 slabs (slab = subset
of space enclosed between two parallel planes)

• Each slab cuts away a specific interval of the ray

• So, successively consider two
parallel (= opposite) planes of the box

62

(xmin, ymin, zmin)

(xmax, ymax, zmax)

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

The Algorithm

63

let tmin = -inf, tmax = +inf

loop over all (3) pairs of planes:

 intersect ray with both planes

 ⟶ t1, t2

 if t2 < t1:

 swap t1, t2

 // now t1 < t2 holds

 tmin ⟵ max(tmin, t1)

 tmax ⟵ min(tmax, t2)

// now: [tmin,tmax] = interval inside box

if tmin > tmax ⟶ no intersection

if tmax < 0 ⟶ no intersection

tmin

tmaxt2

t1

tmax

tmin

tmax

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Remarks

• Optimization: both planes of a slab have the same normal → can save one

dot product

• Remark: the algorithm also works for "tilted" boxes (called OBBs = oriented

bounding boxes)

• Further optimization: in case of AABB, exploit the fact that the normal has

exactly one component = 1, others = 0!

• Warning: "shit happens"

• Here: test for parallel situations!

• In case of 2D AABB:

64

if |dx| < ε:

 if Px < xmin || Px > xmax:

 ray doesn't intersect box
 else:

 t1, t2 = ymin, ymax // or vice versa!

ymax

ymin

xmin xmax

d

P

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection Ray—Sphere

• Assumption: d has length 1

• The geometric method:

• The algebraic method: insert ray

equation into implicit sphere equation

• There are many more approaches …
65

<latexit sha1_base64="ldIkt0hHlxSXsWhAd173H4FvUaY=">AAAC5nicZVFLaxRBEO4dX3F9ZKPeBGmNgodkmVmI5iIEFMwxgpsEMsvS01Oz26Sne+hHdO2dm2dv4tWzBxH0z3j0n1izD3GTgu4uvvrq1V9WSWFdHP9uRZcuX7l6be16+8bNW7fXOxt3Dq32hkOfa6nNccYsSKGg74STcFwZYGUm4Sg7fdnEj87AWKHVWzepYFCykRKF4MwhNOw8mE4dTXmu8T7jIa/pdvOW9XRKX1Az7GzG3Xhm9KKTLJzNvccf/rz+fi8cDDdaP9Jcc1+Cclwya0+SXuUGgRknuIS6nXoLFeOnbARhNn5NnyCU00IbPMrRGfo/78S7YncQhKq8A8UxgWKw8JI6TZulaC4McCcnlHGOjT1zWJCPmWHc4fIrTctJydy4KVJhSCsmaQNY7FuWTOV2i0rNcpoBTgTUMmWb+MOVIku0punSbacGFLxbVAlpwUohJzkUzEtXh9QWS3+1kvBKuPcIWmHB+SrgWNulzgH/v2gWQJ0wisko8exvQiaZr4MZZXWIu8nO1uxKzpEM5P84u0iJ8fTmnPRVSJuRTYmC16hxcl7Ri85hr5s86+68QbH3ydzWyH3yiDwlCXlO9sg+OSB9wslH8o38JL+icfQp+hx9mVOj1iLnLlmx6Otfvtfupg==</latexit>

||t ·d�m|| = r

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

The algorithm, with a small optimization

66

calculate

calculate

if >= 0 // ray origin is outside sphere

 and b <= 0: // and direction away from sphere

then

 return "no intersection"

let

if d < 0:

 return "no intersection"

if :

 return // enter; t1 is > 0

else:

 return // leave; t2 is > 0 (t1<0)

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Ray-sphere intersection is so easy that all ray-tracers have spheres as

geometric primitives! ☺

67

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 68

The "sphere flake" from the standard procedural databases (SPD) by Eric Haines
[http://www.acm.org/tog/resources/SPD/].

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Typical Classes in the Software Architecture of a Raytracer

• Class for storing lightsources (here, just positional light sources):

• Class for storing the material of surfaces:

• A class for rays:

69

Vector m_location; // Position
Vector m_color; // Farbe

Vector m_color; // Farbe der Oberfläche
float m_diffuse; // Diffuser / Spekularer
float m_specular; // Reflexionskoeff. [0..1]
float m_phong; // Phong-Exponent

Vector m_origin; // Aufpunkt des Strahls
Vector m_direction; // Strahlrichtung

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Class for passing around data about intersections (hit):

• Important class

• Records all kinds of information about an intersection point

70

Ray m_ray; // Strahl
float m_t; // Geradenparameter t
Object* m_object; // Geschnittenes Objekt
Vector m_location; // Schnittpunkt
Vector m_normal; // Normale am Schnittpunkt

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Object3D = abstract

base class for all

geometry primitives

71

// abstract intersection methods: ray against any object
virtual bool closestIntersection(Intersection * hit) = 0;
virtual bool anyIntersection(const Ray & ray, float max_t,
 Intersection * hit) = 0;

// normal at hit point
virtual Vector calcNormal(Intersection * hit) = 0;

// material of object
int getMaterialIndex() const;

Object3D
bool intersect(Ray, Hit, max_t)

Plane
bool intersect(…)

Sphere
bool intersect(…)

Triangle
bool intersect(…)

Polyhedron
bool intersect(…)

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Camera:

• Captures all properties of a virtual camera, e.g., from, at, up, angle

• Generates primary rays for all pixels

• Scene:

• Stores all data about the scene

• List of all objects

• List of all materials

• List of all light sources

• Camera

• Offers methods for calculating intersection between ray and geometry

• Usually also stores some acceleration data structure

72

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Do You Remember a Method for Rasterization of Lines?

73

https://www.menti.com/86xyuy7f9e

https://www.menti.com/86xyuy7f9e

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Ray-Tracing Height Fields

• Height Field = all kinds of surfaces that can be described by such a function

• Examples: terrain, measurements sampled on a plane, 2D scalar field

74

Height field as Bitmap Rendered

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Example for Terrains

75

Bonn University

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025 76

Vallis Marineris, Mars; presented by Phil Christensen, Arizona State University (http://mars.jpl.nasa.gov)

http://mars.jpl.nasa.gov

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Situation

• Given:

• Ray

• Array [0…n]x[0…n] with heights

• The naïve method to ray-trace a height field:

• Convert to 2n2 triangles, test ray against each

triangle

• Problems: slow, needs lots of memory

• Goal: direct ray-tracing of a height field

represented as 2D array

77

x

y

(0,0)

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The Method

1. Reduce the dimension:

• Project ray into xz plane

2. Visit all cells that are hit by the ray, starting with

the nearest one

• Notice similarity to scan conversion!

• Use one of the algorithms from CG1 😀

3. Test ray against the surface patch spanned by the

4 corners of the cell

78

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Intersection of Ray with Surface Patch of a Cell

• Naïve methods:

• "Nearest neighbor":

• Compute average height of the 4 corner height values

• Intersect ray with horizontal square of that average height

• Problem: very imprecise

• Tessellate by 2 triangles:

• Construct 2 triangles from the 4 corner points

• Problem: tessellation is not unique, diagonal edge could
produce severe artefact

• Better: bilinear interpolation

• Surface = bilinear interpolation of heights along x and y

• (The surface is called a parabolic hyperboloid)

• Insert ray equation into bilinear equation of surface ⟶
quadratic equation for line parameter t

79

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

The evil Epsilon

• What happens when the origin of a ray is

"exactly" on the surface of an object?

• Remember: floating-point calculations are

always imprecise!

• Consequence: in subsequent ray-scene

intersection tests, the ray origin might appear

to be inside the original object!

• Further consequence: we get wrong further

intersection points!

• "Solution": move the origin of the ray by a

small ε along the direction of the (new) ray

80

l r

l
r

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

More Glitch Pictures

81

Without epsilon With epsilon"Speckles"

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 82

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025 83

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Advantages & Disadvantages

• Scan conversion:

• Fast (for a number of reasons)

• Well-suited for real-time graphics

• Supported by all graphics hardware

• Only heuristic solutions for shadows and transparent objects

• No interreflections

• Raytracing:

• Offers general and simple (in principle) solution for global effects, such as
shadows, interreflection, transparent objects, etc.

• Much slower (unless you cast only primary rays)

• Not directly supported by most graphics hardware (is currently changing)

• Difficult to achieve real-time rendering

84

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Other Advantages of Ray-Tracing

• Shines with scenes that contain lots of glossy/shiny surfaces and transparent

objects

• Fairly easy to incorporate other object representations (e.g., CSG, smoke,

fluids, ...)

• Only prerequisite: must be possible to compute the intersection between ray and

object, and to compute the normal at the point of intersection

• No separate clipping step necessary

85

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Limitations of Ray Tracing So Far?

86

https://www.menti.com/86xyuy7f9e

https://www.menti.com/86xyuy7f9e

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Limitations of (Simple) Whitted-Style Ray-Tracing

• No indirect lighting (e.g., by mirrors)

• No soft shadows (because only point light sources are

modeled)

• Only specular (ideal) reflections

• Only perfect (specular) refractions

• With each camera movement, the complete ray tree

must be recomputed, although an object's diffuse

shading does not depend on the camera's position

• For all of these disadvantages, a number of remedies

have been proposed …

87

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Example for the Problem of (Missing) Indirect Lighting: Caustics

• Caustics = reflected/transmitted light is

concentrated in a point or, possibly curved, line

on the surface of another object

• Problem:

• Ray-tracing follows light paths backwards

• Simple ray-tracing follows only one path

88

v
v'

Incoming,
indirect light

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Another Problem: Aliasing

• One ray per pixel → causes typical aliasing artefacts:

• "Jaggies"

• Moiré effects

89

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Solution: Distribution Ray Tracing

• Simple modification of ray-tracing to achieve

• Anti-aliasing

• Soft shadows

• Depth-of-field

• Shiny/glossy (specular-diffuse) surfaces

• Motion blur

• Was proposed under a different name:

• "Distributed Ray Tracing"

• Don't use that name
("distributed" = verteilt)

90

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Anti-Aliasing with Ray-Tracing (a Quick Tour of Sampling)

• Shoot many rays per pixel, instead of just one, and average

retrieved colors (hence "distribution")

• Four methods for constructing the rays:

1. Regular sampling

• Perhaps problems with Moiré patterns

2. Random sampling

• Can contain arbitrarily big "holes" and arbitrarily close samples

• Might result in noisy images

3. Stratification (aka jittered grid): combination of regular and

random sampling, e.g., by placing a grid over the pixel, and

picking one random position per cell

91

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Results in a Real Raytraced Image

92

Reference Random Stratified (jittered)

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Dart Throwing

93

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Poisson Disk Sampling

• Definition:

A set of sample points (in a specific domain) is a Poisson disk sampling with

radius r iff

1. it is "as random as possible"; and,

2. it satisfies the Poisson disk criterion, i.e.,

 no two points are closer than the minimum distance r.

• Example Poisson

sampling:

94

r

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Formal definition:

The point set S = { pi } is a (maximal) Poisson disk

sampling of some given domain D (e.g., a polygon),

iff the following 3 conditions hold:

1. Empty disk property:

2. Maximality:

3. Bias-free: the likelihood of a (new) sample being inside

any subdomain D' ⊆ D is proportional to the area of the

subdomain, provided D' is completely outside all prior

samples’ disks (this is uniform sampling from the

uncovered area)

• Many algorithms for Poisson sampling construction

relax one of these conditions

95

<latexit sha1_base64="xWsUZUrJhODjG0ZmRDynruYqsbo=">AAADEnicZVJLb9NAEN6YVwmvFLhxGShIHNLIDqKtkCpVAomKUxGkrdSNovV6nK66Xru760JY/C/4HahnbogrZyROwD9h7SSItCOtPf6+bx4747iQwtgw/NkKLly8dPnK0tX2tes3bt7qLN/eNXmpOQ54LnO9HzODUigcWGEl7hcaWRZL3IuPntf83glqI3L11k4KHGZsrEQqOLMeGnVe0TTXTEqgJxyKbvM6BioUvJl+FEBVbjdnxDOgH2fw6lzrgTEegx51VsJe2Bicd6KZs7L18MOfl5/vup3RcuuUJjkvM1SWS2bMQdQv7NAxbQWXWLVpabBg/IiN0TVXreCRhxLwPfujLDTo/7qD0qYbQydUUVpU3AeAJ9NSgs2hHgAkQiO3cgKMc1+4ZNYn5IdMM279oBaKZpOM2cM6SeGpXDEJNWB83SxjKjFdkDlLIEbfEYJhytT8/YUkc7QCOnfbVKPCd7MsjqYsE3KSYMpKaStHTTr3FzOJUgn73oNGGLRl4Xxbq1meIGxCWl/A79SzPtj/Ds1sXCxZWTk9jisX9qKn3eYRnRFpTP5pNrwk9Kc/1dAXjtYt68wlVeV3HJ3d6Hlnt9+L1npPXvtlb5OpLZF75AF5TCKyTrbINtkhA8LJKflBfpHfwafgS/A1+DaVBq1ZzB2yYMH3vzal/JI=</latexit>

8p, q 2 S , p 6= q : kp� qk � r
<latexit sha1_base64="C3hyX2w5dJ8WZbsIkkyBt3AmN8I=">AAADC3icZVLLbtQwFPWEVxleU2DH5kJBYtGOkkFAxUOq1Ep0WQTTVqpHI8e5mVp1nMh2ygxuPoEPYYOQ2CG2rNnSJX+Ck5lBTHslRyfnnvvydVxIYWwYnraCCxcvXb6ydLV97fqNm7c6y7d3TV5qjn2ey1zvx8ygFAr7VliJ+4VGlsUS9+Kjzdq/d4zaiFy9t5MCBxkbKZEKzqynhp1NmuaaSQn0mMMYqFCwBfQlUBz74qahi4Z+9wLoyex/bS4/gVegh52VsBs2BudBNAMrGw8//nnz5a7bGS63vtIk52WGynLJjDmIeoUdOKat4BKrNi0NFowfsRG6ZsYKHnkqAd+sP8pCw/6vOyhtuj5wQhWlRcV9AHhnWkqwOdSTQyI0cisnwDj3hUtmfUJ+yDTj1t/QQtFskjF7WCcpvCtXTEJNGF83y5hKzCrInCUQo+8IwTBlav/9hSRztgI6h22qUeGHWRZHU5YJOUkwZaW0laMmnePFTKJUwo49aYRBWxbOt7WW5QnCa0jrAfwyvdcH+3fQ3I2LJSsrp0dx5cJu9HS1+URnRBqTf5p1Lwn96U01dMvRumWduaSq/I6jsxs9D3Z73ehZ98lbv+xtMrUlco88II9JRJ6TDbJNdkifcPKZ/CK/yWnwKfgWfA9+TKVBaxZzhyxY8PMvsLn6Og==</latexit>

8x 2 D 9p 2 S : kp� xk < r

Example Poisson disk sampling

Visualization of Maximality and
Empty disk property.

Usually, the disks are visualized with r/2

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Importance of Poisson disk sampling

• Best quality for N samples [Cook 1986]

• Poisson disk distribution occurs in natural objects (e.g., retina cells)

• Equivalent to "blue noise" spectrum = void in low frequency range, noise in

high frequencies

96

Fourier Transf.

Image domain Frequency domain

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Relationship between sampling density and "ring" of artefact-free frequencies

97

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Comparison of Spectrums of Different Sampling Patterns

98

S
a
m

p
le

s
in

 s
p

a
ce

S
p

e
ct

ru
m

 i
n

fr

e
q

u
e
n

cy
 d

o
m

a
in

Regular grid Jittered grid Poisson disk

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Found in nature, too

99

Medium-long wavelength cones of a squirrel monkey

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Generating Poisson-Disk Samplings

• The dart-throwing algorithm (ground truth, Cook 1986):

• Problem: it is very slow!

100

i = 0

while i < N:

 pi = (rand(0,1), rand(0,1))

 d = min. distance of pi to all other p0, ..., pi-1

 if d > r:

 i ++ // accept the sample

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• A possible remedy:

• Represent "forbidden" (red) and allowed (white) region

• Throw darts only in white region

• Problem: representation of the white region is very

complex

• Idea:

• Generate new points only

on permissible boundary

of current sample set

101

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Fast (Sequential) Algorithm for Poisson Disk Pattern

• Works in any dimension d

• Store samples (to be constructed) in array S[]

• Maintain background grid with cell size

• No cell can contain more than one sample

• Grid = d-dimensional integer array (store as hash table):

• Value = 0 ⟶ cell is empty

• Value = i ⟶ S[i] contains coords of the sample in this cell

102

rl

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Algorithm [Blend of Bridson 2007 with Dunbar and Humphreys 2005]

• Output: S = list of N samples (with Poisson disk property)

• During runtime, maintain A = list of "active" samples (indices into S), which

represent the "border" of the sampling

103

set S[0] = random point in domain (with uniform distrib.)

store pointer to S[0] in grid cell containing S[0]

A = {0}

while A is not empty: (+)

 choose random index j in A

 repeat at most k times: // k = heuristic constant parameter

 generate a candidate point q randomly and uniformly

 on the boundary of A[j]'s disk

 if min. distance of q to all points in S >= r: (*)

 add q to A, to S, and in grid

 continue with next "while" iteration

 if no new q was found after k attempts:

 delete A[j] from A // A[j] is no longer on "outskirts"

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Algorithm Visualization

104

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025 105

• On step (*):

• No need to compute minimum distance from q to all S

• Just verify that no point in S is inside disk of radius r around q

• Visit 4d neighboring cells (incl. own), each can contain at most 1 point

• Distance computation ∈ O(d)

• On the # iterations of the while loop (+):

• Let N = #iterations where a point ∈ S is deleted from A

• This happens exactly N times

• In all other iterations, a point is added to S (and A)

• Every point gets inserted in A and deleted from A exactly once

• Overall: 2N-1 iterations, each ∈ O(kd4d) = const (if k,d=const)

• Overall complexity ∈ O(N·d4d)

• If d is considered constant ⟶ O(N)

Complexity

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Results

106

Boundary Sampling Dart Throwing

Denser, and
somewhat more regular

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Boundary sampling generates very good blue noise spectrum due to its

extremely regular and dense sampling of the plane

107

Boundary Sampling Dart Throwing

Frequency spectrum, averaged over many sample sets generated with each method, respectively

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Sampling in Higher Dimensions

108

3D samples

power spectrum

radial mean radial variance

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Performance

• Parallelization is possible and not too difficult [Wei 2008]

• "Just" have to prevent "congestion" of grid access operations

• Comparison of three methods generating 2D Poisson disk samplings:

• Parallel generation of Poisson disk samplings in different dimensions [Wei 2008]:

109

Parallel algo
[Wei 2008]

Sequ. boundary
sampling
[Dunbar, et al.]

Hierarchical dart
throwing
[White et al. 2007]

#samples/sec 4000 k 200 k 210 k

2D 3D 4D 5D 6D

#samples/sec 4000 k 550 k 43 k 2 k 180

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Demo

110

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Result in Real Raytraced Image

111

Stratified (jittered), 4 samples/pixel

Approx. Poisson disk, 4 samples/pixel

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Result

112

No Anti-Aliasing With Anti-Aliasing

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Digression: Many Other Applications of Poisson Sampling (w/o Details)

• Placing objects randomly, but neither "too far"

from each other, nor "too close" to each other

• E.g., for "terrain dressing"

• Poisson sampling with local density control:

• Radius of disks is not constant

• Could be driven by Perlin noise

• Could be a given as grayscale image

113

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025 114

(b
)

R
an

d
o
m

Dithering/stippling

Meshing
(interior triangulations/tetrahedralizations)

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• Texture synthesis:

1. Create raw image with Poisson disks of 3 different radii

2. Post-process image (blurring, etc.)

3. Use resulting image as bump map (see CG1)

115

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Any Other Potential Applications of Poisson Sampling Come to Mind?

116

https://www.menti.com/86xyuy7f9e

https://www.menti.com/86xyuy7f9e

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Soft Shadows, Penumbra

• Behind a lighted object, there are

3 regions:

• Completely lighted

• Umbra = completely in shadow

• Penumbra = partially in shadow

117

"The shadows are as important as the light."
(Charlotte Brontë)

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

In Reality …

118

klare
Glühbirne

matte
Glühbirne

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

… and in Ray-Tracing

• So far, only 1 shadow feeler per light in the Phong model:

• Improvement: send many shadow feelers

• Three ways of sampling a lightsource:

1. Regular sampling of the area of the lightsource

2. Random sampling

3. Stratified sampling (just like with pixels/AA)
119

,

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025 120

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Better Glossy/Specular Reflection

• So far, only one reflected ray:

• Problem, if the surface should be matte-glossy …

• Solution (somewhat brute-force):

• Shoot many secondary, "reflected" rays

• Accumulate, weighted by the power-cosine law

(notice coincidence with the Phong model)

121

θ θ

Θj

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Example

122

The ray tree

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Generating a Poisson Disk Distribution on the Sphere

• For sake of simplicity: generate just an approximation

• Prerequisite is Mitchell's best candidate algorithm:

• Usually, m is increased with iteration count i, e.g. m = i·q

with q = "quality" parameter

• Generates only an approximate Poisson disk sampling (not maximal one)

• Advantage: can add more points later / refine existing sampling pattern

123

set S[1] = random point in domain (with uniform distrib.)

for i = 2 .. N:

 C = generate m (random) candidate points

 for all p in C: compute dist(p,S) = min. distance to S

 pick p* in C with maximal dist(p*,S) → add p* to S

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Now for the Poisson disk distribution

• Use Mitchell's best candidate algorithm directly on the sphere:

• Generate the candidate points directly on the sphere (w/ uniform distribution!)

• Computing the distance:

• Should use geodesic distance on the sphere

• Here, just approximate it by Euclidean distance

• Works okay because we are just interested in comparisons of distances anyway, and

• This "shortcut" will not work on 2-manifolds that have non-convex parts!

124

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

How to Generate Random Points on a Sphere with Uniform Distribution?

• Naïve approach 1: generate random uniform x, y, z,

then normalize (project onto sphere)

• Naïve approach 2: pick spherical coordinates (&, ")

randomly and uniformly

• Method 1:

• Generate three random numbers x, y, z using

Gaussian distribution, then normalize (x,y,z)

• Method 2 (works less well in high dimensions):

• Generate random uniform x, y, z (i.e., in unit cube)

• Reject, if || (x,y,z) || > 1 (also reject, if < ε)

• Normalize remaining (x,y,z)

125

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Demo

126

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Depth-of-Field (Tiefen(un-)schärfe)

• So far: ideal pin-hole camera model

• For depth-of-field, we

need to model real

cameras

127

Image of
point

Image plane Plane of lens Focal plane

d

f

d

Film Shutter & lens Focal plane

All rays starting from
the image point,
passing through the
lens, must also pass
through this focal point

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

• A class LensCamera would generate rays like this:

• Sample the whole shutter

aperture by some distribution,

shoot ray from each sample

point through focal plane

= image plane

• Remark:

• Again, use one of the four sampling methods for sampling the disc (= shutter)

128

focal plane =
image plane

f

G. Zachmann Ray-TracingComputergraphics 2 SS April 2025

Examples

129

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Shutter Speed Artifacts

• A slower shutter speed means the shutter is open for longer time

• This can result in motion blur

130

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Motion Blur (Bewegungsunschärfe)

• Goal: compute "average" image for time
interval [t0, t1] during which objects move

• Sample time interval with several t ∈ [t0, t1]

• Shoot one primary ray per time t

• When computing the hit points (and secondary
rays), use positions P = P(t) for all objects

• Average color of all rays for one pixel

131

G. Zachmann Ray-TracingComputergraphics 2 WS April 2025

Common Myths

• Myth: rasterization is linear, ray-tracing is logarithmic in the number of
primitives

• Truth: rasterization uses LODs and various culling techniques

• Myth: rasterization is ugly, ray-tracing is clean

• Truth: when optimized, both are ugly

• Myth: ray-tracing is embarrassingly parallel

• Truth: not when optimization techniques are employed

• Historical note: when rasterization came up,
people thought that is embarrassingly parallel, too

• Myth: ray-tracing and rasterization are incompatible

• Truth: they can co-exist just fine

• Example: the film Cars by Pixar (reflections, for instance,
were done using ray-tracing, rest was rasterization)

132

G. Zachmann Introduction & DisplaysComputergraphik 1 WS April 2025
133

