
Virtual Reality in Assembly Simulation —
Collision Detection, Simulation Algorithms,

and Interaction Techniques

Dem Fachbereich Informatik
der Technischen Universität Darmstadt

eingereichte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Inform. Gabriel Zachmann

Referenten der Arbeit: Prof. Dr.-Ing. Dr. h.c. Dr. Eh J. L. Encarnação
Dr. Carolina Cruz-Neira

Tag der Einreichung: 29. Mai 2000
Tag der mündlichen Prüfung: 10. Juli 2000

To my wife Biggi

and my little daughter Mirjam

Acknowledgements

I would like to thank Professor Dr. Encarnação for his advice and support. The
Fraunhofer Institute for Computer Graphics, which he is head of, has been a
great work environment.

I am grateful to Dr. Cruz-Neira for accepting co-advisorship and for travel-
ling a great distance to attend my defense.

From my work in many stimulating projects, I owe thanks in particular to
Dipl.-Ing. Antonino Gomes de Sá, Dipl.-Ing. Rainer Klier, and Dipl.-Ing. Peter
Zimmermann.

Special thanks go to all current and former members of our extraordinary
group “Visualization and Virtual Reality”, of which Dr. Stefan Müller is the
department head: Dr. Peter Astheimer, Uli Bockholt, Dr. habil. Fan Dai, Dr.
José Dionisio, Dr. Wolfgang Felger, Torsten Fröhlich, Dr. Thomas Frühauf, Dr.
Martin Göbel (former department head, now with GMD), Dr. Helmut Haase,
Elke Hergenröther, Udo Jakob, Dr. Kennet Karlsson, Christian Knöpfle, Wol-
fram Kresse, Stefan Lehmann, Bernd Lutz, Mimi Lux, Wolfgang Müller, Dr.
Alexander del Pino, Alexander Rettig, Marcus Roth, Frank Schöffel, Dr. Florian
Schröder, Andrzej Trembilski, Dr. Matthias Unbescheiden, Gerrit Voss, Jens
Weidenhausen, and Dr. Rolf Ziegler. Our secretary Renate Gröpler deserves
special mention, because she has shielded me from quite a bit of paper work.
A4 is simply the best.

I also would like to thank all my research assistants and students for their
efforts (roughly in chronological order): Reiner Schäfer, Andreas Flick, Axel
Feix, Jochen Ehnes, Andreas Giersig, Andreas Zieringer, Van Do, Stefan Hoppe,
Andreas Hess.

Last but not least, my wholehearted thanks go: to my wife Biggi, for her pa-
tience, for drawing some of the figures, and for proof-reading the whole thing
(it is understood that all bugs still persisting are mine, not hers); to my little
daughter Mirjam, who has witnessed the final phase and cheered it up with
her cuteness; to my parents and brothers, for showing the way in life and for
always being there.

Gabriel Zachmann, Darmstadt, Mai 2000

iii

Contents

1 Introduction 1
1.1 Architecture of VR systems . 4
1.2 Overview . 5

2 Simulation of Virtual Environments 7
2.1 Describing human-computer interaction 8

2.1.1 User-interface management systems 8
2.1.2 Transition networks . 9
2.1.3 Context-free grammars . 10
2.1.4 Event languages . 11
2.1.5 Interaction trees . 12
2.1.6 Expressive power of the notations 12
2.1.7 Scripting languages . 13

2.2 Authoring virtual environments 14
2.2.1 Design premises . 15
2.2.2 Other VR systems . 16
2.2.3 The AEIO paradigm . 17
2.2.4 Semantic attributes, object lists, and object groups 18
2.2.5 Grammar . 20
2.2.6 Time . 21
2.2.7 Inputs and events . 21
2.2.8 A collection of inputs . 22
2.2.9 Actions . 24
2.2.10 A Collection of Actions . 25

2.3 Examples . 28
2.4 Implementation . 29

2.4.1 Distributing the system . 31
2.4.2 The three layers of authoring 33

3 Collision Detection 35
3.1 The setting . 35

3.1.1 The simulation loop . 35
3.1.2 Requirements and characterization 36
3.1.3 Object Representations . 37
3.1.4 Definitions . 38

3.2 The basic operation . 39
3.3 Bounding-box pipelining . 40

3.3.1 Good and bad cases . 43
3.4 Convex polytopes . 44

3.4.1 Static algorithms . 45
3.4.2 Incremental convex algorithms 46
3.4.3 Separating Planes . 46
3.4.4 A simplified Lin-Canny algorithm 51

v

CONTENTS

3.5 Hierarchical collision detection . 54
3.5.1 Outline of hierarchical algorithms 54
3.5.2 Optimal BV hierarchies . 57
3.5.3 The cost of hierarchies . 58
3.5.4 The BoxTree . 59
3.5.5 BoxTree traversal by clipping 59
3.5.6 BoxTree traversal by re-alignment 62
3.5.7 Constructing the BoxTree 64
3.5.8 Oriented boxes . 68
3.5.9 Discretely oriented polytopes 70
3.5.10 Comparison of four hierarchical algorithms 81
3.5.11 Incremental hierarchical algorithms 83

3.6 Non-hierarchical algorithms . 89
3.6.1 Points and Voxels . 89

3.7 Flexible Objects . 90
3.7.1 The “grow-shrink” algorithm 91
3.7.2 Sorting . 93

3.8 The object level . 95
3.8.1 Other approaches . 96
3.8.2 Bounding Volumes . 97
3.8.3 Space-indexing data structures 97
3.8.4 Octrees . 99
3.8.5 Grids . 103
3.8.6 Comparison of grid and octree 103
3.8.7 Comparison of grid and separating planes 104
3.8.8 Combining grid and separating planes 105

3.9 The collision detection pipeline . 105
3.10 Parallelization . 108

3.10.1 Coarse-grain parallelization 108
3.10.2 Fine-grain parallelization 109

3.11 Implementation issues . 110
3.11.1 Requirements . 111
3.11.2 Time-stamping . 111
3.11.3 The CPU cache . 112
3.11.4 Concurrent collision detection 113

4 Interacting with Virtual Environments 115
4.1 VR devices . 115

4.1.1 Input device abstraction . 116
4.1.2 The data pipeline . 119
4.1.3 Dealing with lag . 119

4.2 Processing input data . 120
4.2.1 Posture recognition . 120
4.2.2 Voice input . 123

4.3 Tracking . 124
4.3.1 Filtering . 125
4.3.2 Correction of magnetic tracking errors 131
4.3.3 Scattered data interpolation 136
4.3.4 Hardy’s Multiquadric . 141

4.4 Navigation . 151
4.4.1 Controlling the cart and camera 153
4.4.2 Human factors . 154

vi

CONTENTS

4.4.3 Constraints . 154
4.4.4 A model of the head . 155
4.4.5 Implementation . 156

4.5 Interaction techniques . 157
4.5.1 Virtual buttons and menus 157
4.5.2 Selection . 160
4.5.3 Grasping . 161
4.5.4 Sliding . 166

5 Applications 177
5.1 Virtual prototyping . 177

5.1.1 From rapid prototyping to virtual prototyping 178
5.1.2 Definitions of virtual prototyping 179
5.1.3 The right display . 179
5.1.4 Other VP applications . 180
5.1.5 The virtual seating buck . 181
5.1.6 Exchanging an alternator 182

5.2 Assembly simulation . 183
5.2.1 Scenarios . 183
5.2.2 Interaction Functionality . 184

5.3 Immersive Investigation of CFD Data 189
5.4 Shows . 189

6 Epilogue 191
6.1 Summary . 191
6.2 Future directions . 196

Bibliography 199

About ... 223

vii

Chapter 1
Introduction

Sie sitzen schon, mit hohen Augenbrauen,
gelassen da und möchten gern erstaunen.

GOETHE, Faust, Vorspiel auf dem
Theater

Although research in virtual reality has been done for over 10 years,1 only a
few years ago the non-academic world started to evaluate its use to solve

real-world problems. As of this writing, virtual reality is in the process of leav-
ing the realm of purely academic research. Among others, the automotive in-
dustry is evaluating its potential in design, development, and manufacturing
processes [DR86, DFF+96]. In fact, the automotive industry has been among
the first, but others, such as suppliers, have begun to evaluate VR, too.

While simulators (flight simulators in particular) have been in regular use for
several decades, and Boom-like displays as well as head-tracking have been
devised in the ’60s [Sut68] (see Figure 1.1), it seems that the field of virtual
reality2 has come into existence only when the so-called “data glove” [DS77,
ZLB+87, SZ94] and 6D hand (or body) tracking were invented.3

Some of the first research efforts predating VR have been the “Put-that-there”
project at MIT [Bol80], UNC’s “Walk-thru” project [Bro86], the “Virtual envi-
ronment display system” at NASA Ames’ [FMHR86], and Myron Krueger’s
more artistic “artificial reality” applications [Kru83].

1 At VRAIS ’98, David Mizell has remarked that “every computer graphics program after 1990 is a
VR system”.

2 Throughout this book, I will use a slanted font for introducing technical terms, while I will use an
emphasized font for emphasis.

3 One could argue that tracking was actually invented much earlier, namely with master-slave ma-
nipulator arms in the ’50s, or even earlier yet during the Renaissance with the pantograph [Pan98].

Figure 1.1: A bit of VR folklore: The first HMD was, to my knowledge, devel-
oped by Sutherland [Sut68]. It featured stereoscopic display of 3,000 lines at 30
frames/sec, line clipping, and a mechanical and ultrasonic head tracker.

1

1 INTRODUCTION

sim
u

latio
n

n
o

velI/O
d

evices

in
teractio

n

Virtual Reality

real-time real-timereal-time

Figure 1.2: Virtual reality rests on three pillars.

In the beginning, there were a number of terms for the new field: artificial
reality, virtual reality, and cyberspace, just to name a few. The popular press
particularly favored the latter. However, early on it became clear to the scien-
tific community that it must not allow the popular press as well as the scien-
tific press to hype virtual reality [JBD+90] in order to avoid suffering the same
fate as AI. Fortunately, the popular media has somewhat lost interest in “cy-
berspace” while interest from industries is constantly increasing.

From a historical point of view, virtual reality is just a logical consequence of
an on-going virtualization of our every-day life [EDd+96]. However, the social
impacts of this development are not clear at all at this point.

The definition of virtual reality involves three components (see Figure 1.2):

1. real-time interaction,
2. real-time simulation,
3. immersion and direct interaction by novel I/O devices.

From a more technical point of view, a VR system must meet three criteria:

1. interaction with the virtual environment must be immersive and intu-
itive,

2. rendering must be done in real-time and without perceptible lag (20 Hz
for graphics, 500 Hz for haptics),

3. object behavior must be simulated in real-time.

Despite promising research efforts in the beginning of virtual reality, there
were a number of unsolved problems, some of which still persist:

1. For several automotive applications rendering hardware was not fast
enough. For moderate scenarios, rendering speed is still too slow by a
factor of about 10. For a complete car rendering has to be faster by a
factor of 100 still.

2. Creating (authoring) virtual environments for highly interactive scenar-
ios with complex object behavior and complex interactive processes was
a time-consuming task.

Chapter 2 presents a framework which is a significant step towards a solu-
tion.

2

1 INTRODUCTION

3. Data integration with existing IT infrastructures of large companies has
not yet been solved in a satisfactory manner. This is partly due to the
lack of standards meeting the needs of VR, which is partly a consequence
of the current4 graphics API confusion and very dynamic graphics hard-
ware market.

4. Real-time physically-based simulation of non-trivial object behavior has
been recognized as one of the major missing ingredients. Behavior in-
cludes rigid body dynamics, inverse kinematics, flexible objects, etc. All
of these problems have been solved in theory and in non-real-time sys-
tems. However, to my knowledge, it was not possible to simulate that be-
havior in real-time for non-trivial object complexities and numbers (i.e.,
several tens or even hundreds of objects, each consisting of some 10,000–
100,000 polygons).

The most time-consuming part of many simulation problems is collision
detection. In Chapter 3 several algorithms are developed to tackle this
fundamental task.

In Section 4.5.4, an algorithm is presented for simulation of the sliding
behavior of objects being moved by the user, such that the object does not
penetrate other objects while following the user’s hand.

5. Human-computer interface devices were very immature. They were
cumbersome, clumsy, inaccurate, and limited. This includes tracking as
well as visual and haptic/tactile rendering.

In order to improve electro-magnetic tracking and render it applicable
to serious shopfloor applications, filtering and correction algorithms are
developed in Section 4.3.1 and Section 4.3.2, resp.

6. From an interaction point of view the human-computer interface to vir-
tual environments is still a field of active research. New intuitive, im-
mersive metaphors have to be invented, because porting classical WIMP5

metaphors has been found to be inadequate and inefficient.

In Chapter 4, techniques, algorithms, and software architectures are dis-
cussed to improve interaction with virtual environments.

7. In 1995 there was no “real” application of VR on a routine basis. For 1–2
years, however, VR is being used for simple applications (such as styling
or design reviews) in some productive processes.

Based on the framework and algorithms presented in this thesis, a virtual
assembly simulation application (see Section 5.2) is developed, which is
being integrated in the product process of a major manufacturing com-
pany.

These were the most severe difficulties in making VR practicable for virtual
assembly simulation. The goal of this work is to establish the thesis statement:

Assembly simulation using virtual reality is feasible.

Although the solutions presented in this dissertation are targeted mostly at the
manufacturing domain (the automotive industry, in particular), most of them
are applicable to VR systems in general.

4 as of 1998/99
5 Windows, Icons, Menus, Pointers

3

1 INTRODUCTION

ethernet

collision

communication
input

virtual environment def.

plug-in

flowfield

audio feedback

geometry

renderer

hand

detection

physically-based simulation

handler
object

interaction manager wind-tunnel

Figure 1.3: The object and scene graph manager is the central module of virtually
any VR system. All other modules building on it “simulate” or render a certain
aspect of the virtual environment. Some of those are controlled by the interac-
tion module (e.g., sound renderer and device drivers); others are “peer” (e.g.,
physically-based simulation).

1.1 Architecture of VR systems

A complete VR system is a large software system, consisting of many modules.
Every VR system contains an object manager, renderer, device drivers, commu-
nication module, navigation and interaction module, and, usually, physically-
based simulation, sound rendering, scientific visualization, application-specific
modules, etc. (see Figure 1.3).

The visual part of a virtual world is represented by a hierarchical scene graph.
Everything is a node in this graph: polyhedra, assemblies of polyhedra, LODs,
light sources, viewpoint(s), the user, etc. Most of the functionality and interac-
tion presented below will operate on the scene graph, i.e., it will, eventually,
change some attribute(s) of some object(s). There are commercial packages
providing scene graph manager and renderer, for instance Performer, Inven-
tor, and Fahrenheit. Our own VR system is currently (as of 1999) based on our
own object manager [Rei94], but we plan to port it to Fahrenheit.

The modules at the top of Figure 1.3 are those “visible” to the user — they
provide functionality to be invoked directly by the user. The virtual environ-
ment management system (VEMS) is responsible for most interactions with the
user. It is driven by a specification for a VE which tells what action to perform
when a certain input is received. This will be described in detail in Section 2.2.

At the bottom I have placed the input device layer (among others), although
it does not directly provide functionality or input to the object handler (this is
more to stress the fact that the object handler is very central). It provides an

4

1.2 Overview

abstract interface to a number of input devices. This layer is used mostly by
the VEMS. I will describe it in more detail in Section 4.1.1.

Close to the object handler is the collision detection module (see Chapter 3).
It is responsible for detecting collisions among objects in the scene graph. In
my implementation, it is integrated in the object handler, so that it notices auto-
matically when objects have moved. This module is used mostly by physically-
based simulation modules and by the interaction handler.

Plug-ins are modules which provide some application-specific behavior or
functionality, or an on-line interface to other applications such as CAD systems.
They can be loaded at run-time by the VR system.

Almost all modules should be able to run concurrently to each other. This
is particularly necessary for real-time critical modules such as the renderer,
physically-based simulation, and collision detection module. In our VR sys-
tem, the renderer, collision detection, device drivers, and wind tunnel simu-
lation modules can run concurrently, as well as some of the physically-based
modules.

Of the modules described so far, I have implemented the interaction manager
(VEMS), the collision detection module, and the device layer and drivers, in
addition to some physically-based simulation and several plug-ins for many
applications.

1.2 Overview

This section provides a brief overview of my thesis, which is organized in four
main chapters. Each of them tackles a specific area of problems related to the
difficulties in making VR practicable and a wide-spread tool for real-world ap-
plications, in particular virtual assembly simulation.

Chapter 2 presents an object-oriented framework for describing (authoring)
virtual environments (VEs). After reviewing briefly some related approaches,
a new paradigm is developed. This paradigm allows to describe VEs without
programming and it is intuitive enough to be used by non-programmers. In ad-
dition, it facilitates specialized high-level graphical user-interfaces for building
applications in special application domains. Furthermore, it has been designed
with multi-user VR in mind. This framework has proven to be suitable, pow-
erful, and flexible; all VR applications for manufacturing customers have been
built on top of this framework.

Chapter 3 presents several algorithms for detecting collisions of polygo-
nal objects. This is the major bottleneck of many simulations, in particular
physically-based simulations. In order to achieve real-time behavior of objects,
this problem must be solved. This work presents several algorithms for sev-
eral classes of objects, which are among the fastest algorithms known today.6

Algorithms for finding quickly pairs of objects possibly intersecting are pre-
sented. Several ways of parallelizing collision detection algorithms have been
implemented and are evaluated. Finally, a collision detection pipeline is devel-
oped comprising all the algorithms presented earlier. In addition, issues such
as robustness, concurrency and other implementation issues are discussed.

Chapter 4 deals with various issues relating to user interaction. A frame-
work for integration of input devices is presented and lessons learnt using and

6 As of 1998

5

1 INTRODUCTION

working with it are discussed. One of the problems of electro-magnetic track-
ing (a common tracking technique) is noise. In order to reduce this I present
a filtering pipeline which have been implemented in our VR system. Another
problem with electro-magnetic tracking is distortion which leads to warped im-
ages and can cause interaction difficulties in precision tasks. A simple and fast
method to correct these distortions is provided. The precision of this method is
evaluated both with real data and with mathematical experiments. In addition,
the amount of distortion of different tracking systems has been evaluated. In
the second part of this chapter, a framework for navigation is presented (which
has been implemented in the VR system), as well as a framework for the user’s
head. The discussion is focused in particular on practical issues of interaction
paradigms.

Finally, Chapter 5 describes several applications, which have been built on
top of the frameworks and algorithms presented earlier. They prove the use-
fulness, flexibility, and power of the algorithms and frameworks developed in
this thesis, helping to make VR more practicable than it used to be.

6

Chapter 2
Simulation of Virtual
Environments

Those who can, do.
Those who can’t, simulate.

ANONYMOUS

Computer simulation is the discipline of designing a model of an actual or
theoretical real system, executing the model on a digital computer, and ana-

lyzing the execution output [Fis96]. The overriding objective of any simulation
is making a correct decision.1

In order to simulate a virtual environment, first it must be described. This
desciption can then be executed by the VR system. This chapter presents a
framework for authoring (describing) virtual environments and the interaction
between the user and that environment.

Classifications

Virtual environments can be classified by several criteria (see Figure 2.1):
whether or not they are “real” (or could be, for that matter) [Zac94a]; whether
they are already existing (i.e., they reflect some existing real-world environ-
ment), or whether they will exist some time, or have ceased to exist, or will
never exist; finally, they differ in being remote, local, or scaled environments.

An example of a “real”, existing, yet heavily scaled VE is the NanoMa-
nipulator [TRC+93, GHT98]. Most VR training simulators create an existing,

1 Of course, for VR there are applications where supporting a decision is not the goal, such as enter-
tainment.

real (possible)

fantasy

VE

unreal (impossible)

remote
sealed

real

existing

visualization
information(not yet, never)

non-existing

Figure 2.1: Virtual environments can be classified in a number of different types.

7

2 SIMULATION OF VIRTUAL ENVIRONMENTS

dialogue
component
presentation

control App.
component
interface
application

component

Figure 2.2: The Seeheim model modularizes UIMSs into three components.

true-scale VE, which is more remote, distributed, and multi-user (e.g., astro-
naut training [Lof95]), or more local and single-user (e.g., surgeon training
[MZBS95]). Most VEs in entertainment (such as [AF95]) are in category “unreal
and fantasy”. Scientific visualization in VR usually creates a “real”, already or
possibly existing, true-scale VE [DFF+96]. On the other hand, information vi-
sualization in VEs creates completely “unreal” data spaces [FB90a]. The goal of
virtual prototyping is to create VEs which are possible and “real”, and some of
which will exist in the future.

2.1 Describing human-computer interaction

One of the tasks of a virtual environment management system (VEMS) is the
“dialogue” between user and computer and the maintenance of the user inter-
face. So part of a VEMS is actually a user interface management system (UIMS).
Therefore, it makes sense to investigate the possibility to use some of the results
of 2D UIMSs.

Several frameworks and dialogue models have been developed to facilitate
the description of traditional 2D user interfaces. I will briefly review some of
them in the following.

2.1.1 User-interface management systems

A well-known model for the modularization of UIMSs is the Seeheim model
[Gre84, Pfa85]. It divides user interfaces into three components: a presentation
component describing the appearance of the interface and dealing with physi-
cal input from the user; the dialogue control component deals with the syntax
and content of the user interface, which is what authoring is mostly about; and
the application interface component (see Figure 2.2). This threefold decompo-
sition is similar to the well-known MVC paradigm as set forth with Smalltalk
[GR85] (see Figure 2.3).

The presentation component2 for 3D graphics systems has been implemented
in systems/library such as Performer [RH94], Inventor [Sil92], Y [Rei94], and
Into [FSZ94]. The application interface model, “nomen est omen”, defines the
interface between the user interface and the rest of the application (this compo-
nent is called model in Smalltalk).

Conceptually, the components communicate by passing tokens, consisting of
a name (or “type”) and data. In general, they will be implemented by function
or method calls, callbacks, event and message queues, etc.

2 The view in Smalltalk parlance

8

2.1 Describing human-computer interaction

ScheduledControllers

aController

controllermodel

aModel
aSen

so
r

view

display

Screen

App.

aView

startup

sensormodel

Input
Devices

Figure 2.3: The model-view-controller paradigm of Smalltalk-80 proposes a simi-
lar decomposition as the Seeheim model.

The dialogue control component (controller in Smalltalk) takes the input
from the user via the presentation component, performs certain actions as de-
fined by the user interface designer, possibly affects the state of the application,
and responds to the user (again via the presentation component).

Several ways of describing the “behavior” of dialogue components have
been devised – a few of which I will review briefly in the following.

2.1.2 Transition networks

The transition network model is based on the notion of recursive transition
networks (RTN). They are an extension of simple transition networks (STNs),
the formal definition of which is a 7-tuple M = (Q, X, A, δ, α, q0, f), with

Q a finite set of states
X a finite set of input symbols
A a finite set of actions

δ : Q× X → Q the transition function
α : Q → A the action function

q0 ∈ Q the initial state
f ⊂ Q the set of final states.

When M starts in q0 it receives input symbols in X representing actions per-
formed by the user. The transition function δ determines the next state, while α
and the new state determine the name of the action M is to perform. STNs can
accept the same class of languages as finite-state machines.

STNs can be drawn very conveniently by digraphs (see Figure 2.4). There are
variants of the definition just given which allow actions to be attached to the
arcs (i.e., transitions) as well as to the nodes (i.e., states) of the graph. This does
not alter the descriptive power of the STN, but it can be more convenient and
reduce the number of states needed.

9

2 SIMULATION OF VIRTUAL ENVIRONMENTS

"s
el

ec
to

b
je

ct
"

"s
el

ec
to

n
"

move pointermove pointer

"select on"

2

"finish selection"

0 1

to list of selected objects
add currently hit object

move pointer

Figure 2.4: Recursive transaction networks are well suited to specify interaction
with the user graphically (here, a simple transaction network is shown).

Recursive transition networks (RTNs) are an extension of STNs: arcs can be
labeled additionally by sub-diagrams (RTNs). The definition is the same as for
STNs augmented to be a 9-tuple

M = (Q, X, A, Z, δ, α, q0, f , Z0)

with
Z = the set of stack symbols, with|Z| = |Q|

Z0 ∈ Z = the initial symbol on the stack

and a slightly changed transition function

δ : Q× X ∪ Q× Z −→ Q ∪ Q× Z.

The analogue of a RTN in the domain of automata is the deterministic push-
down automaton. RTNs can be drawn by a set of disconnected digraphs, where
sub-diagrams each have their own initial state and set of final states (which are
not part of the formal definition).

A further extension of RTNs are augmented transition networks (ATN)
[Woo70]. In addition to the set of states and the stack, they are also equipped
with a set of registers and a set of functions operating on the registers. Arcs
are labeled by input symbols and functions. A transition can be made only
when the correct input symbol has been read and the function attached to the
arc evaluates to true.

2.1.3 Context-free grammars

The idea behind this model is that the human-computer interaction is a dia-
logue, which is governed by a grammar. The language of such a grammar is
the set of all valid sequences of user inputs.

The formal definition of this model is the same as that for context-free gram-
mars, with the rules augmented by actions. This is very similar to the way
compiler front-ends are described. A problem is that the flexibility with actions
depends on the parsing algorithm used: if parsing is done top-down, then ac-
tions can be attached in mid-rule. If parsing is done bottom-up, the accepted
language is larger. However, actions can be attached only to the right side, i.e.,

10

2.1 Describing human-computer interaction

"selection stop""select""selection on"

21

sequencer

"plus 10 in x"

selection of
multiple objects transformation

repeaterstarter enderrepeater

Figure 2.5: Interaction trees combine graphical specification with logical and
primitive flow-control constructs.

the action can be executed only after the right-hand side of a production has
been entered by the user completely.

Dialogue cells are a different approach of specifying a grammar-based dia-
logue.

2.1.4 Event languages

From a formal point of view, the event model is not as well established as TNs
or CFGs. The event model is based on event languages. Event languages are a
programming language paradigm just like object-oriented programming. Usu-
ally, event languages are general-purpose programming languages extended
with a few extra constructs.

The basic building blocks of event frameworks are event handlers, written in
some high-level programming language. Event handlers can be created (i.e.,
instantiated from a “template”) and destroyed at run-time; they can send and
receive events.

The input to event handlers are events. Events can be generated by the user
(via input devices), and some can be generated inside the dialogue control com-
ponent. Events convey some data plus a “type”. They can be broadcast (to all
event handlers having a response defined for it), or they can be sent to a spe-
cific event handler. In an extended framework [CCT89], they can also be sent
to a certain group of event handlers, much like the multicast feature of UDP.
Event handlers can be deactivated without losing their state.

In general, an event is ignored by an event handler, if it does not have a
response implemented for it (even if the event has been sent explicitly to that
particular handler). However, each event handler can implement an exception
response, which deals with events not handled by the other procedures.

An event system provides an event queue for each of its event handlers.
When input events arrive from the presentation component, they are added
to the ends of each queue the event handler of which has declared an inter-
est for. An event handler processes one event at a time taking them out of its
queue. The processing of an event is viewed as an atomic operation. After an
event has been processed, some queues might have more events at the end. All
event handlers are viewed as concurrent processes.

11

2 SIMULATION OF VIRTUAL ENVIRONMENTS

2.1.5 Interaction trees

A more graphical approach for modeling user interface dialogues is the inter-
action tree model [Hüb90, Hd89].

The basic idea is to compose interaction dialogues from basic interaction en-
tities which are combined to more complex dialogues by structuring elements.
A dialogue is represented by a tree, in which the leaves are the basic entities
and inner nodes are structuring elements. Each node can be triggered, which
makes it send that trigger event up in the tree to its parent; or it can be activated
by its parent, which puts it in a state where it is waiting for a trigger; or it can
be inactive, i.e., waiting to be activated.

Basic interaction entities handle the input which comes from any physical
input device, such as a glove or speech recognition system. There are four
different types of structuring elements, each implements a different function
on its children:

• Or gets triggered if one of its children is triggered.
• And is triggered when all of its children have been triggered at least once.
• Sequence activates and executes its children in a predefined order.
• Repeat has exactly three children: a starter, a repeater, and an ender.

For an example see Figure 2.5.

2.1.6 Expressive power of the notations

There are two measures for the expressive power of the notations so far: the
descriptive power and the usable power.

The descriptive power of a notation is the set of user interfaces or virtual
environments that can be described by the notation. Determining this set can
sometimes be converted into a problem in formal language theory.

Much more interesting from a practical point of view is the usable power
which is the set of user interfaces that can easily be described in the notation. If
a certain interface or behavior or chain of actions is hard to describe, chances
are that the interface designer or VE author will not do it, but instead change
the design of the interface or VE. The usable power will always be a proper
subset of the descriptive power. Unfortunately, there is no objective measure
for the usable power.

From formal language theory we know that recursive transition networks
can parse exactly all context-free languages (by way of, in general non-deter-
ministic, push-down automata) [MAK88], i.e., from a formal point of view, the
descriptive power of the transition network model and the context-free gram-
mar model are the same.

ATNs have much more descriptive power than RTNs. Indeed, it seems that
ATNs have the same power as event languages (when restricted to program-
ming languages without subroutine calls and loops).

Languages based on the event model are widely regarded as the most ex-
pressive and flexible notation for the specification of user interfaces. In terms
of descriptive power, it has been shown [Gre86] that all TN and CFG mod-
els can be transformed into the event model, and that there are user interfaces
which can be described by the event model but not by the other two.

However, there are two reasons why event languages should be preferred.
First, although transition networks (TN) and context-free grammars (CFG)
have been extended, it can still be extremely difficult to handle unexpected

12

2.1 Describing human-computer interaction

user actions or exceptions. For TNs, this can be solved to some degree by wild-
card transitions leading to states which try error recovery. Another solution are
“error recovery diagrams” associated with each regular diagram. These error
diagrams are used when an unexpected input is received [Ols84].

The second disadvantage of TNs and CFGs is that they do not lend them-
selves easily to the description of multi-threaded dialogues. In such a dialogue,
the user can be involved in several separate dialogues at the same time.

On the other hand, transition networks do have the advantage that they can
be displayed and edited graphically quite easily – at least as long as they do
not exceed a certain size.

2.1.7 Scripting languages

For the past 20 years, the class of scripting languages has matured remark-
ably, unrealized by many people, even programming language scientists. This
is a class of programming languages designed for a different task than sys-
tem languages (like Fortran, C, Smalltalk, Java). While system programming
languages are used to build large applications and implement complex algo-
rithms, more or less from scratch, scripting languages are meant to “glue” com-
ponents together (usually, the components will be implemented in a system
language). Therefore, they are sometimes called “glue languages” or “system
integration languages”.

Although some scripting languages have been utilized to implement the di-
alogue component of user interfaces (e.g., Tcl and VisualBasic), it will become
clear below why I am considering this class of languages here.

Scripting languages can come in any programming language paradigm;
however, most of them are imperative or object-oriented. Although the bor-
derline between scripting and system languages is not very sharp, they tend to
differ in typing system and efficiency (in several ways).

The major difference is the type system. Other differences, like efficiency,
are, to some extent, a consequence of this difference. Most high-level system
programming languages are strongly typed languages with a rich type sys-
tem (number of types, promotion and coercion rules, etc.). By contrast, script-
ing languages tend to be weakly typed or type-less. They are string-oriented:
most/all values are represented by strings.

Scripting languages are much more efficient than system languages in terms
of the number of lines of assembly instructions per program line [Ous98]: 1
statement of C produces about 5–10 assembly instructions compared to 100–
1000 instructions/statement for Tcl.3

In terms of execution speed, scripting languages are less efficient than system
languages. Partly, this is due to the fact that they are interpreted instead of
compiled. But even when they are compiled, they tend to be slower, because
objects are represented by high-level types (variable-length strings, hash tables,
etc.) even if that would not be necessary.

On the other hand, interpretation increases productivity, because there are
no turnaround times during development, and because code can be changed
on-the-fly during run-time of the application.

3 Lines of code seem to be the smallest unit of a programmer’s mental model of a program. An
evidence is the fact that programmers produce roughly the same number of lines of code per year,
regardless of the language being used [Boe81]. So they are a good measure of programming effi-
ciency as several programmer and programming language surveys have shown.

13

2 SIMULATION OF VIRTUAL ENVIRONMENTS

Summarizing, scripting languages are a valuable complement (not a replace-
ment) to system languages. They are the language of choice if the task involves
gluing, flexible system integration of components, or prototyping of rapidly
evolving, simple functionality.

2.2 Authoring virtual environments

Describing VEs is commonly named “authoring”. A VE author needs to specify
(at least) two things:

1. the geometry, scene graph, and materials (the “clay”), and
2. the behavior of objects, and the user interface (the “life”).

Note that the latter part not only comprises human-computer interaction, but
also the behavior and properties of objects by and themselves. Often, the term
“authoring” is used in a narrower meaning denoting only (2), which is what I
will use in this section.

Any VR system meant to be used within an industrial process must face the
fact that it is just one link in a long chain of software packages (CAD, CAE,
FEM, etc.), which might impose a lot of constraints and requirements.

Although VR has been around for about 10 years in the research community,
only recently it has become clear that the creation of VEs is a major bottleneck
preventing the wide-spread applicability of VR. There is still a lack of tools
to make VR an enabling technology in industry and entertainment. Creating
virtual worlds is still a cumbersome and tedious process.

In this section, I propose a framework which increases productivity when
creating virtual environments (VEs). VE “authors” can experiment and play in-
teractively with their “worlds”. Since this requires very low turn-around times,
any compilation or re-linking steps should be avoided. Also, authors should
not need to learn a full-powered programming language. A very simple, yet
powerful script “language” will be proposed, which meets almost all needs
of VE creators. As a matter of course, virtual worlds should be input-device
independent.

In order to achieve these goals, I have identified a set of basic and generic
user-object and object-object interactions which are needed in most applica-
tions [Zac96].

For specification of a virtual environment, there are, at least, two contrary
and complementary approaches:

• Event-based.
One approach is to write a story-board, i.e., the creator specifies which
action/interaction happens at a certain time, because of user input, or
any other event (see Figure 2.6).

A story-driven world usually has several “phases”, so we want a certain
interaction option to be available only at that stage of the application, and
others at another stage.

• Behavior-based.
Another approach is to specify a set of autonomous objects or agents,
which are equipped with receptors and react to certain inputs to those
receptors (see for example [BG95]).

So, overstating a little, we take a bunch of “creatures”, throw them into
our world, and see what happens (see Figure 2.7).

14

2.2 Authoring virtual environments

event

event

"tim
e"

event action

action

action

events

objects
autonomous

aura

Figure 2.6: The event-based approach
to authoring VEs basically specifies a
story-board and conditional and tem-
poral relations.

Figure 2.7: A different approach from
event-based authoring as behavior
based, which focuses on creating au-
tonomous objects.

In the long term, one probably wants to be able to use both methods to cre-
ate virtual worlds. However, so far the event-based approach has been quite
sufficient for virtual prototyping and entertainment applications.

The way VEs are created can be distinguished also by another criterion: the
toolbox approach versus the scripting approach. The toolbox approach in-
volves programming in some high-level language using the VR system’s in-
teraction library, while scripting means specification of the VE by some very
simple language especially designed for that purpose. It is my belief, that both
approaches must be satisfied. For various reasons (see Section 2.1.7), the script-
ing approach is much less time-consuming; on the other hand, there will be
always certain application-specific features (in particular, high-level features)
which can be implemented better by the toolbox approach. In the following, I
will explain the script based approach, since there is not much to be discussed
on the toolbox approach.

All concepts and features being developed below have been inspired and
driven by concrete demands during recent projects [PRS+98, Zac98a]. All of
them have been implemented in an interaction-module (see Section 1.1), which
is part of IGD’s VR system [ADF+95, AFM93]. The first implementation was in
C, while the second implementation is a complete object-oriented redesign in
C++.

2.2.1 Design premises

If VR is ever to play a major role in industry, then casual users, like CAD engi-
neers, must be able to create VEs. Therefore, one of the design premises of my
description language is that even non-programmers should be able to easily
learn and use it on a casual basis. Therefore, any computer science concept like
state machines, grammars, flow control, type systems, etc., had to be avoided.
This does not necessarily mean that these concepts must not be implemented
at all — however, an architect or mechanical engineer should be able to specify
as much as possible of his VEs without ever having to worry about them.

The language for specifying VEs will be very simple for several reasons: VE
authors “just want to make this and that happen”, they do not want to learn yet
another complete programming language. Moreover, it is much easier to write

15

2 SIMULATION OF VIRTUAL ENVIRONMENTS

a true graphical user interface for a simple language than for a full-powered
programming language.

The study of programming languages has shown that in most of the suc-
cessful languages, particular design goals were constantly kept in mind during
the design process [Lou93]. In particular, generality and orthogonality seem
to be of great importance when designing a language. Additionally, simplic-
ity should be kept in mind, too.4 Generality is achieved by avoiding special
cases and by combining two closely related features into a more general one.
Orthogonality means that language constructs can be combined in any mean-
ingful way without producing “surprises”. A language is uniform if similar
things or constructs look similar, and, more important, different things look
different.

From the point of view of discrete event simulation, the model type I have
chosen for the system is the declarative event-oriented model, and the model
technique is the script [Fis95].

2.2.2 Other VR systems

There are quite a few existing VR systems, some commercial some academic.
Some of them I will look at briefly in the following.

Sense8’s WorldToolkit follows the toolbox approach. Basically, it provides a
library with a high-level API to handle input devices, rendering, simple object
locomotion, portals, etc.

DIVE is a multi-user, distributed VR platform [HLS97, CH93]. The system
can be distributed on a heterogeneous network (making use of the Isis library
[Bir85]). New participants of a virtual world can join at any time. They will re-
ceive a copy of the current database. All behavior is specified as a (usually very
simple) finite state-machine (FSM). Any FSM is part of some object’s attributes.
Database consistency is achieved by using distributed locks.

Division’s dVS features a 2D and 3D graphical user interface to build and
edit virtual worlds at run-time [duP95]. Attributes of objects are geometry,
light source, sound samples, collision detection parameters, etc. Objects can be
instanced from classes within the description file of a virtual world. Inheritance
is supported in a simple form. Several actions can be bundled (like a function
in C) and invoked by user-defined events. However, the syntax seems to be
rather complicated and not really apt for non-programmers. The framework
for defining behavior is built on the notions of actions and events. In dVS,
however, events denote a very different concept than in my framework. There,
events are more like discriminators. As a consequence, actions and triggers are
not orthogonal, i.e., the user must know which event is understood by which
action.

The Minimal Reality toolkit (MR) [WGS95, HG94] is a networked system,
which uses a script file to describe behavior and sharing of objects. Scripted
object behavior is compiled into so-called OML code which is interpreted at
run-time. For each OML instance there must be an associated C++ class.

Unlike MR, I have not developed objects (“classes”) with rather high-level
built-in behaviors, such as Tanks, Bombs, or Hills. Instead, I will identify ac-
tions on objects on a lower, and therefore more generic, level.

AVOCADO [DEG+97] basically implements the VRML approach on top of
Performer, i.e., nodes in the scene graph are augmented by fields and the scene

4 “Everything should be made as simple as possible, but not simpler.” (Einstein)

16

2.2 Authoring virtual environments

graph itself is augmented by routes. Nodes communicate and exchange data
via routes. From [DEG+97] it is not clear exactly how behavior is implemented
in the nodes; but it seems that it can be implemented either by Scheme scripts or
by C++ code on top of AVOCADO’s API. There seems to be no scripting facility
appropriate for non-programmers. The system seems to be biased towards
experimental and entertaining applications.

Similarly, the VR-Deck pursues the approach of communicating modules
programmed in C++ [CJKL93]. Modules receive anonymous events from a
pool, and produce new events and place them in the pool (this is somewhat
similar to the Linda framework for distributed systems).

I believe that keeping both geometry and behavior (plus maybe other proper-
ties like kinematic constraints) of the virtual world in one file can be tedious
and very inflexible. This is true in particular for application domains like
virtual prototyping (see Chapter 5). Therefore, I strictly separate geometry,
behavior, physical properties, acoustic properties, etc., in separate files, un-
like [HG94, ACHS94, Ghe95]. This greatly facilitates developing virtual en-
vironments, because almost always the geometry will be imported from CAD
systems (e.g., Catia or ProEngineer), MRI reconstruction algorithms, or ani-
mation software (e.g., Alias/Wavefront or SoftImage). During several devel-
opment iterations, we usually get several versions of the geometry, while we
want to keep our VE description files. In addition, for CAD engineers we need
to provide a simple GUI (see Section 2.4.2) tailored to their specific application
domain, e.g., assembly simulation (see Section 5.2) or styling review.

2.2.3 The AEIO paradigm

The basic idea of the event-based approach (see Section 2.2) is that the user’s
input creates events which trigger actions, invoke properties, or behavior. For
instance, when the user touches a virtual button, a light will be switched on;
or, when a certain time is reached an object will start to move. Consequently,
the basic components of our virtual worlds are inputs, actions, events, and
graphical objects — the AEIO quad 5 (see Figure 2.8).

Note that actions are not part of an object’s attributes (in fact, one action can
operate on many objects at the same time).

In order to be most flexible and in accordance to our design premises in Sec-
tion 2.2.1, the action-event paradigm must meet the following requirements:

1. Any action can be triggered by any event. Any event can be fed with any
input.

2. Many-to-many mapping: several events can trigger the same action; an
event can trigger several actions simultaneously; several inputs can be
fed into the same event; an action can operate on many objects at the
same time.

3. Events can be combined by boolean expressions.

4. Events can be configured such that they start or stop an action when a
certain condition holds for its input (positive/negative edge, etc.)

5. The status of actions can be input to events (loopback).

5 In the object-oriented programming paradigm, actions, events, inputs, as well as graphical objects
are objects. However, in the following, I will use the term object only for graphical objects.

17

2 SIMULATION OF VIRTUAL ENVIRONMENTS

Scene Graph

Actions Events
Inputs

Figure 2.8: The AEIO quad (actions, events, inputs, objects). Anything that can
“happen” in a virtual environment is represented by an action. Any action can be
triggered by one or more events, which will get input from physical devices, the
scene graph, or other actions. Note that actions are not “tied-in” with graphical
objects, and that events are objects in their own right.

I do not need any special constructs (as in [MP90]) in order to realize tem-
poral operators. Parallel execution of several actions can be achieved trivially,
since one event can trigger many actions. Should those actions be triggered
by different events, we can couple them via another event. Sequential execu-
tion can be achieved by connecting the two actions by an event which starts
the second action when the first one finishes. Similarly, actions can be coupled
(start-to-start or start-to-stop) with a delay.

Because of the requirements above, we need a way of referring to actions and
events. Therefore they can be given a name. Basically, there are two ways to
declare an action-event pair in the script:

action-name: action . . .
event-name: event . . .
action-name event-name

or
action . . . event . . .

where action and event in the latter form cannot be referenced elsewhere in the
script.

Most actions operate on objects, and many events have one or two objects as
parameters. In order to achieve an orthogonal language, those objects can have
any type (geometry, assembly, light source, etc.) whenever sensible.

2.2.4 Semantic attributes, object lists, and object groups

Almost all manipulations within a VE eventually affect some objects. There-
fore, these are the building blocks of a VE (the “virtual bricks”, if you will).
Almost all objects have a graphical representation, the geometry, and a set of
graphical attributes. In general, this is even true for light sources or sound
sources.

However, for various functions and actions graphical attributes do not suf-
fice to describe the state of an object completely. So, all objects also have se-
mantic attributes. Such attributes describe capabilities of objects, and there are

18

2.2 Authoring virtual environments

alternative graph scene graph

leg 1

root

arm 2

leg 2

armslegs

body

arm 1

Figure 2.9: Hierarchical grouping (similar to drawing programs) establishes an
alternative, user-defined scene graph.

attributes describing its current state (see table below). Usually, there is a state
attribute for each capability attribute, but there are also state attributes per se,
such as the lock status of graphical attributes.

Attribute Meaning

grabbable Can the object be grabbed by the user
grabbed Is the object being grabbed currently?
movable Can the object be moved by the user? For instance,

through the transform-action.
selectable Can the object be selected
selected Is the object selected right now? (needed for Info action,

for instance)
ghost is on The object is colliding currently with some other part, and

its ghost is being displayed additionally

Such semantic attributes can be implemented through membership in an object
list (see below).

It has proven to be very convenient to be able to specify a list of objects in-
stead of only one with any action which operates on objects. Such an object
list can be subsumed under a new name, which provides alternate groupings.
Object lists can be specified in the script file of the VE, and they can be changed
at run-time through actions.

In addition, it is necessary to be able to specify regular expressions (wild-
cards) with object lists, in particular, if the exact names of objects are not known
in advance. For example, if I want to define an action which deletes all objects
whose name is arrow..., but those arrows will be created only at run-time.

Just like with drawing programs, assembly simulation users often would like
to group parts and modify these as a whole (see Figure 2.9). For instance, such a
group could be grabbed or translated only as a whole. Therefore, a mechanism

19

2 SIMULATION OF VIRTUAL ENVIRONMENTS

for hierarchical grouping of objects must be provided. Grouping establishes an
alternative scene graph. The leaves of such an alternative scene graph are nodes
in the renderer’s scene graph (not necessarily leaves in the renderer’s scene
graph). Inner nodes of the alternative scene graph do (usually) not correspond
to inner nodes of the renderer’s scene graph. An object of the scene graph can
be part of a grouping. It can be part of at most one grouping. (Remember: It
can belong to many object lists.) An alternative scene graph (grouping graph)
is necessary for two reasons: first, in my experience it is always a bad idea to
change the original scene graph as provided by the CAD system (information
is lost, and other actions/modules might depend on the original hierarchy);
second, with grouping graphs, we have the flexibility of maintaining several
alternative scene graphs.

Actions operating on lists of objects must first perform group closure defined
as follows. Assume an object O is member of an object list L. Let the object also
be part of a user-defined grouping. Let the top-most grouping node of O be G
(remember: it can be part of at most one group). The closure of L with respect
to grouping results from L by replacing O by all leaf nodes of group G.

Due to the dynamic nature of the scene graph it is important that objects are
referenced by name instead of pointer. Objects might cease to exist or the scene
graph might be restructured (even by other modules of the application). If all
object creations and deletions occur through an action, then it is easy to make
the VR system cache object pointers. If other modules besides the interaction
manager can create/destroy objects, then special mechanisms need to be imple-
mented so that the VR system knows when its object pointer chances become
invalid.

Virtual prototyping users frequently want to exchange geometry at run-time,
i.e., from a semantic point of view, the object does not change but its spatial ap-
pearance. So, all its semantic attributes must be kept, but actions and modules
(e.g., grabbing and collision detection module) dealing with its geometry must
be notified, when this happens.

With polygonal rendering, the notion of LODs has been developed [Red96,
Tur92, LT99], which can help increasing rendering speed while preserving the
perceptual quality of rendered images. Basically, LODs are different graphical
representations of the same geometric object. For the description of VEs, we
need a similar concept: different semantic representations of the same object.
Since most of these representations involve geometry, it makes sense to inte-
grate them into the (graphical) scene graph. However, they will not be used for
display but for other functionalities. So there might be a representation for col-
lision detection (which does not need all the appearance attributes, and which
might have a higher resolution for more precision), a representation for the hull
(in order to implement safety distance checking), etc.

2.2.5 Grammar

The grammar of the scripting language is fault-tolerant and robust against vari-
ations and abbreviations (for instance, the user can write playback, play-back,
anim, etc., for the keyframe animation action). Ordering of lines should (al-
most) never matter! (in the first implementation this was achieved by a multi-
pass parser.)

For easy creation and maintenance of almost identical scripts, full C-like pre-
processing is provided. This includes macros, conditional “compilation”, and

20

2.2 Authoring virtual environments

Tim
e

Tran
sfo

rm
atio

n

global simulation

individual action

time

Pip
elin

e

wall clock

time

time

Figure 2.10: A simulation of virtual environments must maintain several time
“variables”. Any action can have its own time variable, which is derived from
a global simulation time, which in turn is derived from wall-clock time. There is
a small set of actions, which allow the simulation to set/change each time trans-
formation individually.

including other files. The preprocessor’s macro feature provides an easy way
to build libraries with higher-level behavior.

2.2.6 Time

Many actions (besides navigation, simulation, and visualization) depend on
time in some way. For example, an animation or sound sample is to be played
back from simulation time t1 through t2, no matter how much computation has
to be done or how fast rendering is.

Therefore, the module maintains a global simulation time, which is derived
from wall-clock time. The transformation from wall-clock time to simulation
time can be modified via actions (to go to slow-motion, for example, or to do a
time “jump”).

Furthermore, we need to maintain an unlimited number of time variables.
The value of each time variable is derived from the global simulation time by
an individual transformation which can be modified by actions as well (see
Figure 2.10).

Those times can be used as inputs to events, or to drive simulations or ani-
mations. Thus, time can even be used to create completely “time-coded” parts
of a virtual reality show.

In a way, the time transformation pipeline as proposed in Figure 2.10 resem-
bles the (simplified) rendering transformation pipeline, except that it works the
other way round and it lives in 1D: there is a wall-clock time (vs. device coordi-
nates), which is transformed into the global time (vs. world coordinate system),
which in turn is transformed into local “times” (vs. object coordinate systems).

2.2.7 Inputs and events

Anything that happens in our VEs does so, because there has been an input
which made it happen. Inputs can be considered the interface to the real-
world, although they will be used also to interface with other modules and
even with the interaction manager itself. They can be considered the “sensory
equipment” of actions and objects.

Events are the “nerves” between the user input and the actions, the “motors”
which make things move. This analogy is not too far-fetched, since events can

21

2 SIMULATION OF VIRTUAL ENVIRONMENTS

actually do a little processing of the input. The input to events has always one
of two states: on or off. Similarly, actions can be only on or off.

Events have the form

[event-name:] trigger-behavior input parameters

where event-name is for further reference in the script. All components of an
event are optional. When an event triggers it sends a certain message to the
associated action(s), usually “switch on” or “off”.

It is important to serve a broad variety of inputs (see below), but also to
provide all possible trigger behaviors. A trigger behavior specifies when and
how a change at the input side actually causes an action to be executed. Let us
consider first the simple example of an animation and a keyboard button:

animation on as long as button is down,
animation switched on whenever button is pressed down,
animation switched on whenever button is released,
animation toggles on→off or off→on whenever button is pressed down.

These are just a few possibilities of input→action trigger-behavior. The com-
plete syntax of trigger behaviors is

action
on|off|switch_on|switch_off|toggle
while_active|while_inactive| when_activated|when_deactivated
input

It would be possible to have the VE author “program” the trigger-behavior
by using a (simple) finite state-machine (as in dVS, for instance). However,
I feel that this would be too cumbersome, since those trigger behaviors are
needed very frequently.

All actions can be triggered at start-up time of the VE script by just omitting
the event and input parts. In order to be able to trigger actions in a well-
defined order at start-up time, there is a special “input” named initialize
with a parameter which specifies the ordering (integer or name of a phase).

In addition to the basic events, events can be combined by logical expres-
sions, which yields a directed “event graph”. This graph is not necessarily
acyclic.

2.2.8 A collection of inputs

In this section I will briefly list some of the “sensory equipment” of my VE
framework.

Physical inputs. These include

• all kinds of buttons (keyboard buttons, mouse, spacemouse, boom),

• flex and tracker values; since these are real-value devices, thresholds are
used to convert them to binary values,

• gestures (see Section 4.2.1 for gesture recognition algorithms),

• postures; these are gestures plus orientation of the hand; examples are
the “thumb-up” and “thumb-down” gesture (see Figure 4.2),

22

2.2 Authoring virtual environments

• voice input; this means keyword spotting, enhanced by a regular gram-
mar, which, in addition, can tolerate a certain (user-specified) amount of
“noise”; so far, this seems to be quite sufficient.

2D analogues. Just like for 2D GUIs, we need (sometimes) virtual buttons
and menus. In VR, there are much more possibilities as to the interaction tech-
niques (see Section 4.5.1). Suffice it to say here, that one possibility is that vir-
tual buttons are 3D objects which are checked for collision with some pointing
“device”, usually the graphical object for the finger tip. Any object of the scene
graph can be a virtual button.

Virtual menus are the 3D analogues of 2D menus as known from the desktop
metaphor. Each menu item can be the input to one or more events. From the
description file, it is quite easy to create the geometry and textures for the 3D
menus (possibly, additional parameters could determine layout parameters).
This can be done at load-time (as opposed to a preprocessing step as in [Jay98]).
If menus are 2D overlays (see Section 4.5.1), then the generation from the file is
even simpler.

Geometric inputs. These check some geometric condition. Among them are
portals and collisions.

A portal is an arbitrary object of the scene graph. The input checks whether a
certain object is inside or outside a portal. By default, the center of the object’s
bounding box is considered (or any other point in local space). The object can
be the viewpoint. Other definitions check whether a certain point has crossed
a polygon (the portal); however, from a practical point of view, that is just a
special case of our definition.

Portals can be very useful for switching on/off parts of the scene when the
user enters/leaves “rooms” (visibility complexes or different virtual environ-
ments). This can help to increase rendering speed when otherwise the renderer
would send geometry to the pipe which is within the viewing frustum but can-
not be seen, because it is completely occluded.6 Another application is chaining
several actions in a way which does not depend on time (for instance, playing
a sound when some object passes by).

A collision input is the “output” of the module for exact collision detection
of objects [Zac95, Zac98b].

Monitors. The status of actions, objects, counters, and timers can be fed into
the event network by monitor inputs.

Any action’s status (on or off) can be fed back into the event network directly
via monitor inputs. The value of counters can be compared to another counter
or a constant. The result of the comparison is the input to events.

Attributes of graphical objects (boolean, integer, float, vector, or string val-
ued) can be interrogated, so that actions can be triggered when they change,
while we do not care which action (or other module) changed them. The gen-
eral form of an object attribute input is

attribute attribute-name object object-name comparison

6 This application of portals is sort of a “poor man’s visibility complex”. It asks the VE author to
group geometry into visibility cells [TS91], and to tell the renderer when to display which cells.

23

2 SIMULATION OF VIRTUAL ENVIRONMENTS

Attributes are not only graphical attributes (transformation, material, visibility,
etc.), but also semantic “interaction” attributes (see Section 2.2.4).

Object attributes might be set by the interaction manager itself (possibly by
many different actions), or by other modules, so object attribute inputs can pro-
vide a kind of simple access control mechanism in some cases.

All time variables (see above) can be compared to an interval or an instant in
time by one of the usual comparisons. The timer input monitors the value of a
timer whether it is within the interval, or whether it has passed the instant.

2.2.9 Actions

Actions bring a virtual environment to “life”. Anything that happens, as well
as any object properties are specified through actions. They could be thought
of “motors” executing what the network of events and inputs tell them to do.

Actions come in 4 categories:

1. plug-in actions
2. references to an existing action
3. python functions
4. a sequence of actions

There are no “built-in” actions — or rather, there is no difference between plug-
in actions and built-in actions (see Section 2.4).

Actions are usually of the form

action-name : function object-list parameters options

All actions should be made as general as possible, so it should always be pos-
sible to specify a list of objects (instead of only one). Furthermore, objects can
have any type, whenever sensible (e.g., assembly, geometry, light, or viewpoint
node). The action-name is for later reference in the script.

My experience shows that it is necessary to be able to activate and deactivate
actions. This is necessary when the author of a VE wants the user to perform ac-
tions in a certain chronological order. For instance, in a maintenance scenario a
user should be prevented from doing something before he has done something
else first.

An action is deactivated when it does not respond to messages being sent by
events. This can be done by a certain action, which (de-)activates other actions.
Alternatively, it is quite convenient to be able to bracket the actions you want
to (de-)activate:

activate event
actions
. . .

endactivate

Consistency. This is certainly an issue in any VR system being used for real-
world applications. Here, I will not discuss the problems arising in multi-user
VEs, or in systems with concurrent modules. The problem of consistency exists
even within our interaction module. Some of the actions described below set
transformations of objects. Obviously, those will interfere when they act at the
same time on the same object. For example, in virtual prototyping applications,
we could grab an object with our left hand while we stretch and shrink it with

24

2.2 Authoring virtual environments

the other hand. The problem arises also, when an action takes over, e.g., we
scale an object after we have grabbed and moved it.

Flushing transformations or squeezing them into one matrix is not a very
good idea, since we loose the original object and we have no control over the
order of transformations. I do not want to loose the transformations of earlier
actions, because this is valuable information we might need in a further step
“outside” the VR system.

One way to deal with that is to impose a strict sequence of transformations to
be used per object, at least for objects under the control of this module. I have
chosen the sequence: scaling × rotation × translation. Sometimes, it is neces-
sary or convenient for the implementation of actions to add more transforma-
tions. In that case, those actions need to re-establish that sequence after they
are finished (this can be done, for instance, by squeezing all transformations
into one matrix, and decomposing it again into 3 transformations [Tho91]).

Another consistency issue arises when we use levels-of-detail (LODs) in the
scene graph. Since any object can be a LOD node or a level of an LOD, any
action should transparently apply changes to all levels, so that the author of
the virtual world does not have to bother or know whether or not an object
name denotes a LOD node (or one of its children).

2.2.10 A Collection of Actions

The following will briefly describe a list of action which have turned out to be
useful in general throughout my work on several virtual prototyping projects.

Navigation. Navigation is probably the most basic interaction with a VE (see
Section 4.4). It is triggered by an event. With the point-and-fly paradigm, this is
usually a gesture or a spoken command. Other parameters for navigation, such
as direction and speed, are obtained directly from the logical input devices by
the action.

The geometry of the VE. can be changed by actions for loading, saving, delet-
ing, copying, creating, and attaching objects or subtrees.

Several actions can change object attributes like visibility, wireframe, and
transformations. Others change material attributes, such as color, transparency,
or texture. Transformation actions can be used to position an object at a certain
place or to move objects incrementally.

Objects (and subtrees) can be scaled interactively with the “stretch” action.
When it is invoked, handles will be displayed at the corners and faces of the
bounding box of the object. These can then be grabbed and will scale the ob-
ject(s) as they are moved. This action is quite useful to select a certain volume of
the world or to create place holders from generic objects like spheres, cylinders,
etc.

Grabbing. This is probably the second most important action, at least in vir-
tual prototyping. Grabbing could be solved by using an attach action. How-
ever, in my experience, there are many situations where grabbing needs to be
parameterized by a lot of options.

The event which triggers grabbing could be any of the above. Convention-
ally, it is a gesture (fist). However, two-point grabbing (see Section 4.5.3) can
be realized as well by a boolean combination of the collision of the finger tips

25

2 SIMULATION OF VIRTUAL ENVIRONMENTS

hand

M′ M ≡const

Figure 2.11: Grabbing objects can be implemented by re-linking objects in the
tree, or by maintaining a transformational invariant. Either approach has its ad-
vantages and disadvantages.

with the object (e.g., thumb and one of the other fingers must collide with the
object).

The grab action first makes an object “grabbable”, i.e., it ensures that all ob-
jects involved are registered with the collision detection module. Then, as soon
as the hand touches it, it will be attached to the hand. There are two ways this
can be done (see Figure 2.11): either by linking the object to the father of the
hand in the scene graph, or by maintaining a transformation invariant [RH92].

Of course, this action allows grabbing a list of sub-trees of the scene graph
(e.g., move a table when you grab its leg). Options are: move other objects
along with the grabbed one; move the parent in the scene graph, or the grand-
parent, etc.

As with navigation, there are several constraints and improvements that
should be made in order to simulate and render this every-day interaction more
naturally (see Section 4.5.3).

Animations. These can add a great deal of “life” to a virtual world. Al-
most any attribute of graphical objects can be animated. Animation actions
include playback of transformations, visibility, transparency (for fading), and
color from a file. The file format is flexible so that several objects and/or several
attributes can be animated simultaneously.

Animations can be absolute or relative which just adds to the current at-
tribute(s). This allows, for example, simple autonomous object locomotion
which is independent of the current position. Of course, continuous interpola-
tion between key-frames is possible. Animations can be time-coded or frame-
coded.

Physical concepts. Physically-based simulations can increase “believability”
of VEs tremendously. One of the most basic physical concepts is gravity. It
has been implemented in an action “gravity” (actually, it should be called a
property), which makes objects fall in a certain direction and bounce off “floor
objects”, which can be specified separately for each falling object.

More physical behavior would be nice to have, such as complete kinematics
of rigid bodies including resting contacts and friction.

Constrained movement. Occasionally we want to constrain the movement of
an object. It is important to be able to switch constraints on and off at any time,
which can be done by a class of constraint actions.

Several constraints on transformations of objects, including the viewpoint,
have proven useful:

26

2.2 Authoring virtual environments

1. Constrain the translation in several ways:

(a) fix one or more coordinates to a pre-defined or to their current value,

(b) keep the distance to other objects (e.g., ground) to a pre-defined or
to the current value. The distance is evaluated in a direction, which
can be specified.

This can be used to fix the user to eye level, for terrain following, or to
make the user ride another object (an elevator, for example).

2. Constrain the orientation to a certain axis and possibly the rotation angle
to a certain range. This can be used to create doors and car hoods.

All constraints can be expressed either in world or in local coordinates. Also,
all constraints can be imposed as an interval (a door can rotate about its hinge
only within a certain interval). Interaction with those objects can be made more
convenient, if the deltas of the constrained variable(s) are restricted to only
increasing or decreasing values (e.g., the car hood can only be opened but not
closed).

Of course, the constraints listed above are just very simple ones; for more
complicated “mechanisms”, a general inverse kinematics approach will be
needed, like [WFB87] or [ZB94, EK89].

Object selection. There must be two possibilities for specifying lists of ob-
jects: hard-wired and user-selected.

In entertainment applications, you probably want to specify by name the
objects on which an action operates. The advantage here is that the process
of interacting with the world is “single-pass”. The downside is inflexibility,
and the writing of the interaction script might be more cumbersome.

Alternatively, we can specify that an action operates on the currently selected
list of objects. This is more flexible, but the actual interaction with the world
consists of two passes: first, the user has to select some objects, then specify the
operation.

The list of selected objects can be communicated suitably and explicitely to
other actions via object lists (see Section 2.2.4): The selection action just writes
the objects into a certain object list, which other actions can read from. Us-
ing object lists, it is possible to have several selection actions write to different
object lists for different purposes.

Virtual prototyping. There are several features, which have proven to be gen-
erally useful for VP applications. Since they are more tuned toward a special
class of VR applications (albeit one of the most important ones today), I will
discuss those in more detail in Section 5.1.

Finite state machines. The system can maintain an arbitrary number of coun-
ters. Those counters can be set, incremented, or decremented via certain ac-
tions. They can be used as input to events (which in turn trigger other actions).

Counters are very useful to switch from one “stage” of a “story-based” VE
to the next one by the same gesture or voice command, or they can be used to
build more complicated automata (a traffic light, for example).

27

2 SIMULATION OF VIRTUAL ENVIRONMENTS

SelectAction GrabAction

rayIntersect

"selected"
ObjectList

Figure 2.12: The concept of object lists is a convenient and suitable mechanism
to communicate the list of selected objects to other actions, to all other actions
or only to distinguished ones.

User modules. From my experience, most applications will need some spe-
cial features which will be unnecessary in other applications. In order to incor-
porate these smoothly, our VR system offers “callback” actions. They can be
called right after the system is initialized, or once per frame (the “loop” func-
tion), or triggered by an event. The return code of these callbacks can be fed
into other events, so user-provided actions can trigger other actions.

These user-provided modules are linked dynamically at run-time, which sig-
nificantly reduces turn-around time.

It is understood that all functionality of the interaction module as well as all
data structures must be accessible to such a module via a simple, yet complete
API (see Section 2.4).

User modules might also be implemented as separate programs. Or some of
the programs existing under Unix might fulfil a task (e.g., taking a snapshot).
So, an interfacing action to Unix commands is provided.

Miscellaneous. As described above, there are actions to set or change the
time transformation for the time variables.

In addition to the actions already described, which allow giving various
kinds of visual feedback to the user, there is also an action to give audio feed-
back.

2.3 Examples

In this section, I will give a few examples how the description of VE looks like.
Some of the examples are drawn directly from actual projects.

The following example shows how the point-and-fly navigation mode can be
specified.

cart pointfly dir fastrak 1 \
speed joint thumbouter \
trigger gesture pointfly

cartrev gesture pointflyback
cart speed range 0 0.8
glove fastrak 1

28

2.4 Implementation

The hood of a car can be modeled by the following lines. This hood can be
opened by just pushing it with the index finger.

constraint rot Hood neg \
track IndexFinger3 \
axis a b to c d \
low -45 high 0 \
on when active collision Finger13 Hood

Menu setup consists of two parts: the interaction with the menu itself,

menu popup MyMenu options speech "menu"
menu acknowledge MyMenu joint thumbouter

and the specification of actions triggered by menu selections

action menu button MyMenu_1

In order to provide acoustic feedback when action A is switched on, we can
write

sound sound-file switch on when activated action A

Finally, I will present an example of a library “function” to make clocks. (This
assumes that the hands of the clock turn in the local xz-plane.)

define CLOCK(LHAND, BHAND)
timer LHAND cycle 60
timer speed LHAND 1
// rotate little hand every minute by 6 deg in local space
objattr LHAND rot add local 6 (0 1 0) time LHAND 60
// rotate big hand every minute by 0.5 degrees in local space
objattr BHAND rot add local 0.5 (0 1 0) time LHAND 60
// define start/stop actions
Stop##LHAND : timer speed LHAND 0
Start##LHAND : timer speed LHAND 1

The ## is a concatenation feature of acpp. By applying the definition CLOCK to
a suitable object, we make it behave as a clock. Also, we can start or stop that
clock by the actions

CLOCK(LittleHand, BigHand)

action "StartLittleHand" when activated speech "clock on"

action "StopLittleHand" when activated speech "clock off"

2.4 Implementation

Since we are dealing with graphical objects augmented by semantical attrib-
utes, the system must maintain semantic objects. Inheritance does not seem to
be flexible enough for the future, because there might be many other modules
wishing to augment the scene graph by their own attributes. So I have chosen
to encapsulate semantic attributes in the class of WalkObj, which also references
scene graph objects.

Each module can add different representations to a group node in the scene
graph. The object handler provides methods to add and retrieve these rep-
resentations transparently. However, a WalkObj always references the group

29

2 SIMULATION OF VIRTUAL ENVIRONMENTS

TimerEventBaseActionBase

virtual toAscii

virtual loop
static loop

signal

AFly ATimerAFile IPortalIKey

signal

Walk

ICollision

WalkObject

...

priority

InputBase

SGNode* obj

map attribute

Figure 2.13: The design of the simulation module of the VR system.

node and never one of its representations (children). Likewise, it never refer-
ences a certain LOD node in the scene graph, but always the LOD group node.

All events, actions, and semantic objects must have a unique name, even if
the script does not specify one. This is necessary for distributed VEs (multi-user
environments), so that remote systems can communicate the event triggers to
each other.

During parsing of a VE description file, the left hand side of a statement
is turned into an action object (either by creating a new one, or by retrieving
an existing one) and a message, which will be sent to that object by the right
hand side (an event). Usually, the message is the standard message “on/off”,
sometimes it is an action specific message, e.g. “add/delete” for the selection
action. The left hand side might look like a new action although it refers to an
existing action, e.g. selection add/delete.

Figure 2.13 shows the most important classes of the VR system in UML nota-
tion. Figure 2.14 shows the basic sequence diagram.

All actions, events, and input classes are implemented as individual DSOs.
That way, there is no difference between “built-in” actions/inputs and appli-
cation-specific ones. All DSOs are loaded on demand only. This makes the
treatment of actions/inputs uniform. The greatest advantage probably is dur-
ing development. The system can replace all instances of an action/input by
a new implementation at run-time: it destroys all instances of a certain class (=
DSO), closes the DSO, then waits for the user’s ok, and finally loads the new
DSO and instantiates all former instances with the new class.

In order to achieve this dynamic loading/instantiating, classes must register
themselves with a factory, and instances must be created by that factory. Reg-
istration must be done at load-time of the DSO through class variables, which
are constructed at load-time.

It is easy to change parameters of actions/inputs/events at run-time by a
GUI. In order to facilitate a standardized and simple GUI implementation, each
class provides a description of its parameters and their types. That way, the
GUI can create a standardized form at run-time when the user wants to change
a parameter of some action. After that, the GUI has to call the paramChanged
method of the action, of course.

30

2.4 Implementation

Walk

loop()

of specialized
Action classes

signal() method
loop()
InputBase

ActionBase

loop()

Action classes
of specialized
loop() method

Input classes
of specialized
loop() method

Figure 2.14: Basic sequence diagram of the interaction manager.

The parser can be written in a similar standardized way. Each class provides
the parser with a map of keywords, types, and options, which tells the parser
how to parse an action/input/event. The parser can then create the instance
through the node factory. So, the burden of parsing is “out-sourced” from the
classes to the parser, although the parser has no a priori knowledge about what
attributes/parameters each class can have. With this mechanism, there is no
difference between “built-in” classes and application-specific ones. So it is pos-
sible to use application-specific classes in the VE script file, even though the
parser does not know about them (because, basically it does not know about
any classes).

2.4.1 Distributing the system

The architecture described above is suitable for multi-user VR (distributed VR).
I am not concerned here with the issues of latency, large-scale distribution (hun-
dreds or thousends of participants), network topology, or floor control.

When a new user registers, she has to receive a complete copy of the current
scene graph and the behavior graph (actions, inputs, and events). Then she
will make her own additions to that scene graph and the behavior graph (for
instance, the avatar representing herself). These additions will then be trans-
mitted to all other participants.

In a distributed VR system, input objects come as one of two variants: the
one assumed and discussed so far, or they are just a proxy. In non-distributed

31

2 SIMULATION OF VIRTUAL ENVIRONMENTS

system 2

system 1

the B-graph
this part of

system 2system 1

inputs

this part from

originated from

inputs

Figure 2.15: Behavior graphs can be distributed easily by replicating all ac-
tions/events/inputs and the scene graph. Proxy inputs provide a transparent
mechanism to broadcast messages to all VR systems. In the figure, the octag-
onal input nodes are proxy inputs which do not compute anything themselves
but replicate the message computed on the remote VR system and feed it into
the local system.

VR, all inputs are “real” inputs. In distributed VR, all inputs created by the
local system are “real” inputs, too. All input objects which have been received
as part of the behavior graph transmitted from other systems are instanced as
mere proxy inputs. A proxy input is one which does not really generate mes-
sages by itself. Instead, when the real input (located on a remote VR system)
generates a message, this message will be broadcast to all other VR systems.
They will take this message and “pretend” it has been generated by the respec-
tive local systems. Thus, distribution is transparent to the rest of the system
(see Figure 2.15).

The main loop needs to be augmented a little bit to provide for multi-user
VR:

main loop for distributed VR

loop:
clear global list new_messages
for each local input:

compute message (if any)
and store it in a global list new_messages

broadcast all messages in new_messages
to all other VR systems

receive new messages from other VR systems
and add them to new_messages {for the proxy inputs }

for each message ∈ new_messages:
call signal() of filter or action

32

2.4 Implementation

application layer (appl.-specific GUI)

scene graph layer (API)

scripting layer (general user interface)

Figure 2.16: I have identified three layers of increasing abstraction and special-
ization, on which authoring of a VE takes place.

Figure 2.17: For each application domain a specialized VE application builder is
needed, I believe, which provides the high-level functionality specific to that
area. These high-level functions can be mapped on the script level.

2.4.2 The three layers of authoring

In order to make VR an efficient tool to save time, it must be easy to “build” a
virtual environment which represents, for instance, part of a car and simulates
part of its physical behavior (see also Section 5.1). It must be at least as easy as
designing with a CAD system.

I have developed a three-layer framework of authoring such VEs; each layer
provides a certain level of abstraction and specialization. It has proven to be
flexible and powerful (see Figure 2.16).

The bottom layer is the scene graph : it deals mostly with geometry and ren-
dering optimizations. Some scene graph APIs, such as VRML2.0 or Inventor,
also provide very low-level scripting features (routes, engines).

The next level is the AEO scripting framework (see above). The functionality
provides general building blocks to construct VEs, each of which with higher-
level, yet general “story-board driven” functionality.

End-users working in a certain application domain (such as assembly simula-
tion) will specify scenarios at the application layer, which provides a graphical
user-interface (see Figure 2.17) and specialized, very high-level functionality
(e.g., the user tells the system which objects are tools).

33

2 SIMULATION OF VIRTUAL ENVIRONMENTS

Scenario templates

If parts had standard names, then a large portion of VEs could be derived from
standard “scenario templates” specific to the application domain, e.g., “front
door”, “tail light”, “gear box”, etc., or “office building”, “shopping mall”,
“city”, etc. So, for a VR session with a different geometry, a VE author would
only have to modify one of those templates.

However, it is not clear to us yet, whether designers will ever design all the
VR-relevant attributes. Some of them are geometric, like visible material, thick-
ness of metal sheets, and the like. So far, a lot of authoring time is spent basi-
cally on specifying the non-geometric (semantic) attributes of parts, such as
the function of objects (screw, tool, etc.), non-geometric materials (flexibility,
smoothness), the order of tasks in the (dis-)assembly process, etc.

34

Chapter 3
Collision Detection

And when you have reached the mountain top,
then you shall begin to climb.

KAHLIL GIBRAN

One of the main goals of using a VR system for assembly simulation is the po-
tentially high degree of “reality” which can be experienced when immersed

in a VE. In order to achieve this, the VR system needs to be able to simulate
realistic and natural object behavior at interactive frame rates.

Other tasks of a VR system in the context of virtual prototyping are geometri-
cal and spatial analyses. In a fitting simulation a designer might want to check
interactively, if a slightly larger, different part would fit in the place of the orig-
inal part. Or he might want to scale or shift a part while the system checks
all relevant safety distances. In order to check serviceability of a part, the VR
system has to track the work space necessary for the disassembly path and
for the tools, and it has to report both intentional and “forbidden” collisions.
During an assembly or disassembly simulation it is often necessary to simulate
kinematics in order to perform a sensible design study.

Real-time collision detection of polygonal objects undergoing rigid motion
is of critical importance in many interactive virtual environments. In particu-
lar, simulation algorithms, utilized in virtual reality systems to enhance object
behavior and properties, often need to perform several collision queries per
frame. It is a fundamental problem of dynamic simulation of rigid bodies and
simulation of natural interaction with objects. For example, in virtual proto-
typing, parts should be rigid and slide along each other. Especially for haptic
rendering of force-feedback, very fast collision detection is needed, as the hap-
tic rendering loop must run at 500 Hz, at least.

It is very important for a VR system to be able to do all simulations at interac-
tive frame rates. Otherwise, the feeling of immersion, the “believability” of the
virtual environment, and even the usability of the VR system will be impaired
severely.

3.1 The setting

3.1.1 The simulation loop

With collisions there are two tasks to be handled: collision detection and col-
lision handling. The former is the general problem of determining whether
or not objects penetrate (i.e., “something happened”), while the latter is the
problem of determining appropriate steps based on the current collision status,
which is usually handled by a simulation module. Although both parts pose in-
teresting problems, I will focus only on the collision detection part in this chap-
ter. For further reading on collision response see [Bar94, MW88, BV91, Hah88a].

35

3 COLLISION DETECTION

In general, collision detection is integrated into simulation loops almost al-
ways in the following way:

collision detection within a simulation loop

loop forever
move objects by simulation
check collisions
take appropriate actions based on collision reports
(e.g., highlight objects, do back-tracking,
or calculate forces, ...)

3.1.2 Requirements and characterization

The requirements for collision detection algorithms can be very demanding.
Especially for virtual prototyping, since CAD data has two characteristics: the
geometry is very large in terms of polygon counts (10,000–100,000 polygons
per object), because the tessellation error should not be larger than 0.5 mm; sec-
ondly, the geometry is not well-formed, i.e., there are gaps between polygons,
polygons could be duplicate or degenerate, and the geometry is not 2-manifold
in general — hence such geometry is named polygon soups.

In spite of the geometrical difficulties, collision detection must be fast enough
under all circumstances, so that real-time simulations can perform several it-
erations per frame. For instance, a rigid body simulation could need 10–20
iterations per loop (see Section 4.5.4). And force-feedback needs at least 500
collision queries per second in order to be able to render “aliasing-free” forces.

Furthermore, the algorithm cannot make any assumptions or estimations
about the position of moving objects in the future when they are being moved
by the user (noise, jitter).

The following is a wish list of features which the ultimate algorithm would
satisfy completely:

• Given a certain form of representation, it should be able to handle the
largest possible class of objects (e.g., deformable “polygon soups” in the
polygonal B-rep). An important subset is the set of convex polytopes.
Other classes can be found in [Tou88].

• It should be fast (goal: 2 × n × 100, 000 polygons in ≤ 1 millisecond
checked).

• In case of a collision it should return a witness, i.e., a pair of intersecting
polygons plus a point of intersection; alternatively, it should be able to
return all pairs of intersecting polygons.

• Given the current and previous position, it should be able to compute the
exact time and position of collision. Exact time and position is needed
by simulation algorithms, in particular rigid body simulations (see Sec-
tion 4.5.4).

• It should not need very large auxiliary data structures. In particular, con-
struction of these data structures should not take too long (≤ 1 second per
object). Otherwise, those data structures would have to be constructed in
a preprocess and saved with the original geometry. This can be a problem
for the acceptance of VR in large IT infrastructures of companies.

As of today, no algorithm is known which meets all requirements. Therefore,
algorithms expose some characteristic features or restrictions:

36

3.1 The setting

• Exact collision detection is generally harder than approximate collision
detection. The latter is usually biased, i.e., the algorithm tends to favor
one answer over the other (see Section 3.4.3). The bias is caused by using
some sort of simplification or a probabilistic algorithm. For instance, for
collision avoidance an approximate algorithm with a bias for “intersec-
tion” can be sufficient [CAS92].

• 4-dimensional approaches take time into account [Hub93, Can86, ES99].
The time dimension can be used to compute the exact time and position
of a collision.

“Timeless” approaches consider all objects only at a certain time (they still
keep in mind that objects probably move — unlike approaches in com-
putational geometry). If timeless approaches have to provide the time of
collision more accurately, they will resort to some kind of back-tracking
method.

This class of collision detection algorithms is sometimes called dynamic,
while the “timeless” one is called static.

• Incremental. Some algorithms try to exploit temporal coherency in order
to speed up the collision detection procedure. This can increase memory
costs significantly, since they need additional data structures. Further-
more, they need to store results from earlier collision detection queries.
(see Sections 3.4.3 and 3.4 for example).

These algorithms are also called dynamic, while non-incremental algo-
rithms are called static.

• Hierarchical algorithms exploit spatial coherence by divide-and-conquer
techniques.

Hierarchies can be built above object level or on polygonal level, by space
subdivision (see Section 3.8), or by plane sweep.

• Restricting the domain of input objects can sometimes allow for more
efficient algorithms. Examples are the restriction to rigid bodies and/or
convex polytopes.

• Many applications can do with off-line (i.e., not real-time) collision detec-
tion, because the application is not driven by real-time input like in VR
environments, for example, path planning in robotics or physically-based
simulation for animation.

3.1.3 Object Representations

The internal representation of graphical objects has great impact on the choice
of algorithms, not only for collision detection, but also for rendering, modeling,
and many other parts of an interactive graphical system.

Several different approaches to object representation have been developed.
They can be distinguished into boundary-based versus volume-based. Bound-
ary-based object representations are the classical polygonal b-rep, parametric
surfaces (B-Splines, NURBS, etc.), or “augmented” octrees [CCV85, NAB86,
FK85]. Some volume-based object representations are the well-known octree
[YKFT84, TS84, FA85, NAB86, Dye82, TKM84], BSP [PY90, TN87b, NAT90b,
Tor90, Van91], and CSG. Not so well-known representations are sphere splines

37

3 COLLISION DETECTION

[MT], which approximate an object by moving a sphere along some spline
curve while varying its radius; ray-reps [MMZ94], which represent an object
by a collection of parallel line segments of varying length and position; and the
H-P model, which approximates an object by slices of a sphere [CM87].

All of these object representations have been devised to suit special needs;
some of them are still in use today. BSPs have been devised for hidden-surface
removal without z-buffer hardware. It is also fairly straight-forward to com-
pute boolean operations on them. Parametric surfaces are used in CAD sys-
tems to model curved surfaces with higher continuity. Octrees are also used in
solid modelers and for representing volume data.

Octrees and BSP trees are well suited for intersection computations of poly-
hedral objects; however, we are not really interested in the construction of the
intersection of two polyhedra. On the other hand, octrees cannot provide for
exact collision detection algorithms (unless augmented octrees are used), and a
huge amount of memory is needed to achieve a fairly reasonable accuracy. Fi-
nally, both will probably never be the native representation for VR applications
(although octrees sometimes are being employed for scientific visualization).

The advantage of b-reps is that they can easily hold topological information
about the geometry, such as adjacency and incidence of features (i.e., vertices,
edges, polygons). Octrees are better suited for computing mechanical proper-
ties like mass, volume, inertia tensors, etc. [LR82, TKM84].

Sphere splines and sphere coverings (the discrete variant of sphere splines
[OB79]) are also only approximate representations, thus they cannot provide
for exact collision detection algorithms.

Research has been done on real-time rendering of NURBS [AES94, Pet94,
KML95]. I believe that, eventually, polygonal rendering on high-end graph-
ics workstations will be supplemented (if not replaced) by NURBS. However,
NURBS rendering will not become an option before several years.

3.1.4 Definitions

Depending on the class of objects being checked, there are different possible
definitions of the term collision. Let P, Q be two objects:

1. arbitrary objects: ∃ e ∈ E ∃ p ∈ F : e ∩ p = x ∈ R3

2. closed objects:

∃x ∈ R3 : x ∈ P ∧ x ∈ Q

or

d(P, Q) := min{ |p− q| : p ∈ P, q ∈ Q } > 0

i.e., their distance does not vanish.

3. convex objects:

∀ e ∈ E : e ∩ P 6= ∅
or

∃plane w ∈ R4 : ∀ v ∈ P : v is left ofw ∧ ∀ v ∈ Q : v is right of w

(other definitions are possible)

38

3.2 The basic operation

Sometimes, the term collision detection is understood as the problem of con-
structing the intersection P ∩ Q. Of course, the detection problem can be re-
duced to the construction problem. However, since the latter is generally not
needed in VR applications, and since it is by orders of magnitude harder, I will
consider only the detection problem.

3.2 The basic operation

With almost all collision detection algorithms the basic operation is polygon/-
polygon intersection, or edge/polygon intersection. Basically, all collision de-
tection algorithms are concerned with trying to avoid as much polygon/poly-
gon tests as possible.

For the sake of completeness, I will quickly review some of the polygon-
polygon intersection algorithms. Most of the algorithms gain their efficiency
by reduction of dimensionality.

In [Zac94b] I have presented an efficient implementation of edge/polygon
intersection tests. Only one division is involved; before executing that division
there are many pre-checks based on sign comparisons and other tests, which
can reject many non-intersecting edge/polygon pairs trivially. Should the ac-
tual intersection be necessary the point/in-polygon test is reduced to 2D.

Polygon/polygon intersection tests can be reduced trivially to edge/polygon
intersection tests by testing each edge of one of the polygons against the other
polygon, and vice versa.

Other efficient polygon/polygon intersection tests have been presented
by [Möl97, Hel97]. The idea of the former is to compute the intersection of
the supporting planes, which is a line. Then, each polygon is intersected with
that line, which yields two intervals. The polygons can intersect only, if the
intervals on the line intersect. The idea of the latter is to compute the intersec-
tion of one of the polygons with the supporting plane of the other one, which
yields a line segment. Then, the line segment is tested for intersection with that
polygon in 2D.

The method presented in [Möl97] works only for triangles, as does the
method in [Hel97], although the latter could be extended to work for arbitrary
convex polygons. My method works for arbitrary, not necessarily convex, poly-
gons.

I have carried out extensive timing comparisons between [Möl97] and my
method. It turns out that for triangles the algorithm [Möl97] is faster. For
5-gons and higher, my algorithm is faster than a triangulation and repeated
triangle intersection. The break-even point are quadrangles. Table 3.1 substan-
tiates that.

The column “Möller” denotes the algorithm of [Möl97]. When Möller is ap-
plied to quadrangles, each of them must be split into 2 triangles and then up
to 4 pairs of triangles are tested. Splitting a quadrangle involves finding a con-
cave vertex if the quadrangle is non-convex. This was done because I combined
both algorithms mine and “Möller”, and depending on the case one of the two
are called. So, in order to determine the break-even point, all preliminary tests
had to be taken into account.

Although it is desirable to have a polygon intersection test at hand which is
as fast as possible, the importance lessens significantly as the number of poly-
gon/polygon tests is reduced by more sophisticated algorithms. The algorithm
in the next section (3.3) still needs to do a lot of those tests. However, algorithms

39

3 COLLISION DETECTION

triangles Mix Möller Zach

2 triangles non-intersecting 2.3 5.7
intersecting 2.9 3.4
mix, 3.5% intersect 2.3 5.6

2 convex non-intersecting 7.6 7.8
quadrangles intersecting 6.7 5.4

mix, 42% intersect 7.3 6.8

2 concave non-intersecting 7.4 7.5
quadrangles intersecting 7.7 5.0

mix, 5% intersect 7.5 7.4

2 concave non-intersecting 11.3 11.0
5-gons intersecting 7.9 7.6

mix, 29% intersect 10.4 10.0

Table 3.1: Comparison between my polygon-polygon intersection algorithm and
the one presented by Möller [Möl97]. 1 million random polygons were tested.
The figures are in microseconds for testing one pair; they were obtained on a
194 MHz R10000.

such as the hierarchical ones do much less of them. Of course, the right balance
has to be found between the effort of avoiding polygon/polygon tests and the
costs involved.

3.3 Bounding-box pipelining

The brute-force algorithm is “so trivial that it is not even worth a literature ref-
erence” [MP78]. It goes as follows. Check every edge of polyhedron P if it
intersects any of the polygons of polyhedron Q, and vice versa. (It is not suffi-
cient to check only the edges of P against polygons of Q; and, it is not sufficient
to check whether there are some vertices inside the other polyhedron, provided
they are closed). Alternatively, one can check polygons against polygons.

From this very simple algorithm, it is obvious that edge/polygon or poly-
gon/polygon intersection tests are the basic operation of (almost) all collision
detection algorithms. Actually, most algorithms use polygon-polygon intersec-
tion tests as fundamental operation, which is more convenient from a practical
point of view. In the following, I will do so, too.1

By adding several pre-checks in a pipelined way such that the computation-
ally cheaper tests come first, we can achieve a considerable improvement.

Trivially, if a polygon f ∈ FP is not (partially) in the bounding volume of
Q then f needs not be considered any further. Similarly, we observe, that a
polygon f ∈ FP can intersect a polygon g ∈ FQ only if g is (partially) in the
bounding volume of P. So, before we check polygons of P against polygons

1 If we assume that a polygon/polygon intersection test is computationally as expensive as 2 × 4
edge/poygon intersection tests, then it might seem inefficient to do polygon/polygon tests instead
of edge/polygon tests, because the brute-force algorithm basically tests each edge twice. How-
ever, with optimized algorithms, polygon/polygon tests are performed very rarely. In addition,
an object has about 2|F| many edges (assuming quadrangles). So, any algorithm which basically
operates on bounding volumes of polygons and edges needs to process about twice as many edge
bounding boxes than face bounding boxes.

40

3.3 Bounding-box pipelining

bboxP (Q)

bboxQ(P)
P

g

f

Q

Figure 3.1: Doing bounding box checks
in the appropriate coordinate system is
an application of the principle of prob-
lem transformation.

Figure 3.2: Lazy evaluation of bounding
boxes saves a lot of computations, too.

of Q, we collect, in a pre-phase, all polygons of Q which are in the bounding
volume of P; these will be denoted by the set F̄Q. Then, polygons of P are
checked only against polygons of F̄Q.

The pre-checks explained so far are bounding volume checks. Since such pre-
checks must be very efficient in order to gain anything, I have chosen bounding
boxes; other bounding volumes might be suitable as well.

It is important that the bounding box checks are done in the most efficient
coordinate system, i.e., by choosing the coordinate system carefully, we can
save a lot of transformations. So, the collect-phase for g ∈ FQ should be done
in Q’s coordinate frame, while bounding box tests for f ∈ FP should be done
in P’s coordinate frame (see Figure 3.1). That way, no vertex transformations
are needed to compute bounding boxes of polygons.

A second technique is lazy evaluation of bounding boxes. At some point
in the bounding box “pipeline”, it will be necessary to actually compute the
bounding box of polygons (unless the object is stationary, this has to be done
every frame). The naive approach would transform the vertices of a polygon
into world space, then compute the bounding box, and finally test the bound-
ing boxes. However, it is more efficient to first compute only the x-coordinates
of the vertices involved, then the x-slab of the bounding boxes, and then com-
pare those (see Figure 3.2). Only if they overlap, the y-slabs and z-slabs should
be computed.

At first glance, it might seem inefficient to compute face bounding boxes from
scratch every time the object has moved. One might think that it would be
much faster to store a face’s bounding box (in object coordinates) and transform
it later on. However, in (almost) all practical cases, polygons have only 3–5
vertices, and a bounding box can be found by merely comparing points, while
transforming a box costs at least 36 FLOPS (see [Gla90] and [Zac94b, p. 84]).

The “inner” loop can be made more efficient by sorting the polygons in F̄Q

along the x-axis, for instance (this requires only the x-slabs to be valid). Let
f ∈ FP be the polygon to be checked against polygons of Q. Let bboxh

x(f)
denote the upper x-coordinate of the bounding box of f (I will call this a right
bracket — left brackets are defined analogously). Assume we do a scan over F̄Q

from left to right (low to high) along the x-axis, and assume furthermore that
we consider only left brackets. Since all slabs are sorted, we can stop the scan
after we have passed bboxh

x(f). Additionally, ∀g ∈ F̄Q : bboxl
x(g) ∈ bboxx(f)

we do not have to test the x-slabs for overlap. Only for those g, whose left

41

3 COLLISION DETECTION

x

d

f

Figure 3.3: By sorting brackets of all polygons, one can significantly reduce the
number of polygons to be visited.

bracket is left of f ’s left bracket, we need to test bboxh
x(g) ≥ bboxl

x(f). All of
the above tests happen in Q’s space.

In general, polygons are small compared to the size of the object. We can
exploit this in order to get rid of almost all of the above comparisons. So, if
the largest of all x-slabs in F̄Q is d wide, then it is sufficient to consider only
left brackets of F̄Q in the range [bboxl

x(f)− d, bboxh
x(f)], and only those g with

bboxl
x(g) ∈ [bboxl

x(f)− d, bboxh
x(f)] have to be tested by comparison (see Fig-

ure 3.3). An upper bound for d is the maximum size of all polygons. Alterna-
tively, d could be determined with each collision query. We can find the first left
bracket just right of bboxl

x(f)− d by a combination of binary and interpolation
search2 [AHU74].

Finally, we do not need to consider all f ∈ FP in the outer loop. By sorting
FP with respect to bboxl

x(f) (in P’s space) we can find quickly fi such that
bboxl

x(fi−1) < bboxP(Q) − e ≤ bboxl
x(fi), where e is the maximal length of

polygons of P.
So, the refined algorithm looks like:

Pipelined BBoxes

sort {bboxl
x(f) | f ∈ f P} {needs to be done only once }

F̄Q := {g ∈ Q|bbox(g) ∩ bboxQ(P) 6= ∅}
sort {minx(g) | g ∈ F̄Q}

find fk ∈ FP such that

minx(fk−1) < bboxP(Q)− e ≤ minx(fk)
l = k ...until fl > bboxP(Q) :

bboxP(fl) ∩ bboxP(Q) = ∅
−→ next fl

bboxQ(fl) ∩ bboxQ(Q) = ∅ {bboxQ(fl) is needed anyway }
−→ next l

2 Interpolation search is a variant of binary search which performs better by a factor if the data is
evenly distributed.

42

3.3 Bounding-box pipelining

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

av
g.

ti
m

e
/m

ill
is

ec

complexity / kilo-polygons

sphere

♦♦
♦

♦

♦♦

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

av
g.

ti
m

e
/m

ill
is

ec

complexity / kilo-polygons

lock

♦
♦

♦

♦

♦

Figure 3.4: Performance of the BBox pipeline algorithm. Two identical objects
have been tested using the procedure outlined in Section 3.5.10. The number of
polygons is for one object. Left: sphere; right: door lock.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5

av
g.

ti
m

e
/m

ill
is

ec

distance

144

♦♦♦♦♦♦

♦
484

+

+++++

+
1024

¤

¤¤¤¤¤

¤
2704

×

×××
×

×

×
10404

4
4

4
4

4

4

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5

av
g.

ti
m

e
/m

ill
is

ec

distance

1771

♦♦♦
♦♦

♦

♦
2817

++
+

+

+
+

+
6708

¤¤
¤

¤

¤
¤

13024

××

×

×

××

×

Figure 3.5: Performance of the BBox pipeline algorithm with respect to distance.
Figure 3.4 has been derived from these data by averaging over distance. The
number of polygons is for one object. Left: sphere; right: door lock.

find gi ∈ F̄Q such that {bboxes are Q’s space }
gi−1 < minx(fl)− d ≤ gi

j = i ...until gj > maxx(fl) :
bboxy(gj) ∩ bboxy(fl) = ∅ −→ next j
dito with z
gj and fl intersect

−→ return "intersection"

This algorithm is well suited for parallelization (see Section 3.10)

3.3.1 Good and bad cases

Although the algorithm is still O(n2) in the worst case, it performs remarkably
well in practical cases (see Figures 3.4 and 3.5), especially since it does not need
any additional data structures.3

I believe this is due to two complementary effects:

• If objects do not collide and are not too close to one another, then there
will not be many polygons in F̄Q, and not many polygons f ∈ FP pass
the first bounding box test.

3 More plots can be found at http://www.igd.fhg.de/~zach/coldet/index.html#bbox-pipeline

43

http://www.igd.fhg.de/~zach/coldet/index.html#bbox-pipeline

3 COLLISION DETECTION

• If objects do intersect “fairly” (to be discussed in a moment), then chances
are good that the algorithm will find a pair of intersecting polygons early.

The above are two “good” cases for almost all collision detection algorithms.
There are also two bad cases:

• Both objects do not overlap but almost touch each other. In that case,
there are many polygons in bbox(P) ∩ bbox(Q).

• Both objects overlap by a large amount, i.e., bbox(P) ∩ bbox(Q) is large
compared to the volume of both objects. In that case, there are so many
pairs of polygons to be tested, that it takes a long time until the algorithm
finds one.

3.4 Convex polytopes

The restriction of a geometric problem to convex polytopes quite often results
in more efficient algorithms. The same is true with collision detection.

Convex polyhedra allow one to view the problem in many more different
ways than arbitrary objects could offer: one can consider a convex polyhedron
not only as a collection of polygons, edges, and vertices with certain properties,
but also as the intersection of half spaces, or as the convex hull of its vertices.
These are not different internal representations of convex objects, but merely
different ways to look at the data.

The general usefulness of convex collision detection algorithms by them-
selves is questionable,4 at least in the area of virtual prototyping and physically-
based simulation. However, convex hulls can be utilized earlier in the collision
detection pipeline for filtering out unnecessary exact collision checks (see Sec-
tion 3.9), and they might be useful for special applications like simulation of
wires composed of cylinders [HD00].

Basically, there are two types of representation of convex hulls: vertex rep-
resentation and facet representation. The construction problems are named
vertex enumeration and facet enumeration problem, resp. Sometimes, the for-
mer is also called the irredundancy problem [Sei97], because finding the vertex
enumeration is equivalent to finding the vertices which are not redundant.

The efficient construction of convex hulls has been a long-time area of re-
search in the field of computational geometry. Two classes of algorithms can
be distinguished: graph-traversal algorithms and incremental algorithms. The
former are also called static or off-line, while the latter are also called dynamic
or on-line algorithms. Graph-traversal algorithms conceptually consider all
vertices at any time. They construct “the right” convex hull from scratch. On
the other hand, incremental algorithms consider one vertex after the other.
They usually start with the convex hull of a trivial subset of the vertices, which
is expanded gradually. Some famous graph-traversal algorithms are the “gift-
wrapping” [CK70] algorithm and [Sei86, AF92]. Examples of incremental algo-
rithms are the “beneath-beyond” method [Kal84] and [CS88, Cha93, BDH93]. I
used the latter, because an implementation is readily available [BDH96, BH97].

While many of the earlier algorithms have complexity O(n2) (including Qick-
hull), there are also algorithms with complexity O(n log n), such as the di-
vide&conquer algorithm presented by [PH77]. However, it seems that Quick-

4 Imagine one of the objects of Figure 3.42 decomposed into convex pieces, not to speak of non-closed
objects.

44

3.4 Convex polytopes

hull is output sensitive in practice.
In the following I will discuss several algorithms for collision detection of

convex objects.

3.4.1 Static algorithms

Computational geometry

When computational geometers directed their attention to the problem, the
goal at first was to construct the intersection of two polytopes. Only later on,
researchers realized that the detection problem is interesting by itself and can be
solved in fact more efficiently than the construction problem. The main goal
of research in this area has been to find algorithms with optimal asymptoti-
cal worst-case complexity. All results apply only to the strictly static case, and
most algorithms consider geometrical features of an object to be given in world
coordinates.

The first to present a construction algorithm which has an asymptotical com-
plexity below the trivial O(n2) were [MP78]. Like many linear programming
algorithms, the algorithm consists of two phases: the first one searches for a
point in the intersection of the two polyhedra, the second phase then constructs
the actual intersection (if any) by taking the dual of the two polyhedra, form-
ing the union of these duals, and finally computing the dual of the result again,
which yields the intersection. The overall complexity is O(n log n).

Another approach computes the distance of convex polytopes by a hierarchi-
cal boundary representation [DK85]. The bottom of any hierarchy is a tetrahe-
dron. A separating slab of two convex polytopes can be found by the following
procedure: construct a separating slab for the two tetrahedra, then maintain
this slab as the algorithm moves upward in the hierarchy.

This algorithm has been improved by [MS85]. They present an algorithm
which constructs the intersection of two polyhedra one of which can be non-
convex. They also use the hierarchical representation of polyhedra and achieve
the same upper bound.

The best upper bound for the detection problem, to my knowledge, is given
by [DK83]. The algorithm has worst-case complexity of O(log2 n), n = |V|.
However, the algorithm seems to be very involved, and no implementation is
known to me. Besides, it assumes the polyhedra to be pre-processed in a certain
way which does not lend itself directly to moving objects. Other works on the
detection problem are [CD87, Rei88].

Clipping

Collision detection between two convex polytopes can be solved by clipping.
Clipping at convex polytopes is solved by the Cyrus-Beck algorithm. Again,
clipping is the construction problem, and the detection problem (“does an edge
have a common point with a convex polytope?”) can be solved more efficiently
[Kol97]. The idea is that an edge is supported by a pencil of planes. The edge
does not intersect the polytope, if there are two planes which do not intersect
the polytope. Checking planes for intersection with the polytope can be done
more efficiently than actually clipping lines. By transforming the problem into
dual space it can be done even more efficiently. This is because planes become
points, convex polytopes become a pair of convex, piecewise linear, continuous

45

3 COLLISION DETECTION

functions, and the problem is to determine whether or not the point (i.e., plane)
is contained in either of the convex functions (i.e., a point location problem).

I compared the Cyrus-Beck clipping algorithm (including several bounding
box pre-checks) with the algorithm of Section 3.3. The result is that clipping is
much slower (up to 2 times slower for objects with only 250 polygons)! This is
because with clipping much less pre-checks can be done.

3.4.2 Incremental convex algorithms

It seems that convex objects are particularly well suited for incremental algo-
rithms. Several algorithms have been presented exploiting temporal coherence.

The first one seems to have been presented by [LC92, CLMP95], which tracks
closest features. [vdB99] has improved the GJK algorithm ([GJK88]) by turning
it into an incremental version using the notion of a separating axis. A differ-
ent approach at computing a separating axis has been presented by [Chu96].
However, their proof for convergence seems to be wrong ([vdB99]).

3.4.3 Separating Planes

Inspired by neural networks (more precisely, by perceptrons [HKP91]) I have
developed an algorithm which does not require any preprocessing of the poly-
topes except its adjacency map.

If we consider a convex polyhedron to be the convex hull of its vertices, we
can use the notion of linear separability: P and Q do not intersect iff there is a
plane h such that all vertices of P are on one side, and all vertices of Q are on the
other side (see Figure 3.6). Such a plane is called a separating plane, and P and
Q are called linearly separable. Let P = {p1, . . . , pn}, Q = {q1, . . . , qm} ⊆ R3.
Then

P, Q are linearly separable :⇔
∃w ∈ R3, w0 ∈ R ∀i, j : pi · w− w0 > 0 , qj · w− w0 < 0

Translating the above into projective space we get

P, Q are linearly separable ⇔
(pi ,−1) · (w, w0) > 0 , (qj,−1) · (w, w0) < 0 ⇔
(pi ,−1) · (w, w0) > 0 , (−qj, 1) · (w, w0) > 0

If P and Q do intersect, the algorithm presented above will not terminate.
This can be fixed in two ways: One way would be to stop the loop after a
certain amount of iterations. If it has not found a separating plane, we will just
assume that P and Q are not linearly separable. This would turn the algorithm
into a probabilistic one, biased towards “not linearly separable”.

There is a very simple algorithm to compute w for perceptrons:

Perceptron learning rule

input: Z = {zk} := {(pi ,−1), (−qj, 1)}
guess an arbitrary start vector w0, say, (0, 0, 0, 1)
loop

∃z : z · wl < 0
−→ wl+1 := wl + η · z

46

3.4 Convex polytopes

P

Q

plane
separating

Figure 3.6: Two convex polyhedra do
not intersect if they are linearly sepa-
rable.

Figure 3.7: With hill climbing, the sep-
arating plane algorithm needs to visit
only a fraction of all the points.

∀z : z · wl > 0
−→ ↑ w is separating plane

The idea of this algorithm is to “turn” the separating plane a little bit whenever
it finds a point z which is still on the “wrong” side of it.5

In order to avoid calculating z · wl for all points, I use hill climbing to find
the global minimum. If the start point is a long way from the minimum, hill
climbing will walk on a “trail” toward that minimum calculating the dot prod-
uct only for a fraction of all the points (see Figure 3.7). If the plane was not a
separating plane, it is moved, but the new minimum with respect to the new
plane is probably not far from the old minimum.

The algorithm above assumes that the points of P and Q are given in the same
coordinate system. However, since one of them or both are moving, this is not
true. So, the points first have to be transformed into world space.6 We can save
that transformation by transforming the plane w into P’s and Q’s coordinate
system, resp.: w · zT = w · (p · M)T = (w · MT) · pT, where M is P’s and Q’s
transformation matrix, resp. That way, we actually maintain the plane in both
coordinate systems.

There is another possibility to make the algorithm terminate always: we can
establish an upper bound lmax for l, the maximum number of loop iterations
needed to find a separating plane for two linearly separable polyhedra. This
upper bound is independent of the number of vertices; it depends only on
the distance D between P and Q. The mathematical details can be found in
[Zac94b, HKP91].

However, computing the distance is not really what we want to do, because
then we do not need to find a separating plane anymore. And since we plan
to use convex collision detection only as a pre-check in the collision detection
pipeline, it does not really matter if the test occasionally returns a wrong an-
swer as long as it never dismisses a pair of objects which actually do collide.

Simulated annealing. The algorithm above is an optimization algorithm.
The goal is to find the global maximum of D(w) = 1

|w| min{wzi}. Step by

5 A movie showing the algorithm in action can be found at http://www.igd.fhg.de/~zach/

coldet/index.html#movies
6 We could instead choose P’s or Q’s coordinate system, too, but here this wouldn’t improve perfor-

mance.

47

http://www.igd.fhg.de/~zach/coldet/index.html#movies
http://www.igd.fhg.de/~zach/coldet/index.html#movies

3 COLLISION DETECTION

0

5

10

15

20

25

30

0.003 0.01 0.1 1

er
ro

r/
%

η

max. 10 iterations

♦
♦ ♦ ♦ ♦

♦
max. 100 iterations

+

+

+ + + + + + +

+
max. 300 iterations

¤
¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤

¤
max. 1000 iterations

× × × × × × × × ×

×

2

4

6

8

10

12

14

16

18

20

0.2 0.4 0.6 0.8 1 1.2 1.4

er
ro

r/
%

annealing factor

max. 10 iterations

♦

♦

♦
♦♦

♦

♦

♦ ♦
max. 20 iterations

+

+
+

++
+

+

+

+
max. 50 iterations

¤

¤
¤¤¤¤

¤

¤

¤
max. 100 iterations

×
×

×

×

×
×

×

×

×
×

×

×

Figure 3.8: Impact of η and the max.
number of iterations on the correct-
ness of the separating planes algo-
rithm. The error is the number of
times where the separating planes al-
gorithm returned with “collision”, but
there was none, in fact.

Figure 3.9: Optimal annealing factor for
η with various maximum iterations; the
initial η is the optimal one when doing
no annealing. A factor of 1.0 means no
annealing is being done.

step, the algorithm tries to move further into the direction of that maximum.
So, like other optimization algorithms, I tried simulated annealing to increase
the convergence. A “temperature” factor of 0.97 turned out to be optimal.

Another way to increase convergence could be to base η on the “badness” of
the current (not yet separating) plane with respect to the current point being on
the wrong side. Then, an update would be computed by wl+1 := wl + wl z

|wl ||z| · z.
However, it is not clear (without actually trying) that this approach is really
faster, since the update equation is computationally much more expensive than
the original one.

Incremental collision detection. The separating planes algorithm can be eas-
ily extended to an incremental method (which I have implemented): for each
pair of objects we store the plane which the algorithm ended up with, and the
two points realizing the global maximum of the hill-climbing step. When the
same pair of objects is checked for collision the next time, we use this plane
for the initial “guess”, and the two points for the starting points of the hill-
climbing. If objects have not moved very much since the last collision query,
this initial guess will probably be a good guess. If the two objects did not col-
lide the last time, and they do not collide this time, chances are good that it
suffices to check that the two cached points still realize the global maximum. If
they are, then the hill-climbing step will just visit all their neighbors.

Results. Several tests were carried out to evaluate the feasibility of the ap-
proach.7

The first test was designed to find out the impact of the two parameters: the
maximum number of iterations, and the update parameter η (no annealing);
see Figure 3.8 for the results.

I also tried to measure the effect of how the initial plane is computed. Three
methods were considered: the trivial plane w = (1, 0, 0, 0); the plane through

7 Scenario: two cones bouncing off each other.
Invocation: movem -x 10 -t 1000 co -e 1.5 -p <eta> <max.iter.>.

48

3.4 Convex polytopes

0

50

100

150

200

250

300

0 20 40 60 80 100 460 480 500
n

u
m

.t
im

es
number of iteration steps

5
4
3
2

Figure 3.10: The maximum number of steps can be chosen fairly precisely such
that neither too many false collisions are reported nor too many futile iterations
are performed. In the plot, each graph corresponds to a different extent of the
environment, which consists of 10 objects bouncing off each other.

the midpoint between the two barycenters of P and Q, and the normal of the
plane is the line through the two barycenters; and, finally, like the previous
method but using the barycenters of the bounding boxes of P and Q.

initial plane error/% (max. num. iter.) improvement
iter. ≤ 10 iter. ≤ 100 iter. ≤ 1000
η = 0.25 η = 0.03 η = 0.007

trivial 24 3.0 0.50 1.0 1.00 1.00
barycenters 16 2.8 0.37 1.5 1.07 1.35
bbox centers 15 2.8 0.37 1.6 1.07 0.37

This shows that we can save some time by choosing a non-trivial estimate of
the separating plane. In addition, it shows that a very simple estimate serves
well enough.

The last test’s purpose was to find out the optimum factor for the annealing
of η. Again, the test was done for various maximum numbers of iterations.
For each of these, the optimum initial η was chosen. The initial guess for the
separating plane was done with the third method, i.e., the plane between the
barycenters of the bounding boxes. See Figure 3.9 for the results. It is not clear
to me why annealing helps only in the cases where 10 or 20 iterations are the
maximum.

Finally, I tried to determine a “good” value for the maximum number of it-
erations. The smaller that number is, the more collisions might be reported in
cases where the objects are only almost touching; and the larger it is, the longer
the algorithm needs until it can assume a collision in those cases where the
objects are really intersecting. Fortunately, based on Figure 3.10 a fairly good
choice of the maximum number of steps can be made. It is a histogram of the
number of iterations the algorithm needed until it found a separating plane,
depending on the density of the environment. The numbers were determined
by having 10 convex objects bounce off each other in a cube of the given size.
The maximum number of iterations was set to a very large value.

Adaptation to the future by feedback. The separating planes algorithm can
adapt to the constellation of the two objects by feedback from the exact collision

49

3 COLLISION DETECTION

0

100

200

300

400

500

600

700

800

1.7 1.8 1.9 2 2.1 2.2 2.3

ti
m

e
/m

ic
ro

se
c

distance

bbox pipeline (132)

♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦

♦
i_collide (132)

+
+ + + +

+ + + + + +

+
separating plane (132)¤

¤

¤

¤ ¤

¤

¤ ¤ ¤ ¤ ¤

¤
i_collide (2652)

× × × × ×

×
separating plane (2652)

4

4

4

4 4 4 4 4

4

0

20

40

60

80

100

120

140

2 2.05 2.1 2.15 2.2 2.25 2.3

ti
m

e
/m

ic
ro

se
c

distance

bbox pipeline (132)

♦ ♦ ♦ ♦ ♦

♦
i_collide (132)

+ + + + +

+
separating plane (132)

¤
¤ ¤ ¤ ¤

¤
i_collide (2652)

×
× × × ×

×
separating plane (2652)

4 4 4 4 4

4

Figure 3.11: Dependency of two convex incremental collision detection algo-
rithms on distance. The numbers in parentheses denote the number of poly-
gons of each object. It is remarkable that for small polygon counts in the case of
intersection, the bounding box pipeline algorithm is faster than the incremental
ones.

detection: when the exact collision detection has found a collision, it is very
likely that there will be a collision during the next frame. In that case, it is futile
to try to find a separating plane for the next frame. So we can as well decrease
the maximum number of iterations.

Should there be no collision, although the separating plane algorithm has
taken the maximum number of iterations, then we increase the maximum num-
ber of iterations. In such a situation, we might have prevented doing an exact
collision detection if the separating plane algorithm had done more iterations.

This adaptation tries to predict the future and do less work since the result
is probably known already. Only when the prediction has failed, the algorithm
has to spend more work in the current frame (and a little bit more in the future).

Comparison between separating planes and Lin-Canny. I compared my im-
plementation of the separating planes algorithm with the Lin-Canny algorithm
as implemented in I_collide [CLM+]. That implementation was ported onto
the same data structures as the separating planes algorithm lives on.

With incremental algorithms, several dependencies should be examined.
How does the average collision detection time depend on the number of poly-
gons (it should be sub-linear), the distance, and rotational velocity? In addition,
the usual dependencies should be checked, in particular, how does it perform
when objects collide?

For the following benchmarks, I have used the scenario as described in Sec-
tion 3.5.10, except that for fairness, the moving object does not spin around its
center, instead it orbits around the stationary one (if it would only spin, then
the separating plane would never have to be moved again once a valid plane
has been found). Two spheres have been chosen for producing the following
benchmarks, because they are “uniform”. For the separating planes algorithm,
the maximum number of steps was set to 300. Times are averaged over 5,000
samples for each distance. At all distances, there were only 0 − −3 wrong re-
sults, except for distance 2.000060 which yielded 1256 wrong results.

The plots in Figure 3.11 show how collision detection time depends on dis-
tance between two objects (each time is the average over many samples and
rotational velocities). It is remarkable that for small polygon counts in the case
of intersection the bounding box pipelining algorithm (see Section 3.3) is faster

50

3.4 Convex polytopes

10

15

20

25

30

35

40

45

50

55

60

0 2000 4000 6000 8000 10000

ti
m

e
/m

ic
ro

se
c

polygons

bbox pipeline

♦

♦
i_collide (1◦)

++ +
+

+

+
separating plane (1◦)

¤¤ ¤ ¤ ¤

¤
i_collide (20◦)

×

×

×

×

×
separating plane (20◦)

4
4
4

4

4

4

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

ti
m

e
/m

ic
ro

se
c

rot. velocity / degrees per rot. step

i_collide (132)

♦

♦

♦

♦

♦
separating plane (132)

+
+ +

+

+
i_collide (2652)

¤

¤

¤

¤
separating plane (2652)

×

×

×

×
×

Figure 3.12: Collision detection time
seems to be sub-linear in the number
of polygons, where the hidden con-
stant depends on the rotational veloc-
ity.

Figure 3.13: The complexity of I_collide
seems to be sub-linear in rotational ve-
locity while my separating planes algo-
rithm seems to be linear, but with a
much smaller constant.

than any of the incremental algorithms. Furthermore, I am surprised that the
separating planes algorithm depends very little on distance. One would sus-
pect that with almost touching distances (such as 2.05) the algorithm would
need significantly more time to find a separating plane.

Figure 3.12 shows how the performance of the two algorithms depends on
the number of polygons and on the rotational velocity. Here, time has been
averaged over distances > 2. It is no surprise that the “almost O(1)” claim
([LC92]) holds true only for small angular velocities (like 1 degree per step).

It is obvious that collision detection time depends (almost) linearly on the
angular velocity, with the factor determined by the number of polygons (see
Figure 3.13).

Robustness. It seems that the separating plane algorithm is much more ro-
bust than I_collide. I am fairly positive that during the port of I_collide to our
data structures I have not impaired its robustness.

I observed that with certain rotational velocities, the algorithm reported col-
lisions although the two spheres had a distance > 2.5 (even with moderate
polygon counts). In addition, with polygon counts > 5, 000 the algorithm ran
into cycles with length > 200 but < 1000, even with distances well above 2.
This means that the algorithm considered over 200 feature pairs before it fi-
nally detected a cycle (and thus assumed that a collision has occurred).

Maybe these problems persist because of the “flaring” of Voronoi regions. By
flaring, some planes are turned “in”, some “out”, and the amounts are cho-
sen such that afterwards all Voronoi regions overlap slightly. So, it could be
that with large polygon counts (i.e., small dihedral angles), even non-adjacent
Voronoi regions overlap.

Maybe it is not the flaring itself causing the problems, but the fixed amount
(in degrees). On the other hand, it might be non-trivial to calculate the right
amount numerically stable.

3.4.4 A simplified Lin-Canny algorithm

To my knowledge, the algorithm presented by [LC92, CLMP95] was the first
one to exploit temporal coherence. It has expected sub-linear running time,

51

3 COLLISION DETECTION

depending on the relative rotational speed of the object pair (see also previous
section).

The idea is to track the minimal distance between two objects. That distance
is realized by two features, where a feature denotes a vertex, an edge, or a
polygon. A pair of features realizing the minimal distance between two objects
is called closest features. If a pair of features has been closest features during
the last frame, then it is likely that the same pair is also the pair of closest
features in the current frame. If it is not, then the new pair of closest features
is “nearby”, depending on how much the two objects rotated relative to each
other.

Given a pair of features, a new pair of closest features can be found efficiently
by kind of a “steepest decent” method. This is motivated by the following neat
lemma based on the outer Voronoi diagram of polyhedra:

Lemma 1 (Closest features, [LC92])
Given two features f , g of P and Q, resp.; let Vf , Vg be their outer Voronoi re-
gions, resp. Let p, q be two points on f , g, resp., realizing the distance d(f , g).
Then

f , g are closest features ⇔
p ∈ Vg and q ∈ Vf

So, if a pair of features does not fulfil the condition of closest features, then
p, for instance, is “behind” one of the planes enclosing Vg. It is easy to see that
the feature g′ associated with the Voronoi region “behind” that plane is closer
to f than g. This is already the algorithm: start with any two features, test the
“closest feature” condition, then move to the next pair of features based on the
Voronoi plane which is being violated (if any).

There are two issues that must be taken care of in an implementation: If the
objects penetrate, then the algorithm might be caught in a cycle and never find
a pair of features with distance 0. Therefore, it must maintain a list of features
already visited. The second issue is numerical stability: adjacent Voronoi re-
gions share a plane and one of p or q might lie exactly (within the machine’s
precision) on such a plane (because the edge, for instance, intersects that plane).

The Voronoi diagram is easy to construct in this case. We only need to con-
struct the outer regions, and these regions are simple in that their boundary
planes are perpendicular to edges and polygons.

It is possible to do closest-feature tracking without Voronoi regions. This is an
advantage, because constructing the Voronoi diagram still takes some time at
start-up of a VR system, and it takes a considerable amount of memory. With-
out a Voronoi diagram, the algorithm could even handle deforming objects, as
long as the stay convex and the topology does not change.

The idea is to replace the “closest-feature” criterion and to consider only
faces.

The distance d(f , g) between two faces f and g is realized by two points
which can either lie on their interior, or on the interior of an edge, or on a
vertex.

52

3.4 Convex polytopes

Pt

g
Q

f f

Pt−1

Figure 3.14: My Voronoi-less algorithm
for convex objects can handle this
pathological case, too.

Figure 3.15: When a pair of closest
faces has been found, they must be
checked for being on the inside of the
other object.

Lemma 2 (Closest faces)
Given two faces f , g of P and Q, resp. Then

f , g are closest faces ⇔
d(f , g) = min

f ,g
{d(f ′, g′) | f ′adjacent to f , g′adjacent to g}

So, the algorithm is really quite simple: given a pair of faces, check the dis-
tance of all pairs of adjacent faces. If any of them has smaller distance than
the current pair, “go” to that one. If the algorithm is to implement a steepest
decent (or “ascent”, if we want to call it “hill-climbing”), then it has to check all
adjacent pairs, and then go to the one with the smallest distance.

There is a pathological case (see Figure 3.14). It can occur only, if both convex
objects have adjacent coplanar faces, and then only, if the objects happen to be
placed so that those faces are parallel. The algorithm can be modified slightly
so that it can deal with such a situation: if there are pairs with the same distance
as the current one, then they are visited, unless they have already been visited.
An alternative might be to “joggle” the vertices slightly ([BH95, BS90]), so that
the faces are no longer coplanar, while making sure that the object stays convex
and the faces stay planar.

The advantages of the Voronoi-less algorithm are that it does not need any
Voronoi diagram, and it is much easier to implement numerically stable (using
simple ε-arithmetic). In addition, it can do a steepest decent, which is not trivial
to do with the Voronoi-based approach, and which, to my knowledge, has not
been done in the widely used reference implementation I_collide [CLM+].

On the other hand, the Voronoi-based algorithm has to compute the distance
for only one pair of features and has to do two point-in-Voronoi-region tests, in
order to proceed to the next pair of features.

Both algorithms have to take special measures in order to detect intersection.
In case of an intersection, the Voronoi-based approach will be caught in a cycle,
although the length is usually quite short (in my experience, mostly 2 or 4).

With my algorithm, intersection is checked after a pair of closest faces has
been found. Of course, if during hill-climbing a pair with distance 0 is found,
then this is an intersection, and the algorithm is done. Otherwise, we need to
check that the two faces are outside the other polyhedron. Figure 3.15 shows
an example where an intersection is found only with that check: at time t− 1,
(f , g) are the closest faces; then, object P is rotated. When the algorithm tries
to find a new pair of closest faces at time t, all pairs adjacent to (f , g) have a
greater distance.

53

3 COLLISION DETECTION

object P

ar

all

br

object Q

alr

bl

al

box bbox a

Figure 3.16: The basic idea of hierarchical collision detection: only faces and
edges of overlapping boxes have to be checked for intersection.

3.5 Hierarchical collision detection

Before a pair of objects is tested for intersection, a bounding box test is usually
done. This is a conservative test of “non-intersection” on both sets of polygons
as a whole. By taking this idea further, applying it recursively to polygon sub-
sets of both objects, and using various types of bounding volumes, we arrive at
the notion of bounding volume hierarchies and hierarchical collision detection.
Basically, this is a divide-&-conquer approach.

The idea is to construct at initialization time a BV tree for each object. During
run-time, when a collision query is to be processed for a given pair of objects,
the transformations of the objects are applied to their BV trees (which can be
more or less expensive computationally, depending on the type of BV hierar-
chy). By traversing the BV trees, regions of interest can be found more quickly;
these regions are those parts of the objects which are “close” to one another.

3.5.1 Outline of hierarchical algorithms

The goal of any hierarchical collision detection scheme is to discard quickly
many pairs of polygons which cannot intersect. For the sake of simplicity, I
will illustrate the basic idea with the example of boxes (see Figure 3.16): as-
sume boxes A and B overlap; if box A1 does not overlap with box B1, then we
do not need to check any polygon enclosed completely by A1 against any poly-
gon enclosed completely by B1. analogously, we can use the other 3 box-box
tests to prevent checking unnecessary polygon pairs. Of course, this is done
recursively, which yields a simultaneous traversal of two bounding volume
hierarchies.

The following pseudo-code outlines the basic scheme of collision detection
algorithms based on a bounding volume hierarchy:

Simultaneous traversal of BV trees

a = bounding volume of A’s tree,
b = bounding volume of B’s tree
a[i], b[i] children of a and b, resp.

54

3.5 Hierarchical collision detection

Figure 3.17: All polygons which are considered for intersection in the worst-case
are rendered solid. The rejection of polygons is based on a hierarchical BV data
structure. Depending on the tightness of the BV, the set of overlapping leaves
approximates more or less the region of intersection.

traverse(a,b):
a or b is empty −→ return
b leaf −→

a leaf −→
process primitives enclosed by a and b
return

a not leaf −→
forall i:

a[i],b overlap −→ traverse(a[i],b)
b not leaf −→

a leaf −→
forall i:

a,b[i] overlap −→ traverse(a,b[i])
a not leaf −→

forall i: forall j:
a[i],b[j] overlap −→ traverse(a[i],b[j])

With some BV schemes, it can be more efficient sometimes, if one (or more) of
the children of a BV are empty. This can help to approximate the object better.
The test between an empty and a non-empty BV is trivial.

Usually, leaf BVs will contain exactly one polygon (or primitive). However,
this is not inherent to the idea of hierarchical BV trees or simultaneous traver-
sal.8

Figure 3.17 visualizes the set of polygons considered in the worst-case for
exact intersection calculations. All hierarchical BV schemes produce similar
images.

So, the problem of hierarchical collision detection is basically to find a type of
BV which can be tested for overlap efficiently even if tumbling through space.
In addition, the BVs should enclose their associated set of polygons as tightly
as possible in order to provide “optimal” BV trees (see Section 3.5.2).

Besides collision detection, BV trees could be used for other functions, too:
the only part that would have to be re-defined is the “process primitives” step,

8 In fact, with an early BV scheme I have found that it is better to have more than one polygon
enclosed by a BV. This was due to quite expensive BV overlap tests.

55

3 COLLISION DETECTION

level 0 level 4 level 7

level 9 level 12 level 16
Figure 3.18: A BV hierarchy of boxes.

which provides the “semantics” of the overall operation (see [NAT90a] for a
similar point of view regarding BSP trees).

A different view on bounding volume hierarchies

So, the data structure associated with hierarchical collision detection is bound-
ing volume trees. Each node in such a tree is associated with a subset of the
primitives of the object, together with a bounding volume (BV) that encloses
this subset. Given two objects and the roots of their associated BV trees, a
simultaneous traversal of the two trees recursively checks all pairs of their chil-
dren BVs for overlap. If such a pair does not overlap, then the polygons en-
closed by them cannot intersect.

BV hierarchies can be viewed as hierarchies of successive refinement, or as
levels-of-detail (LODs) for geometry — which are not suitable for rendering,
of course. Figures 3.18 and 3.19 show different levels of a BV hierarchy. Fig-
ure 3.18 has been built using boxes as bounding volumes, while Figure 3.19
uses DOPs.

Constant frame rate

Sometimes, a VR system needs to sustain a constant frame rate, in order to
achieve a certain “smooth feel”.9 Games are notorious for this need for a con-
stant 60 Hz frame-rate.

So, if the collision detection module is part of the main loop, it can spend only
a certain, limited amount of time on collision detection. Even if it is concurrent,
it can be desirable to make it sustain its own constant “frame-rate”.

9 With high frame-rates (25–60 Hz), changes in frame-rate become much more noticeable than in the
low range (8–20 Hz). A user will notice such a change as a sudden “jerk”. I suspect this is because
frame-rates can be only multiples of the video refresh rate, e.g.: 60, 30, 20, 15, 12, So, in the high
range, frame rates can change only about a factor 2 or 1.5, while in the lower range, the factor gets
closer to 1.

56

3.5 Hierarchical collision detection

level 2 level 6 level 9

level 13 level 16
Figure 3.19: A BV hierarchy of 14-DOPs.

Hierarchical algorithms are, due to their recursive refinement nature, well
suited for sustaining a constant frame rate [Hub95, OD99]. The basic idea is
that traversal of the hierarchies is interrupted when the allocated amount of
time is over. There are several strategies to get the most information out of the
time available.

When traversal could be interrupted, one has to choose between depth-first
and breadth-first traversal. If the application wants to bias the collision de-
tection more towards the conservative side, then one would probably choose
breadth-first traversal and return “collision” if traversal has been interrupted.
In addition, if there are several pairs to be checked for collision, they should
probably be sorted according to the time they took to check during the last
loop. A pair which took little time during the last frame (and, therefore, must
have been non-colliding), will probably take little time in the current frame,
too.

3.5.2 Optimal BV hierarchies

It is obvious that any hierarchical collision detection algorithm can be only as
good as its associated algorithm for constructing the hierarchies. Therefore, it is
important to develop algorithms for constructing “optimal” BV hierarchies in
the following sense: a simultaneous traversal will find polygons “close” to each
other as quickly as possible for any position of the objects relative to each other.
“Good” hierarchical data structures for ray-tracing are characterized by a low
stabbing number [BCG+96]. Similarly, “good” BV trees for collision detection
are characterized by a low overlap number (but see below).

To my knowledge, it remains still an open problem as to exactly what an
optimal BV hierarchy is. Is it possible to find a local characterization for optimal
BV trees, i.e., is there some characterization of a BV and its father and children
such that a BV tree consisting only of optimal BVs will be optimal, too? Maybe,
there is no such local characterization; then the question would be, is there a

57

3 COLLISION DETECTION

global characterization of the tree itself, which can be computed using only the
geometry of the tree itself. Is minimum total volume such a characterization?
or minimum depth? or with largest polygons at the topmost leaves?

It is not clear yet, whether there is a single measure which should be opti-
mized during the construction of a BV hierarchy in order to achieve an optimal
tree for collision detection. Obviously, the following criteria should guide the
construction algorithm:

• The total volume of all BVs should be small [BCG+96].

• The tree should be balanced in terms of polygon counts.

• The volume of overlap of two siblings should be small.

• The tree should be fairly balanced in terms of polygon count. If there are
several possible subtrees with approximately same balancedness, then
the one is to be preferred which yields the tighter bounding volumes.

• “Sphere-like” BVs should be preferred, because they minimize the total
volume of the BV hierarchy.

There are three general ways to construct a BV hierarchy: insertion meth-
ods [GS87, BKSS90], bottom-up methods [BCG+96], and top-down methods.
Insertion methods start with a single polygon and a trivial tree; then, one after
the other, each polygon is inserted at the top of the tree and sifted down by cer-
tain criteria. Bottom-up methods enclose each polygon by an elementary BV;
then, in each step two (or more) of them are selected and merged. Top-down
methods proceed just the other way round: the set of all polygons is associated
with the root of the tree; then, the set of polygons is split into two (or more) sets
according to certain criteria, and associated with the children.

So far, I have chosen the top-down method for all my BV hierarchies.

3.5.3 The cost of hierarchies

The performance of any collision detection based on hierarchical bounding vol-
umes depends on two conflicting constraints:

1. the tightness of the BVs, which will influence the number of BV tests, and
2. the simplicity of the BVs, which determines the efficiency of an overlap

test of BVs.

This can be turned into a cost equation [GLM96]:

T = NbTb + NpTp (3.1)

where T is the total time, Tb and Tp are the time to check one bounding vol-
ume and primitive, resp., and Nb,Np are the number of bounding volume and
primitive tests, resp.

Tightness of a bounding volume

One of the open questions is if there is a best bounding volume. Probably, this
question cannot be viewed independently from the algorithm, because the al-
gorithm is often tailored for a certain BV.

One criterion might be the ratio V/A of a BV (V = volume, A = area). How-
ever, for box, sphere, and DOP, this is not such a suitable criterion. If we assume

58

3.5 Hierarchical collision detection

a cube, a sphere, and a dodecahedron to be the best-case BVs for box-, ellipsoid-
, and DOP-tree, resp., then that ratio is the same for all of them: V

A = 1
6 d. (The

diameter of a cube is the length of its side, the diameter of a dodecahedron is
the diameter of its in-sphere.)

3.5.4 The BoxTree

Inspired by BSP trees, k-d trees, and balanced bipartitions (known in the area of
VLSI layout algorithms), I explored the usefulness of axis-aligned boxes. This
type of BVs offers some advantages: it is fairly easy to construct the BV tree
(see Section 3.5.2), and the simplicity of the BV hopefully makes it efficient to
test two of them for overlap.

They are called axis-aligned boxes, because they are aligned to the axes of the
object’s coordinate frame. Of course, when objects move, they are no longer
aligned with respect to the world’s coordinate frame. So, when using this type
of BVs, the task is to devise algorithms for efficient overlap tests of tumbled
bounding boxes.

Since each node of the tree is a box, I have named this BV hierarchy a BoxTree
[Zac95, Zac97b]. It is a binary tree. For reasons which will become clear in a
moment, the child boxes are arranged in a certain way with respect to their
father box: They have exactly the same extents except for one coordinate along
the splitting axis : if al , ar are left and right child box of a, resp., then bbox(a) =
bbox(al) and bbox(a) = bbox(ar) except bboxh

α(al) ≤ bboxh
α(a) and bboxl

α(ar) ≥
bboxl

α(a), where α ∈ x, y, z is the splitting axis.
Octrees are a special case of BoxTrees. However, BoxTrees allow for finer

control on the balancedness.
Each node in the BoxTree stores only: the name α of the splitting axis, two

positions bboxh
α(al), bboxl

α(ar), two pointers (to the left and right sub-box), and,
for leaves only, a pointer to the polygon(s) associated to the leaf (which can be
stored in one of the child-pointers).

3.5.5 BoxTree traversal by clipping

For this BoxTree traversal algorithm, I constrain the child boxes further to be a
true partition of the father box, i.e., bboxh

α(al) = bboxl
α(ar) = ca

α. Although this
reduces the flexibility during construction of BoxTrees, it allows the traversal
algorithm to re-use more calculations across recursions.

The intersection test of two boxes could be done by the Liang-Barsky algo-
rithm [LB84]. However, exploiting the special geometry of boxes allows a much
more efficient intersection test for two boxes: we can clip all box-edges parallel
to one another at the same time. This will enable us to re-use many computa-
tions during one box-box check. Due to the special arrangement of child boxes
within a father box, we can re-use all of the arithmetical computations when
descending one level in the BoxTree. Special features of boxes are: the faces
form three sets of two parallel faces each, the edges form three sets of four par-
allel edges each, when a box is divided by a plane perpendicular to an edge, all
edges retain their entering/leaving status.

One step of the traversal algorithm corresponds conceptually to splitting one
box of a pair of boxes (a, b) (see Figures 3.20 and 3.21) and calculating the over-
lap status of the two new pairs of boxes. Such a step can be performed with at
most 72 multiplications and 72 additions.

59

3 COLLISION DETECTION

y

x

xh’-plane
xl”-plane

B
right sub-box Br

z

q q”

left sub-box Bl

cB
x

p

A

bx

bz
by

Figure 3.20: Splitting box B perpendicular to its x-edges bounds the line intervals
of edges of A.

p

q”

right sub-box Br

B

A

y

x
z

q

2 new y-edges

left sub-box Bl

by

bx
bz

Figure 3.21: Splitting box B perpendicular to its x-edges yields 2 new y-intervals
and 2 new z-intervals. All other intervals can be re-used.

For a given pair (a, b) of boxes, all the information on their intersection status
is given by two sets of 3 × 4 line parameter intervals for the edges of a and b,
resp. If all intervals of one object are empty, then (a, b) do not overlap.

The simultaneous traversal has two phases: an initialization phase, and the
traversal phase. I will briefly describe them in the following — the mathemati-
cal details can be found in [Zac95].

Initialization phase. This phase computes the initial intervals for the root
boxes of two objects P and Q. Conceptually, we have to set up 2 × 3 tables,
each with 3× 4 entries. Each entry in those tables can be calculated by at most
one multiplication and one addition. Each column of a table yields the line
parameter interval of one edge.

The calculations of this phase can be done by the same routines which are
needed for the traversal phase.

Traversal phase. The basic step of the traversal is the test “(a, bl) intersect”
and “(a, br) intersect”. We will do this by bisecting the box b into its left and

60

3.5 Hierarchical collision detection

Figure 3.22: This shows all the empty boxes of the BoxTree for a torus. With com-
mon complexities, 40–60% of the bounding box’ volume are covered by empty
boxes, typically.

right sub-box, which is equivalent to computing two new sets of 2 × (3 × 4)
line parameter intervals, one describing (a, bl), the other describing (a, br).

This seems like a lot of computational work; however, half of the information
stored in a set of intervals for (a, b) can be re-used for (a, bl), the other half for
(a, br) (see Figures 3.20 and 3.21).

Parallel edges and polygons Although rare in real-world scenarios, paral-
lelism must be dealt with in order to achieve a robust algorithm.

Like many other properties or values, parallelism is preserved during simul-
taneous traversal through the BoxTree. Again, the special geometry of boxes
reduces the number of significant edge-face comparisons: if an edge is parallel
to a face, then all edges of the same family are parallel to all faces of the other
family.

During bisecting a box, we might discover that an edge is parallel to a plane,
by which we were about to clip it. Two things could happen: either, the edge
is on the “wrong” side of the plane, in which case the interval will be empty
and we are finished; or, the edge is on the “right” side, in which case we just
proceed to the next plane.

Timing

For timing tests I chose the following scenario: two objects move inside a
“cage”. Initial positions and translational and rotational velocities are chosen
randomly at start-time. When the two objects collide, they bounce off each
other based on simple heuristics (e.g., by exchanging translational and/or ro-
tational velocities). The size of the cage is chosen so as to “simulate” a dense
environment, i.e., most of the time there are only “almost-collisions”, which is
the “bad” case for most algorithms. Also, this excludes any side-effects, e.g.,
by bounding box checks. The test objects were regular ones, like spheres, tori,
tetra-flakes, etc., and real-world data (e.g., an alternator). Rendering is always
switched off, of course.

Figure 3.27 shows a comparison between the BoxTree algorithm (using opti-
mal parameters for the tree construction as determined in Section 3.5.7) and the

61

3 COLLISION DETECTION

br

b1

bl

Schnittebenen

cl

cr
b2

bboxh(br)

bboxh(b)
bboxh(bl)

bboxl(b)

bboxl(bl)

bboxl(br)

cr

b1

b2

cl

bl

br

Figure 3.23: Each (inner) node in the
tree needs to store only one short in-
teger (denoting one of the three axes
which the two cutting planes are per-
pendicular to), and two reals c f , cr, one
for each cutting plane.

Figure 3.24: The aligned boxes enclos-
ing the two children B f and Br share 3
of their min/max values each with the
aligned box enclosing B.

simpler algorithm as described in Section 3.3. The same scenario as above was
used. Each sample is an average over 20× 2000 frames. The tests were run on
an 200 MHz R4400. The figure was obtained with two tori, but similar results
have been obtained for all other object types.

As expected, BoxTrees are much faster when object complexity is above a
certain threshold, but slower for small objects. The threshold (for tori) is about
100 polygons, below which a simple algorithm out-performs the sophisticated
one.

3.5.6 BoxTree traversal by re-alignment

Bounding volume hierarchies are always constructed in object space. When ob-
jects move, the BVs need to be transformed as well, conceptually. The problem
of developing fast hierarchical collision detection can be regarded as finding
BVs which are

1. invariant under rigid motions,
2. fast to test for overlap, and
3. tight.

These conditions seem to be contradictory: either they are tight, or they can be
tested quickly; and, if they are fast to test for overlap, then they are usually not
invariant under rigid motions.

In the previous section, I have described an overlap test for boxes which are
not aligned in world-space, but which are all aligned in object-space. The test
gains some speed from certain constraints on the arrangement of child boxes
with respect to their father.

Still, testing non-axis-aligned boxes for overlap is expensive compared to the
test for axis-aligned boxes. Actually, axis-aligned bounding boxes offer proba-
bly the fastest overlap test among all bounding volumes. So, instead of testing
the boxes of Box-Trees directly, they can be enclosed by an axis-aligned box.
This can be done very fast, which will be described in the next subsection.

62

3.5 Hierarchical collision detection

One recursion step

We must be able to compute the axis-aligned boxes fast, otherwise we do not
gain speed in the overall overlap test. In this section, we can allow bboxh

α(al) 6=
bboxl

α(ar) (see Section 3.5.5), because (1) we would not gain anything by keep-
ing it, and (2) this relieves us of the burden of handling “crossing” polygons.
For the sake of simplicity, I will denote those values by cl and cr, resp. Note
that here, bboxh

α(al), and bboxl
α(ar) denote offsets for the two cutting planes

from the opposite sides of the father box (see Figure 3.23)!
Let us assume we know that the two axis-aligned boxes enclosing a and b do

overlap. Let us assume further that both a and b have two children (without
loss of generality).

Now we want to find out whether or not the four pairs of sub-boxes, (al , bl),
(al , br), (ar , bl), (ar , br), overlap. In a naive approach, one would compute the
corners of each non-axis-aligned box al , . . . , br, take the min/max of each, and
then do an axis-aligned box-box test. However, this is too expensive, because
it would discard all information gathered so far.

Notice that, by way of the special construction of Box-Trees, only 3 of the
min/max values of each sub-box have to be computed — the other 3 can be
copied from the “father”-box.

Let b1, b2, b3 be the coordinate frame of box b in common (world-)space (see
Figure 3.24). Assume that the cutting planes are perpendicular to b1, without
loss of generality. Then, the x-coordinate min/max values of the axis-aligned
box enclosing bl are

bboxh
x(bl) =

{
bboxh

x(b)− clb1
x , b1

x > 0
bboxh

x(b) , b1
x ≤ 0

and

bboxl
x(bl) =

{
bboxl

x(b) , b1
x > 0

bboxl
x(b)− clb1

x , b1
x ≤ 0

Similarly, the x-coordinate min/max values of the axis-aligned box enclosing
br are

bboxh
x(br) =

{
bboxh

x(b) , b1
x > 0

bboxh
x(b) + crb1

x , b1
x ≤ 0

and

bboxl
x(br) =

{
bboxl

x(b) + crb1
x , b1

x > 0
bboxl

x(b) , b1
x ≤ 0

Quite analogously the y-coordinate values and the z-coordinate values of the
axis-aligned bounding box can be computed. Although Figure 3.24 is 2D, it is
easy to verify that the formulas above hold in 3D as well.

We will not only save half of the calculations for the aligned boxes, but also
half of the comparisons of the overlap tests of aligned boxes. A naive aligned
box overlap test would compare 6 coordinates — however, notice that we need
to check only 3 of them, since the status of the other 3 has not changed. So
again, we re-use information from the recursion step before.

More precisely, assume we know that bbox(b) and bbox(a) overlap. Now
we want to know whether or not bbox(bl) and bbox(a) overlap. Since only 3

63

3 COLLISION DETECTION

values of bbox(bl) differ from bbox(b), we need to compare only those with
bbox(a). For example, the x-coordinate comparison is

b1
x > 0 ∧ bboxh

x(bl) < bboxl
x(a)

b1
x ≤ 0 ∧ bboxl

x(bl) > bboxh
x(a)

}
⇒ bbox(bl) and bbox(a) do not overlap

(again, assuming that the cutting plane is perpendicular to b1). Note that
the decision b1

x ≶ 0 has been made already when computing bboxh
x(bl) or

bboxl
x(bl), respectively.

Summarizing, the number of floating point operations for one box-box over-
lap test takes at most 1.5 multiplications, 2 additions, and 2.5 comparisons.10

3.5.7 Constructing the BoxTree

Since the BoxTrees in the previous section and Section 3.5.5 are very similar, the
same algorithm and (almost) the same heuristics can be applied.

In addition to the criteria set forth in Section 3.5.2, the following have to be
considered as well to guide the partitioning:

• Due to the constraints of the boxes with respect to their father, nodes of
a BoxTree (except the root) do not necessarily bound the associated set of
polygons tightly. Therefore, it is sometimes better not to divide the set
of polygons at all, but pass it on to one of the two sub-nodes, which can
bound it more tightly, while the other sub-node remains empty. This can
be viewed as “splitting off” an empty sub-box. (see Figure 3.22).

• For the traversal algorithm of Section 3.5.5: the number of “crossing”
polygons should be minimized. This does not apply for the algorithm
of Section 3.5.6.

Given a set of polygons which is completely inside a bounding box, the al-
gorithm determines the largest possible empty sub-box. If it is larger than a
certain, pre-defined threshold, then it “splits off” that empty box. Otherwise, it
considers each of the three splitting axis orientations and determines the opti-
mal partitioning of the set of polygons along that axis. Then it chooses the one
which produces the best partitioning among all three possibilities.

Given a set of polygons F and a certain splitting axis orientation, how do we
find quickly two “optimal” sub-sets of polygons Fl , Fr ⊆ F such that F f ∪̇Fr = F
and the criteria above are met as close as possible? I have taken a “greedy”
approach: the algorithm starts with two empty sets Fl and Fr with associ-
ated empty sub-boxes. It considers each polygon in F and puts it into Fl or
Fr whichever sub-box will be extended by the least amount. If neither of the
two sub-boxes would be extended, or if both would be extended by the same
amount, then it puts the polygon into the smaller set.

Exactly how the optimal splitting axis is determined will be described below
in Section 3.5.7. First, I will derive the complexity of this algorithm. (It does
not depend on the method how the splitting axis is chosen.)

10 The number of operations per recursion step is 6 multiplications, 8 additions, and 10 comparisons.
(3 × 2mult. + 3 × 2 add. for enclosing the two children of a box by an axis-parallel box, and 2 ×
3 + 2× 2comp. for the overlap tests.) This is for the worst case: both boxes have two children each,
and all four pairs of those children overlap.

64

3.5 Hierarchical collision detection

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000 25000
ti

m
e

(m
s)

#polygons

spheres

♦♦♦
♦♦

♦
♦

♦
♦

♦

♦

♦

♦

♦
hyperboloids

+++
+

+
+

+

+

+

+

+

+

Figure 3.25: Experiments confirm that building boxtrees is in O(n) average run-
ning time, and that the hidden constant is small enough for practical purposes.
The graph shows timings for building the BoxTree for spheres and hyperboloids.
Timing was done on a 200 MHz R4400.

Complexity

This partitioning algorithm is very fast, because it involves only bounding box
comparisons.

Under certain assumptions the complexity of constructing a BoxTree is in
O(n), where n is the number of polygons. This is supported by experiments
(see Figure 3.25).

Let us assume that cutting a box takes a constant number of passes over all
polygons associated with that box. Every cut will split the box’s polygons into
2 sets F1, F2, with |F1| + |F2| = |F| = n. Let us assume further w.l.o.g. that
|F1| ≤ |F2| ≤ αn, with 1

2 ≤ α < 1. So, for depth d of a BoxTree n = (1
α)d.

Let T(n) be the time needed to build a BoxTree for n polygons. Then,

T(n) = cn + T(αn) + T((1− α)n)

≤ c
d

∑
0

2iαi

≤ cα2d+1

⇒ T(n) ∈ O(n)

Geometrical robustness

This issue is of great importance (as I learnt the hard way). This is especially
true for polygonal objects which are computer-generated and expose a high de-
gree of symmetry, like spheres, tori, extruded and revolved objects, etc. These
objects usually have very good splitting planes, but if the splitting routine is
not robust, the BoxTree will not be balanced at all.

The problem is: when do we consider a polygon to be on the left, the right, or
on both sides of a plane? Because of numerical inconsistencies, many polygons
might be classified “crossing” even though they only touch the plane (see Fig-
ure 3.26). The idea is simply to give the plane a certain “thickness” 2δ. Then,
we will still consider a polygon left of a plane c, even if one of its edges is right
of c, but left of c + δ. All the possible cases are depicted in Figure 3.26.

65

3 COLLISION DETECTION

c + δc− δ

x

c

crossing

left
right

1

10

100

1000

100 1000

ti
m

e
(m

s)

#polygons/object

optimal boxtree

♦
♦

♦ ♦
♦

♦
boxtree w/o empty boxes

+

+

+

+

+

+

bbox pipeline

¤

¤

¤

¤
¤

¤

Figure 3.26: For splitting a set of poly-
gons by a plane, geometrical robust-
ness can be achieved by giving the
plane a certain “thickness”.

Figure 3.27: Comparison of the boxtree
algorithm with the non-hierarchical al-
gorithm of Section 3.3. Other object
types (sphere and tetra-flake) yielded
similar results with slightly different
thresholds.

Optimal BoxTree parameters

Before any timing can be reasonable, optimal parameters for BV tree construc-
tion have to be determined. In this case, the question is: when should an empty
box be split off?

To answer this, I ran several tests with different objects and different choices
of those parameters. Fortunately, the “near-optimal” range for this parameter
seems to be fairly broad. I also checked experimentally that empty boxes do
actually yield some speed-up (see Figure 3.27).

It also turned out (fortunately), that optimal BoxTree parameters do not de-
pend much on the type of the object.

Optimal criteria

As outlined above, for each of the three axes the set of polygons is split into
two possible subsets. The task then is to determine which axis (i.e., which
split) is the best. The split criterion is basically a penalty function f (x|y|z, . . .)
which takes the size of the box to be split, the sizes of the candidate sub-boxes,
and the corresponding numbers of polygons (or any other variables). So, the
best axis is α with f (α, . . .) = minx|y|z{ f (x|y|z, . . .)} (some criteria realize the
maximum).

Various reasonable criteria come to mind. However, it is not obvious which
one yields the best BoxTree in terms of collision detection time. In order to
choose the best criterion, I have benchmarked 14 different criteria by the follow-
ing procedure. Each criterion was applied to a suite of 19 test objects (sphere,
torus, cone, hyperboloid, and 15 automotive objects), which ranged from 5000
polygons to 100,000 polygons. With each criterion and each object the average
collision detection performance was determined by the benchmark procedure
described in Section 3.5.10.

Let tko be the average collision detection time with criterion k applied to ob-
ject o. Then the relative performance is t′ko = tko/t2o (w.l.o.g., criterion 2 was
chosen for no particular reason). The relative performance of each criterion is
shown in Figure 3.28. The average performance tk = 1

n ∑ tko renders a similar

66

3.5 Hierarchical collision detection

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

av
g.

ti
m

e
(m

se
c)

criterion

Figure 3.28: Relative performance of the splitting criteria with respect to collision
detection time.

picture (see Figure 3.29). If one defines the rank of a criterion as rk = 1
n ∑ t′ko,

we get the following table:

criterion 1 2 3 4 5 6 7

rank 0.89 1.00 0.99 1.91 3.37 1.62 2.51

criterion 8 9 10 11 12 13 14

rank 2.54 2.54 2.50 1.09 1.91 198.7 1.00

Let (bl , bh) be the box to be split; let d = bl − bh; let d′ = b′ l − b′h, where
(b′ l , b′h) is the bounding box of the polygons associated with the box to be split
(remember that (b′ l , b′h) can be smaller than (bl , bh)); let (cl 1|2 x|y|z, ch 1|2 x|y|z)
be the 3 candidate sub-box pairs. The 14 penalty functions were:

1. f (α) = ch 1 α
α − cl 2 α

α − d′α
Minimize the overlap of the two sub-boxes; take into account the extent
of the parent-box.

2. f (α) = ch 1 α ∗ cl 2 α

Minimize the volume of the overlap of the two sub-boxes.

3. f (α) = ch 1 α
α −cl 2 α

α
d′α

Minimize the overlap of the two sub-boxes relative to the extent of the
parent-box (this is a variant of criterion 1).

4. f ∗(α) = d′α
Try to generate “cube-like” boxes.

5. f (α) = |n1 α − n2 α|
Minimize the unbalancedness in terms of polygon count.

6. f (α) = ch 1 α
α − cl 2 α

α

Minimize the overlap of the two sub-boxes; do not take into account the
extent of the parent-box (this is a variant of criterion 1).

67

3 COLLISION DETECTION

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

av
g.

ti
m

e
(m

se
c)

criterion

♦ ♦ ♦

♦

♦
♦ ♦ ♦ ♦ ♦

♦

♦

♦

Figure 3.29: Average performance of the splitting criteria. Criterion 1 creates the
best BoxTrees.

7. f (α) = (f 5(α), f 1(α))

Combination of criteria 5 and 1: first minimize unbalancedness, then, if
both sub-boxes are perfectly balanced, try to minimize overlap.

8. f (α) = (f 5(α),−d′α)

Combination of criteria: first minimize unbalancedness, then try to create
“cube-like” boxes.

9. like 8, but with d instead of d′

10. like 7, but with d instead of d′

11. f (α) = recursion depth mod 3

This is a “bogus” criterion. It serves as a counter-check for the others.

13. f ∗(α) = ch 1 α
α − cl 2 α

α

This is like criterion 6, except the penalty function is maximized instead
minimized.

The starred functions are maximized, all others are minimized.

3.5.8 Oriented boxes

Axis-aligned boxes are simple bounding volumes but sometimes they cannot
approximate objects or polygons very well. Especially for objects with a strong
diagonal orientation, the volume of axis-aligned boxes contains a lot of “dead
space” (see Section 3.5.3). Therefore, it is natural to look at oriented bounding
boxes (OBB), i.e., boxes with unconstrained orientation.

Bounding volume hierarchies consisting of oriented boxes place no con-
straints on the orientation or position of the BVs, except that they enclose their
associated set of polygons. So, it might happen that child boxes are not com-
pletely enclosed by their father box (see Figure 3.30).

Basically, two issues must be solved with OBBs: (1) a fast overlap test, and
(2) construction of the optimal OBB for a given set of polygons. With top-down
construction of OBB trees, a third issue is: given a set of polygons, how do we
split it such that the optimal OBBs for both subsets yield an optimal OBB tree?

In [GLM96] Gottschalk et al. have given a neat solution for (1) and an algo-
rithm for (2) and (3), for which they also provide experimental evidence that it
is at least near-optimal.

68

3.5 Hierarchical collision detection

separatin
g axis

Figure 3.30: The OBB tree is a bound-
ing box hierarchy where each box is
placed such that it is (almost) minimal.

Figure 3.31: A fast overlap test for ori-
ented boxes is based on the separating
axis theorem.

Overlap test. The basic idea is the separating axis theorem : Given two convex
objects. These objects do not overlap if and only if there is a line between both
objects, such that the projection of the two objects onto that line yields two
disjoint intervals. Such a line is called a separating axis (see Figure 3.31).

The proof is quite simple. If there is such a line, then we can find trivially a
separating plane. If the two objects do not overlap, then there is a separating
plane and the line perpendicular to that plane is a separating axis.

We know that if there is a separating plane, then there is also a separating
plane, which is parallel to one of the faces of one of the object, or which is
parallel to one edge of each object. So, for boxes there are only 15 potential
separating lines to be tested.

Each test amounts to evaluation of a certain inequality involving the trans-
formation matrices of both objects, the box orientations, and the box radii. If
the number of possible box orientations and radii is small, then many terms of
the inequality can be precomputed [HK97].

Tight fitting OBBs. The minimum-volume enclosing OBB for a set of n points
can be computed in O(n3) [O’R85]. However, this is not practical for large
objects (in terms of vertices).

An approximation of the minimum-volume enclosing box can be found
by computing the covariance matrix of a set of triangles, with each triangle
weighted by its area. Two of the eigenvectors of that matrix are the axes of the
minimum and maximum variance. So, taking the eigenvectors as the axes of
the OBB will align it with the geometry.

Constructing OBB trees. Given a set of polygons, [GLM96] compute the axes
of the OBB, centered at the mean of the vertices. The set of polygons is split
in two halves based on their centers, compared to the mean along the longest
OBB axis. This yields balanced trees. However, my experiments indicate that
balanced trees are usually less than near-optimal.

69

3 COLLISION DETECTION

B1

B2
slab

B6

B5

B4

B3

Figure 3.32: k-DOPs can be viewed as
intersection of k/2 slabs.

Figure 3.33: Three examples of DOPs:
box, octahedron, and the unification of
both.

3.5.9 Discretely oriented polytopes

Boxes and spheres are “shape-specific” bounding volumes in that there are cer-
tain shapes which they can bound tightly, while there are other types of shapes
which they bound inherently badly.

The following generalization of boxes can overcome that problem. This type
of BV has been used before by [KK86] for ray queries in ray-tracing. BV trees
with this type of bounding volume have been used for collision detection be-
fore by [HKM96]. However, they seem to use a more general kind and to
do hill-climbing to compute the axis-aligned DOPs from the “tumbled” ones,
which is probably less efficient than my method [Zac98b].

Definitions

Discrete orientation polytopes (DOPs) are convex polytopes whose faces can
have only normals which come from a fixed small set B of k orientations (hence
k-DOPs). Probably the fastest overlap check for axis-aligned boxes is the well-
known interval test. In order to be able to apply such a test to DOPs, we further
restrict the set of orientations such that for each orientation of the set there is
also an anti-parallel one;11 the planes supported by two corresponding faces
form what is commonly known as a slab (see Figure 3.32). Additionally, each
plane must not be redundant, otherwise the overlap test based on interval-tests
can return wrong answers. A plane is redundant when it does not pass through
any of the vertices of the convex hull of the DOP.12

This special kind of k-DOPs can be viewed as a generalization of axis-aligned
boxes. By increasing k, DOPs can approximate the convex hull of objects arbi-
trarily close (see Figure 3.33 for three examples of DOPs).

Being the intersection of k half-spaces

Hi : Bix− di ≤ 0, 0 ≤ i < k

a k-DOP can be represented by the point d = (d0, . . . , dk−1) ∈ Rk, where Bi are

11 In order to make a DOP overlap test as fast as possible on average in the case of non-overlapping
DOPs, I arrange the orientations in a list such that orientation Bi is “as perpendicular” as possible
to all previous orientations B0 , . . . , Bi−1.

12 If the plane passes through exactly 1 or 2 vertices, then it does not contribute new vertices to the
hull by itself. Still, we will not call such a plane redundant, because a stricter definition is not
necessary.

70

3.5 Hierarchical collision detection

b3

b2

d5

b1

D

d′2

d′5

d2

d1
B4

B3
B2

B1

B6

b6

b5

b4

d4

B5

Figure 3.34: A rotated DOP can be enclosed by an aligned one by computing
new plane offsets d′i. Each d′i can be computed by an affine combination of 3
djil

, 1 ≤ l ≤ 3 (2 in 2-space). The correspondence jil depends only on the affine

transformation of the associated object and the fixed orientations Bi.

the k fixed orientations. We will call d the plane offsets for that DOP.
So, at each node of a DOP tree we need to store only k floating point numbers

(since the orientations are the same for all DOPs) plus 2 pointers (assuming
binary trees).

Aligning DOPs

Given two DOP-trees O and Q, the basic step of the simultaneous traversal is
an overlap test of two nodes. In order to apply the simple and very fast interval
overlap test to DOP-trees, they must be given in the same space. However, at
least one of the associated objects has been transformed by a rigid motion, so
the DOPs of its DOP-tree are “tumbled” — in fact, in any other than the object’s
coordinate system the DOPs are no longer DOPs in the strict sense.

The idea is to enclose a tumbled DOP by another, “axis-aligned” DOP. I call
this process (re-)aligning. The re-aligned DOP is, of course, less tight than the
original one. On the other hand, the overlap test between two aligned DOPs is
much faster than between non-aligned ones.13

By choosing O’s object space (w.l.o.g.), we need to re-align only Q’s nodes
as we encounter them during traversal. I will show that this can be done by
a simple affine transformation of the DOP’s plane offsets. I would like to re-
mark that, except for the interval overlap test of DOPs, the alignment algorithm
works in the case of general DOPs as well.

Assume we are given a (non-aligned) DOP D of Q’s DOP-tree, which is rep-
resented by d. Assume also, that the object associated with Q has been trans-

13 Of course, an incremental hill-climbing overlap test, which saves closest features, could be applied
to non-aligned DOPs. However, this would incur a lot of additional “baggage” in the data struc-
tures. In fact, [HKM96] have reported that it is still less efficient than brute-force re-alignment.

71

3 COLLISION DETECTION

Bci
2

Bci
1

Pi

Figure 3.35: The correspondence between coefficients of tumbled DOPs and
enclosing aligned DOPs is established in two steps at initialization time and at
the beginning of a traversal.

formed by a rotation M and a translation o, with respect to O’s reference frame.
Then D is the intersection of k half-spaces

hi : bix− di + bio ≤ 0,

where bi = Bi M−1 (see Figure 3.34).
Now suppose we want to compute the d′i of the enclosing DOP D′ of D. There

is (at least) one extremal vertex Pi of the convex hull of D with respect to Bi.
This vertex is the intersection of 3 (or more) half-spaces hjil

, 1 ≤ l ≤ 3. It is easy
to see that

d′i = Bi

bji1
bji2
bji3

−1

dji1
dji2
dji3

 + Bio (3.2)

The correspondence established by jil is the same for all (non-aligned) DOPs
of the whole tree, if the following condition is met: DOPs must not possess any
completely redundant half-spaces, i.e., all planes must be supported by at least
one vertex of the convex hull of the DOP. (We do allow almost redundant half-
spaces, i.e., planes which are supported by only a single vertex of the convex
hull.) Fortunately, this condition is trivially met when constructing the DOP-
tree.

The correspondence jil is established in two steps: First, we compute the ver-
tices of a “generic” DOP, constructed such that each vertex is supported by
three planes (i.e., no degenerate vertices). In an intermediate correspondence
c we store with each vertex Pi the three orientations Bci

1
, . . . , Bci

3
of the three

supporting planes (see Figure 3.35).14 In the second step, another correspon-
dence is calculated telling which Pi does actually support a plane of the new
axis-aligned DOP D′ (not all P’s will do that). The first and the second corre-
spondence together yield the overall correspondence j.

The first intermediate correspondence c has to be computed only once at ini-
tialization time,15 so a brute-force algorithm can be used. The second interme-
diate one has to be computed whenever one of the objects has been rotated,
but it is fairly easy to establish: at the beginning of each DOP-tree traversal,
we transform the vertices of a generic DOP (see below) by the object’s rotation.
Then, we combine these to establish the final correspondence jil .

14 Because of my loose definition of redundancy for planes, it could happen that more than 3 planes
pass through one point in space. This is no problem, though, because this just means that several
vertices of the DOP will be coincident. Each of them corresponds to exactly three planes.

15 I chose not to hard-code it, so I could experiment with different sets of orientations.

72

3.5 Hierarchical collision detection

To establish the intermediate correspondence c, we can choose any DOP sat-
isfying the additional condition that all planes do support a non-degenerate
face (i.e., all planes are non-redundant in the strict sense). I construct such a
DOP in the following way: Start with the unit DOP d = (1, . . . , 1). Then check
that each plane satisfies the condition. If there is a plane which does not, in-
crease its plane-offset. This algorithm should be made probabilistic so as to
avoid cycles. Of course, it could still run into a cycle, but this has not happened
so far in countless runs.

Brute-force alignment

There is another way to realign DOPs [KHM+98]. The idea is to represent
DOPs by their vertices. Then, an aligned enclosing DOP of a tumbled DOP
can be found trivially by transforming the vertices of the tumbled DOP and
then computing the min/max of all vertices along each orientation.

Enclosing a non-aligned DOP by an aligned one takes

affine transformation vertex transformation

FLOPs 6k 6k2 + 17k

where multiplications, additions, and comparisons count equal (the constant
terms have been omitted). Both methods represent the resulting aligned DOP
in “slab form”. For the estimation of the brute-force method, I have assumed
that DOPs consist only of triangles.

Generalization

So far, I have silently assumed that for both objects we use the same set of
orientations. Futhermore, I have assumed that the set of orientations used for
constructing the re-aligned DOPs is the same as that used for constructing the
DOP-trees in object space.

Both assumptions are there just to keep things simple.
The DOP-trees of the two objects can be built using completely different sets

of orientations, because when checking for overlap they will really be enclosed
by DOPs constructed with yet another set of orientations.

When constructing the DOP enclosing a tumbled one, they do not necessarily
have to share the same set of orientations. Actually, they do not even need to
have the same number of orientations. The knowledge of which local-space
orientations are mapped to aligned orientations is entirely encapsulated in the
correspondence jil . It could happen that some local orientations do not even
occur in the correspondence (if the number of world-space orientations is much
smaller than the number of local-space orientations).

This generalization adds more freedom to the construction of DOP-trees.
However, it also adds more parameters to the optimization of them. And it
is not yet clear to me, how they can be determined efficiently (without trial-
and-error).

Building DOP-Trees

For virtual prototyping applications it is important, that the construction can
be done at load time. Otherwise, this would be another preprocessing step

73

3 COLLISION DETECTION

which had to be done in order to prepare a VE. The acceptance for any pre-
processing steps is extremely low in the manufacturing industries (probably in
all industries). Another problem is, that each additional class of files needed
for the specification of VEs causes some serious hassle with the product data
management systems (and their maintainers).

Therefore, the construction must be fast. So, we make use of several heuris-
tics and estimations which try to emulate the criteria listed in Section 3.5.2.

The input to the construction algorithm is a set F of k-DOPs (each of them
encloses one of the polygons of the object) and a set C of points which are the
barycenters of the polygons.

First, the algorithm finds ci , cj ∈ C with almost maximal distance.16 Then
it determines that orientation which is “most parallel” to cicj. Now we sort C
along that orientation, which induces a sorting on F .

After these preliminaries (which are done for each step of the recursion), we
can split F in two parts F1 and F2. We start with F1 = fi, F2 = f j, where
fi , f j are associated to ci , cj, resp. Then, we consider all other f ∈ F in turn and
assign them to F1 or F2, whichever BV increases less in volume. If both BVs of
F1 and F2 would increase by the same amount (in particular, if they would not
increase at all), then f is added to the set which has fewer polygons so far.

It can happen, that one of the sets gets all the polygons, because its DOP
grows creepingly. This happens particularly, because polygons tend to come
“sorted” in some way. To avoid this, we take candidates f from F alternatingly
from its lower and its upper end.

Computing the volume of a DOP is not trivial, since we are given only the
plane offsets d. If we had the vertices, then the volume would be the sum
of the volumes of the tetrahedra formed with an inner point. There are also
estimations for the volume based on the number of vertices, edges, and faces,
such as

1
3

e sin(
f
e

π)[tan2(
f
e

π

2
) tan2(

v
e

π

2
)− 1]r3

≤ V ≤
2
3

e cos2(
f
e

π) cot(
v
e

π

2
)[1− cot2(

f
e

π

2
) cot2(

v
e

π

2
)]R3

with f , e, v the number of faces, edges, and vertices, resp., and r, R the radius of
the insphere and circumsphere, resp. Since these numbers would be the same
for all DOPs in almost all practical cases (no redundant planes, all vertices with
degree 3), this would be an interesting option, if I had a way to calculate or
estimate the radius R of the circumsphere (the radius r of the insphere is the
minimal distance between slabs).

Other heuristics have been implemented and tested, but the one described
above has produced the best results.

Therefore, I tried several simple estimations of the volume or the increase
in volume for DOPs. The first one is a simple generalization of the volume of
boxes:

vol =
k/2

∏
i=0

δi

16 This is an O(n2) problem. There are algorithms with better complexity, but they are quite involved,
and in my opinion, the optimal pair is not really necessary. So, I compute only a near-optimal pair
by a simple O(n) heuristic.

74

3.5 Hierarchical collision detection

depth 10 11 12 13 14 15 16

sphere 0 0 1 375 8853 13233 642

car door 92 740 1639 659 162 42 26

Table 3.2: Histogram of the depth of the leaves of the 6-DOP tree. The sphere
has approximately 20,000 polygons, while the car door has approximately 3,300
polygons.

where δi is the space between slab i. For boxes, this is the true volume, for
larger k, the volume will be overestimated. I also tried to use an estimate of the
increase in volume

∆vol =
k/2

∏
i=0

δ′i

where δ′i is the increase of di or 1 if there is none in the direction i. Instead of
the product I also tried the sum. Finally, I tried an even simpler estimate

∆vol = δ′′l1 + δ′′l2

where δ′′ is the increase of di (or 0) and l1, l2 is the “most parallel orientation”.
This last estimate produced the best results so far.

Overall, the algorithm seems to produce good trees. In particular, they are
fairly well balanced. Therefore, the average depth is almost the same for all
sets of orientations (which I have verified by experiments). Table 3.2 shows a
histogram of the depth of the leaves of the 6-DOP tree for two objects. Other
heuristics have been implemented and tested, but the one described above has
produced the best results.

Geometric robustness and accuracy

The construction algorithm is geometrically robust and can be applied to all
unstructured models. No adjacency information is required. There are no con-
nectivity restrictions and the faces can be degenerate (a line segment or a point),
which happens frequently in CAD data.

The overlap test is very robust, since it involves only multiplications, addi-
tions, and comparisons. A small ε-margin guards against arithmetic round-off
errors. This also adds more robustness in the case of degenerate DOPs, where
one or more planes are redundant or which have no volume. Actually, that
margin can be applied to the DOPs while the DOP-tree is being constructed
(inflating them a little), so during traversal, no ε-additions/subtractions need
to be done. No error accumulation can occur during traversal of the tree.

The optimal number of orientations

Obviously, there are two contradictory effects when the number of orientations
of DOP trees is increased: on the one hand, they can better approximate the
convex hull of the set of polygons enclosed by them; on the other hand, an
overlap test between them is more expensive.

Three different sets with 6, 8, and 14 orientations have been tested: the faces
of 6-DOPs have the same normals as a cube, 8-DOPs have normals of an oc-
tahedron, and 14-DOPs have normals of the union of the former two. These
DOPs will be called standard DOPs.

75

3 COLLISION DETECTION

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400

av
g.

ti
m

e
/m

ill
is

ec

initial object ori [deg]

6

♦
♦

♦
♦

♦
♦

♦ ♦ ♦
♦

♦

♦

♦
♦ ♦

♦ ♦ ♦
♦

♦
8

+

+

+ +

+

+

+ +

+ +
+

+

+ +

+ + +

+

+
10

¤ ¤
¤

¤

¤

¤

¤
¤

¤ ¤

¤

¤

¤

¤

¤

¤ ¤ ¤

¤

¤
14

× ×
× ×

×
×

× × × × ×
× × × × × × ×

×

×
16

4 4
4 4 4

4

4 4 4 4 4
4

4
4 4 4 4 4

4

4
20

?

?
? ? ?

?
?

? ? ? ?
?

? ?
? ? ? ?

?

?

24
28
32

♦ ♦ ♦ ♦ ♦
♦

♦ ♦ ♦ ♦ ♦

♦

♦ ♦ ♦ ♦ ♦ ♦
♦

♦

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400

av
g.

ti
m

e
/m

ill
is

ec

initial object ori [deg]

6

♦ ♦

♦

♦

♦

♦

♦
♦ ♦ ♦ ♦

♦
♦

♦
♦ ♦

♦

♦
♦

♦
8

+

+ +

+

+
+

+
+ +

+

+

+

+ +

+

+
10¤

¤

¤

¤
¤

¤
¤

¤ ¤ ¤ ¤

¤ ¤

¤

¤ ¤

¤

¤
¤

¤
14

× × × × × ×
×

× × × × × × × × × ×
× ×

×
16

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4

4
20

? ?
?

? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ?

?

24
28
32

♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

Figure 3.36: The effect of an object’s coordinate frame on collision detection
performance can be significant. Left: two car bodies (60,000 polygons each),
right: door locks (43,000 polygons each). The plots have been generated by the
benchmark procedure outlined in Section 3.5.10. The time shown is the collision
detection time averaged over “interesting” distances. The locks are different in
that most of the polygons are in the interior, because it has many parts on the
inside. This might explain the “inversion” of the shape of the curve.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

5 10 15 20 25 30
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

ra
d

ia
n

s

ra
ti

o

orientations

upper bound

♦

♦

♦

♦
♦

♦ ♦

♦
quality

+

+

+

+
+

+ +

+

ratio

¤

¤ ¤ ¤ ¤
¤

¤

¤

Figure 3.37: The quality of the DOPs generated by my simulated annealing pro-
cess seems to be almost optimal.

Besides the three standard DOPs, I also investigated the whole range from
k = 6 . . . 32. These DOPs were created by the following simulated anneal-
ing process: k points are distributed randomly on the unit sphere, under the
constraint, though, that for each point p the point −p is also in the set. This
constraint is an invariant throughout the process. According to their distance,
each point pushes off all others. All the forces are summed for each point (con-
sidering that p and −p are linked together by a rigid “bar”), which make the
points move on the surface of the sphere. In order to reach an equilibrium,
the repelling forces are weighted with a factor (the “temperature”) which is
decreased continuously. To my knowledge, no optimal “density” of packing
points on a sphere is known yet [Slo98] (so there is no algorithm to construct
an optimal one). The 6-, 8-, and 14-DOPs found by this algorithm are not nec-
essarily “axis-aligned” in the sense that their orientations are parallel to one
of the coordinate axes. This algorithm was motivated by the observation that
parallel orientations are redundant, while orthogonal orientations are good.

I tried to estimate the quality of the DOPs generated by the above simu-
lated annealing process. The following is but one way to measure a DOP’s
quality: a k-DOP is defined by a set of k points pi on the unit sphere. Let

76

3.5 Hierarchical collision detection

0.1

1

10

0 0.5 1 1.5 2 2.5

ti
m

e
/m

ill
is

ec

distance

6

♦ ♦

♦
♦ ♦

♦
♦

♦

♦

♦

♦

♦
8

+
+

+
+

+

+

+ +
+

+

+

+
10

¤ ¤ ¤ ¤
¤

¤ ¤
¤

¤

¤

¤

¤
12

×
× × × ×

×

×
× ×

×

×

×
14

4 4

4
4

4

4
4 4

4

4
4

4
18

?

?

?
? ?

?

? ?

?

?

?

?

22
26
30♦

♦
♦ ♦

♦
♦

♦
♦ ♦

♦

♦

♦

0

1

2

3

4

5

6

5 10 15 20 25 30 35

av
g.

ti
m

e
/m

ill
is

ec

#orientations

2704

♦
♦

♦

♦ ♦ ♦ ♦ ♦

♦

♦
10404

+

+
+

+
+ + + +

+

+
23104

¤

¤

¤

¤

¤
¤

¤ ¤
¤

¤
40804

×

×

×

×

×
× ×

×

×
63504

4

4

4

4

4 4
4

4

4

Figure 3.38: Collision detection time
for two tori, each with 10,000 polygons.
The distance is, as always, measured
between their centers. Each graph cor-
responds to a particular k.

Figure 3.39: The same data as in the fig-
ure to the left (each graph corresponds
to a certain distance). This graph pro-
vides some evidence that the optimal k
does not depend on the distance be-
tween objects. For all other objects
in the “suite”, similar graphs were ob-
tained.

d = mini 6=j{arccos(pi pj)}. This is the smallest distance on the surface of the
sphere between two points. An upper bound for this is dmax = 2 2π

n
√

3
.17 Fig-

ure 3.37 shows the quality of the DOPs obtained by simulated annealing com-
pared to this upper bound.

Some geometry has unevenly distributed polygon normals (note that the
“pipes” object, for instance, has a lot of polygon normals in one of the coordi-
nate planes). Figure 3.3618 show the effect of different object coordinate frames
on collision detection performance: before the DOP-tree has been built, the ob-
ject was rotated. One can conclude that 8-DOPs and 10-DOPs yield the worst
performance; in particular, they seem to be most susceptible to “wrong” object
orientations. However, it is not quite clear to me, why k = 8, 10 should perform
so much worse than k = 6.

Figures 3.38, 3.39, and 3.40 show the effect of different numbers k of orienta-
tions in various ways. Although there is no k which is optimal for all objects
and distances, it seems that k = 24 is the optimum. There seems to be no signif-
icant gain for larger k, and with some objects there is even a performance loss.
In addition, all k seem to behave similarly with respect to the varying distances
between the two objects.

17 This upper bound can be derived as follows. In the plain, the densest packing of discs is achieved if
the centers are arranged in a hexagonal lattice. With this packing, the ratio v = area covered by discs

total area =
π

2
√

3
(this is the ratio of the area of a disc enclosed by a hexagon). So, for small discs on a sphere,

the area covered by discs A′ ≈ 2π2√
3

. Therefore, each disc can have at most radius rn =
√

2π
n
√

3
(n =

number of discs on the sphere).
Since this upper bound is derived from planar geometry, it is not a tight bound for small n.

However, for larger n it becomes fairly tight.
18 All data for the plots in this section have been obtained on a 194 MHz R10000.

Similar plots for the complete test suite can be downloaded from http://www.igd.fhg.de/

~zach/coldet/index.html#dop-opt-ori

From these figures it becomes clear why comparing collision detection algorithms is difficult:
depending on the situation and the particular objects chosen for the tests, the collision query times
can vary by an order of magnitude.

77

http://www.igd.fhg.de/~zach/coldet/index.html#dop-opt-ori
http://www.igd.fhg.de/~zach/coldet/index.html#dop-opt-ori

3 COLLISION DETECTION

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35

av
g.

ti
m

e
/

m
ill

is
ec

#orientations

20898

♦ ♦ ♦ ♦
♦ ♦

♦
43509

+

+
+

+

+
+

+
62023

¤

¤
¤

¤ ¤ ¤ ¤ ¤ ¤

¤
80989

×

×

×

× × × × × ×

×

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35

av
g.

ti
m

e
/

m
ill

is
ec

#orientations

4078

♦

♦
♦

♦ ♦

♦
♦ ♦ ♦

♦
9908

+

+

+

+ +

+

+ +

+

+
19658¤

¤

¤

¤ ¤

¤

¤ ¤ ¤

¤
39270

×

× × × × ×
×

×

0

1

2

3

4

5

6

5 10 15 20 25 30 35

av
g.

ti
m

e
/

m
ill

is
ec

#orientations

2652

♦

♦ ♦

♦ ♦
♦

♦ ♦ ♦

♦
10302

+

+
+

+ +

+

+ + +

+
22952

¤

¤

¤
¤

¤

¤
¤

¤

¤
40602

×

×

×

×

×

×

×

×
×

×
63252

4

4

4
4

4

4

4 4

4

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35
av

g.
ti

m
e

/
m

ill
is

ec
#orientations

4093

♦

♦ ♦
♦ ♦ ♦ ♦

♦
12736+

+
+ +

+ + +

+
28167

¤

¤
¤ ¤

¤ ¤
¤

¤
60755

×

×

× × ×
× × ×

×

Figure 3.40: Average collision detection time for various objects of the “suite”
depending on different k (from top left: door lock, hose, sphere, car body). The
average was calculated over the “interesting” distance range and over all object
coordinate frames. Each object has a “radius” of 1.

Figure 3.41 shows that collision detection time increases19 only very slowly
with complexity (provided the optimum number of orientations has been cho-
sen).

I also compared the memory requirements and construction time among
DOP-trees using 6, 8, or 14 orientations. As expected, construction time in-
creases slightly as the number of orientations increases (see Table 3.3). Also,
the amount of memory required increases slightly (see Table 3.4). This is due
to the fact that the depth of trees does not change with different sets of orienta-
tions.

Comparison of DOP-trees and OBB-trees

In this section I look at the comparison of DOP-tree versus OBB-trees with
respect to memory usage and tree construction time. An explanation of the
benchmark procedure and a comparison with respect to collision detection time
can be found in Section 3.5.10. I used 6-DOPs to compare DOP-trees with OBB-
trees.

Table 3.5 shows the amount of memory required by DOP-trees and OBB-
trees. For both, memory usage depends linearly on the number of polygons,
of course. At each node, DOP-trees store only 6 floats whereas an OBB-node
stores (at least) 18 floats. The table indicates that DOP-trees need about 4–8

19 I am not sure as to why sometimes collision detection time even decreases with increasing complex-
ity.

78

3.5 Hierarchical collision detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

av
g.

ti
m

e
/m

ill
is

ec

complexity / kilo-polygons

6

♦

♦

♦

♦
8

+

+

+

+
10

¤ ¤

¤

¤
¤

14

× × ×

×

×
16

4 4 4
4

4
20

?
?

?

?

?

24
28
32

♦
♦ ♦

♦

♦

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70

av
g.

ti
m

e
/m

ill
is

ec

complexity / kilo-polygons

6

♦
♦

♦

♦

♦
8

+

+

+
10

¤

¤
¤

¤

¤
14

× × × ×

×
16

4 4 4 4

4
20

? ? ? ?

?

24
28
32

♦ ♦ ♦ ♦

♦

Figure 3.41: With the optimal number of orientations, collision detection time
increases only slowly with increasing complexity.

time / sec
orientations

#pgons 6 8 14

door 3391 0.14 0.17 0.19
lock 20898 1.3 1.4 1.8
car 60755 4.2 4.7 6.4
pipes 124736 9.4 10.3 13.8

Table 3.3: Construction time of the
BV hierarchy for various CAD and syn-
thetic objects. The time increases by
about 50 percent when 14-DOPs are
used instead of 6-DOPs.

MB
orientations

#pgons 6 8 14

door 3391 0.1 0.1 0.1
lock 20898 1 1 2
car 60755 5 6 9
pipes 124736 11 13 19

Table 3.4: The amount of memory
required by a DOP-tree with various
orientation sets. 14-DOP-trees need
about 80 percent more memory than 6-
DOP-trees.

times less memory. (For the memory comparison, I have changed all doubles
to floats in the Rapid code [Got97], because my DOP trees are implemented
with floats. And, of course, the memory required by the list of vertices and
polygons is taken into account, too.)

Table 3.6 summarizes the comparison of the construction time of the data
structures for DOP- and OBB-trees.

The number of possible correspondences

Profiling has shown that a significant amount of time in the computation of
equation 3.2 is spent fetching indices from correspondence j. The compiler is
generally pretty good at arranging float and integer operations such that there
are as few wait cycles as possible. However, in equation 3.2 there are about
twice as many integer operations as float operations.

Since there are only finitely many correspondences, we can determine all of
them and write specialized code for each of them to calculate equation 3.2. So,
each of the correspondences can be hard-coded in a special function. At ini-
tialization of a simultaneous tree traversal, this function has to be determined,
based on the correspondence. Then during traversal, this function can be called
by function-pointer.

How many correspondences are there for a given set of orientations? For 6-
DOPs as depicted in Figure 3.33, we can calculate that number by imagination.
A cube has 8 vertices. Imagine the cube being suspended by one of its vertices

79

3 COLLISION DETECTION

MB
#pgons 6-DOP OBB

door 3391 0.1 1
lock 20898 1 8
car 60755 5 21
pipes 124736 11 44
tori 12544 0.1 9
spheres 22952 1 17
tori 73984 6 60
spheres 97032 9 73

Table 3.5: A comparison of memory
requirements indicates that DOP-trees
need about 4–8 times less memory
then OBB-trees.

time / sec
#pgons 6-DOP OBB

door 3391 0.1 0.4
lock 20898 1.3 4.5
car 60755 4.2 10.5
pipes 124736 9.4 18.4
tori 12544 0.6 2.4
spheres 22952 1.3 5.4
tori 73984 4.8 16.1
spheres 97032 6.7 25.6

Table 3.6: Comparison of the construc-
tion time of the BV hierarchy for var-
ious CAD and synthetic objects. The
construction of DOP-trees is about 2–
4 times faster.

by a thread. It can rotate around the vertical axis. Imagine a plane being moved
from the right close to the cube such that it touches exactly. Imagine another
plane touching from the front. Exactly 6 different vertices can be incident to
the right plane. For each of them, there can be exactly two vertices touching
the front plane. So, for cubes there are 8 · 6 · 2 = 96 possible correspondences.

I have written a program which computes all possible correspondences. It
takes the generic DOP (see Section 3.5.9) and samples SO3 (the space of all ori-
entations) by a large number of discrete orientations. For each of them, a cor-
respondence is computed and added to the table, if not already there. Finally,
C code is produced from that table.

For 6-DOPs the speed-up is summarized by the following table:

object faces speed-up

torus 10,000 1.5
sphere 10,000 1.2
cylinder 10,000 1.2–2.3
car body 60,000 1.2

We can determine the asymptotic number of correspondence by an argument
similar to the one above. The generic k-DOP has v = 2k − 4 vertices. We pick
one vertex of the generic DOP, attach it to the plane of one of the orientations,
and suspend the DOP by that vertex. There are v possibilities to pick the ver-
tex. Then we pick any other plane and make it touch the generic DOP while it
is rotating. At most v − 2 different vertices can touch the second plane. How
many different vertices can touch a third plane while the vertices touching the
first two planes remain the same? I suppose, this can be only a small number.
This would yield (k2) as an upper bound for the number of possible correspon-
dences.

Since the number of correspondences is growing rapidly as k increases, I be-
lieve that hard-coding the correspondences in separate functions is not reason-
able for k > 10. For instance, I have found empirically that k = 14 yields 16,255
correspondences. That would turn into about 4.5 MB source code.

80

3.5 Hierarchical collision detection

Figure 3.42: A suite of test objects. They are (left to right): the sheat metal of a
car door (≈ 3,000 polygons), the lock of a car door (≈ 20,000–80,000 polygons),
body and seats of a car (≈ 4,000–60,000 polygons) a section of pipes (≈ 120,000
polygons), a hose (≈ 4,000–40,000 polygons), sphere (≈ 3,000–90,000 polygons),
hyperboloid (≈ 5,000–180,000 polygons), torus (≈ 3,000–90,000 polygons). (Data
courtesy of VW and BMW)

Splitting DOPs

One might wonder how an algorithm similar to splitting of boxes would work
for DOPs.20 That way, not all plane offsets would have to be calculated when
enclosing a tumbled child-DOP by an axis-aligned one.

However, since the orientations are not linearly independent (when k > 2n
in n-space) we cannot just cut a DOP in two parts by a plane perpendicular to
one of the orientations: in general the two DOPs produced by that cut will have
redundant planes!

Another idea to save some computations when calculating enclosing DOPs is
based on the observation that not all d’s of (tumbled) child-DOPs are different
from the d’s of its parent-DOP. For 6-DOPs, in general only 3 of the d’s will be
different. So, during a traversal of the DOP-tree we would need to compute
only those d′ which are affected by one of the “new” d’s.

Unfortunately, with 6-DOPs 5 (3) d′ have to be computed if only 3 (1) d are
changed. So, for 6-DOPs this is probably not worth the effort. However, for
larger k this might still be interesting, because the relation 1

2 < # newd′
newd < 1 gets

closer towards 1
2 .

3.5.10 Comparison of four hierarchical algorithms

This section compares four hierarchical collision detection algorithms with re-
spect to detection speed: my Boxtree algorithm (see Section 3.5.4), my DOP-
tree (see Section 3.5.9), OBB-trees [GLM96], and QuickCD [KHM+98]. For
OBB trees, I used the Rapid implementation [Got97], and for QuickCD I used
[KHM99].

20 Actually, in the beginning I attempted to carry results and ideas from Section 3.5.6 over to DOP
trees.

81

3 COLLISION DETECTION

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350

av
g.

ti
m

e
/m

ill
is

ec

initial object ori [deg]

bx

♦ ♦

♦

♦

♦

♦ ♦ ♦
♦ ♦ ♦

♦

♦ ♦ ♦ ♦

♦
♦ ♦

♦
do

+
+ + + + + + + + + + + + + + +

+ + +

+
qc

¤

¤

¤

¤

¤

¤

¤
¤

¤ ¤

¤

¤
¤

¤ ¤

¤
ra

×

× ×
×

×

×

× × ×
× ×

× ×
×

× ×

×
×

×

×

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

av
g.

ti
m

e
/m

ill
is

ec

initial object ori [deg]

bx

♦

♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

♦
do

+ + + + + + + + + + + +
+

+ + + + + +

+
qc

¤

¤

¤ ¤

¤
¤

¤

¤
¤ ¤

¤

¤

¤

¤
¤

¤
¤ ¤

¤
ra

× × × × × × × × × × × ×

×

× × × × × ×

×

Figure 3.43: Initial object orientation (before constructing the BV tree) can have
a significant effect on collision detection time. Left: door lock with 20,000 poly-
gons, right: torus with 10,000 polygons.

General benchmarking procedure and results

It is extremely difficult to evaluate and compare collision detection algorithms,
because in general they are very sensitive to specific scenarios, such as the rel-
ative size of the two objects, the relative position to each other, the distance,
etc. I propose a simple benchmarking program which eliminates these effects.
It has been kept very simple so that other researchers can easily reproduce my
results and compare their algorithms.21

The test scenario involves two identical objects which are positioned at a cer-
tain distance d = dstart from each other. The distance is computed between the
centers of the bounding boxes of the two objects. Then, one of them performs a
full revolution around the z-axis (which is pointing towards the viewer in Fig-
ure 3.42) in a fixed, large number of small steps (here 2000). With each step a
collision query is done, and the average collision detection time for a complete
revolution at that distance is computed. Then, d is decreased, and a new av-
erage collision detection time is computed, which yields graphs such as those
shown in Figure 3.38.22 Since the initial orientation of an object with respect to
its object frame can have a significant impact on the efficiency of the BV-tree
(see Figure 3.36), this procedure is repeated for several different initial object
orientations (i.e, before the BV-tree is constructed). When plotting the average
collision detection time, I have averaged over all “interesting” distances and all
initial object orientations. Here, I have chosen the range from 2 distance steps
before the contact distance through 2 steps after that point. I believe this reflects
representative usage of collision detection. Initial object orientation means its
orientation with respect to its reference frame, which could make a difference
when constructing the BV tree.

I have carried out extensive experiments23 using this benchmark procedure
with different objects, both synthetic and real-world CAD data 3.42. All objects
are scaled uniformly to fit in a cube of size 23. All timings include vertex and
normal transforms. Except if otherwise noted, times are in milliseconds.

21 The source code of the “main loop” and some synthetic objects can be ftp’ed from http://www.

igd.fhg.de/~zach/coldet/index.html. The CAD objects can be obtained via the author (for
scientific purposes only).

22 The complete set of plots can be retrieved from http://www.igd.fhg.de/~zach/coldet/index.

html#dop-opt-ori
23 All tests have been done on a SGI R10000 194 MHz).

82

http://www.igd.fhg.de/~zach/coldet/index.html
http://www.igd.fhg.de/~zach/coldet/index.html
http://www.igd.fhg.de/~zach/coldet/index.html#dop-opt-ori
http://www.igd.fhg.de/~zach/coldet/index.html#dop-opt-ori

3.5 Hierarchical collision detection

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90

av
g.

ti
m

e
/

m
ill

is
ec

complexity / kilo-polygons

bx

♦

♦

♦

♦

♦
♦ ♦

♦
do

+ +
+ +

+

+ + +

+
qc

¤

¤

¤

¤
¤

¤ ¤

¤

¤
ra

× × × ×
×

× × ×

×

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

av
g.

ti
m

e
/

m
ill

is
ec

complexity / kilo-polygons

bx

♦

♦

♦
do

+ +
+

+

+

+

+
qc

¤ ¤

¤ ¤

¤

¤

¤
ra

× × × × × ×

×

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

av
g.

ti
m

e
/

m
ill

is
ec

complexity / kilo-polygons

bx

♦
♦

♦

♦

♦
do

+ + +
+

+
qc

¤

¤

¤
¤

ra

× × ×
×

×

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

av
g.

ti
m

e
/

m
ill

is
ec

complexity / kilo-polygons

bx

♦

♦ ♦

♦ ♦
do

+ + + + + +

+
qc

¤

¤

¤

¤
¤

ra

× × × × × ×

×

Figure 3.44: Comparison of the 4 hierarchical collision detection algorithms. The
objects from top left: door lock, hyperboloid, car body, torus.

Results

From Figure 3.43 it is obvious that an object’s orientation with respect to the
object frame does make a difference in collision detection time. This is probably
because the quality of some BV trees changes significantly when an object’s
initial orientation is changed.

Figure 3.44 shows that the Boxtree and QuickCD perform relatively poor
compared to DOP-tree and OBB-tree.24 Sometimes, my DOP-trees perform bet-
ter than OBB-trees (in the Rapid implementation), sometimes vice versa.

It is not clear to me, why there is an ”inversion” in the plot of the door lock,
and why the DOP-trees perform so exceptionally poor with the hyperboloid
object.

3.5.11 Incremental hierarchical algorithms

Since incremental collision detection has proven to be so effective for convex
objects, it seems logical to pursue a similar approach for non-convex objects
and combine it with hierarchical methods. Similarly, in the area of radiosity,
hierarchical and incremental methods are being combined [DS97].

To my knowledge, only two papers have been published presenting an al-
gorithm in this category: [LC98] construct sort of a “pair tree”, the nodes of
which represent a pair of BVs, one of each object’s BV tree on the same level. In
[PML97], an incremental hierarchical sweep-and-prune algorithm is presented.
However, no results regarding performance have been presented.

24 The complete set of plots can be downloaded from http://www.igd.fhg.de/~zach/coldet/

index.html#comparison

83

http://www.igd.fhg.de/~zach/coldet/index.html#comparison
http://www.igd.fhg.de/~zach/coldet/index.html#comparison

3 COLLISION DETECTION

u’ v v’u

v̂û

Figure 3.45: The link tree (dashed) connects two BV hierarchies (solid). It is cre-
ated and maintained during top-down and bottom-up traversals. Bottom links
are marked bold. Note that links can connect nodes at different levels in their
respective hierarchies. If there is a link between two nodes, then the associated
BVs have overlapped at some earlier time.

For my implementation I have used DOP trees. However, most of the fol-
lowing algorithm and discussion applies to all hierarchical BV schemes, such
as sphere trees or OBB trees.

The new traversal scheme

Any collision detection scheme conceptually produces a list of pairs of poly-
gons which need to be checked for intersection, because they are “sufficiently”
close to each other (this list is not necessarily exhaustive). However, in tradi-
tional hierarchical collision detection algorithms this knowledge is discarded
with every new collision test, even if those lists are almost the same in subse-
quent frames, because objects have moved only very little. This is because the
BV hierarchies are always traversed from top to bottom.

Therefore, I introduce a new traversal scheme: a mixed bottom-up and top-
down scheme. The idea is to resume (conceptually) at pairs of BVs where a
previous collision test has left off. Then we check whether these pairs are still
overlapping; if so, we proceed further down; if not, we back up (conceptually)
and try to find other pairs where we can go down again.

Data structure

Let tree(P) denote the BV tree of object P. In order to save the information
obtained during a traversal of two BV trees, I introduce a new data structure
which I call the BV link tree : if two nodes u, v, u ∈ tree(P), v ∈ tree(Q), overlap,
then we create a link(u, v) between the two (see Figure 3.45). In the following I
will call leaves of the link tree bottom links. These links either connect two leaf
nodes of the BV trees, or all 4 pairs of BVs of their child nodes do not overlap. In
other words, bottom links are created when the top-down traversal terminates.

As we will see below, links will be created only between pairs of BVs which
are visited during a top-down traversal. Note that links do not necessarily
connect nodes only on the same level. However, if they do connect nodes on
different levels, then at least one of the BVs connected is a leaf node.

84

3.5 Hierarchical collision detection

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2 2.5

#
B

V
al

ig
n

m
en

ts
/t

es
ts

#
n

o
d

es
vi

si
te

d

dist. between 2 spheres, 36672 pgons each

#align’s, top-down

♦♦

♦

♦♦♦♦

♦
♦

♦

♦

♦
#align’s, incremental

++

+

++++++++

+
#tests, top-down

¤¤

¤

¤¤¤¤

¤

¤

¤

¤

¤
#tests, incremental

××

×

×××××××
×

×
#visited, top-down

44

4

4444

4
4

4

4

4
#visited, incremental

??

?

???????

?

?

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

#
B

V
al

ig
n

m
en

ts
/t

es
ts

#
n

o
d

es
vi

si
te

d

dist. between 2 toruses, 37249 pgons each

#align’s, top-down

♦♦
♦

♦

♦

♦

♦
♦♦♦

♦

♦
#align’s, incremental

++++
++

+++++

+
#tests, top-down

¤¤

¤

¤

¤

¤

¤

¤¤¤

¤

¤
#tests, incremental

××
×

×

×

×

×××××

×
#visited, top-down

44

4

4

4

4

4

444

4

4
#visited, incremental

??

?

?

?

?

?
??

?

?

?

Figure 3.46: The number of BV test,
DOP alignments, and nodes visited de-
pends on the distance between the ob-
jects.

Figure 3.47: It also depends very much
on the particular objects involved.

In the following, I will develop an algorithm to maintain such a link tree
while performing collision detection. However, we will not necessarily visit all
links (i.e., nodes) of the link tree during a collision detection query. Therefore,
if there is a link(u, v), then at some earlier “frame” the BVs u and v overlapped.

Other properties of the link tree are obvious: if there is a link(u, v), then there
is also a link(û, v̂), with û, v̂ the parents of u, v, resp. And, there will be a bottom
link which is a child of link(u, v) (or itself).

The algorithm

Let us assume we are given the BV trees of two objects P and Q. We are also
given a link tree between the two BV trees, which could have been obtained by
an ordinary top-down traversal.

Assume that a BV pair (u, v) overlaps; then we know that all “parent pairs”
overlap, too. Therefore, we can traverse the hierarchies upward and do not need
to test BVs for overlap.

So, the idea is to maintain a list of bottom links and a link tree. For each
bottom link, we will first check whether it is still a valid link (i.e., whether the
associated BVs still overlap), and whether we should further traverse the BV
trees down. This might already produce an intersection, and in that case we
are done. Otherwise, we traverse the link tree (and the BV trees) up.

During up-traversal, we have to check all pairs of children of a pair of BVs
and possibly traverse down the respective sub-trees. Of course, if a pair of
children is already connected by a link, then we do not need to traverse down
into that sub-tree, because we will pass that pair later during an up-traversal
(or find an intersection before).

So, basically the algorithm resumes where a previous run has stopped. Prob-
ably, it resumes several times at different nodes of the trees. During up-
traversal it “spawns” down-traversals to explore some parts of the trees which
have not been visited in a previous run, but which need to be visited now, be-
cause their BVs overlap.

The algorithm for up-traversal works as follows:

up(û, v̂, u, v)

link(u, v,) has been visited already
−→ return

85

3 COLLISION DETECTION

û, v̂ overlap {trivial if u, v overlap }
−→
forall (u′, v′) ∈ children(û, v̂)

if there is no link(u′, v′)
−→ down(u′, v′)

û, v̂ don’t overlap
−→
forall (u′, v′) ∈ children(û, v̂)

clear all links between sub-trees
rooted at u′, v′

up(parent(û, v̂), û, v̂)

Here, down() denotes the conventional top-down traversal, while parent() and
children() should be obvious.

Note that with this implementation a link(u, v) means only that at some time
the BVs at nodes u and v did overlap – it does not necessarily mean that this
was true the last time a collision was checked.

So far, the algorithm “only” saves BV overlap tests. Since at present I am
using my DOP tree algorithm, I also want to minimize the number of DOP
alignments: during the conventional top-down traversal, we need to enclose
one of the two DOPs so that we can perform an overlap test quickly [Zac98c].
Although this can be done by an affine transformation, it is still one of the most
time-consuming operations during traversal.

The number of alignments can be reduced by deferring them (i.e., by lazy
evaluation). When we find out that the BV pair u, v does not overlap, then we
do not know anything about the status of the parent pair û, v̂. In order to find
out that, we need to compute the aligned DOP of û. If û’s other child u′ (u 6= u′)
has some link, then we know that û will be visited later by another up-traversal
via u′ (maybe that has already happened; then, of course, we do not defer û’s
alignment). When û is visited again eventually (via u′), we can compute its
aligned DOP by a simple unification of the aligned DOPs of u and u′. This is
not only much faster, but also the resulting DOP is tighter than the one obtained
by an affine transformation of the “tumbled” DOP.

So, during traversal we will maintain a list of “deferred links”, i.e. links
which have been visited already but whose overlap status has not been checked
yet. So, the initial loop over all bottom links is followed by a loop over all de-
ferred links:

incremental collision detection

forall bottom links (u, v)
down(u, v) {checks polygons in leaves }
if intersection

return "intersection"
up(û, v̂, u, v)

while there are deferred links (u, v)
up(û, v̂, u, v)

Note that more links can be deferred while one of the links deferred earlier is
being processed.

A node can be involved in many links (see Figure 3.45). Therefore, it can be
visited many times by different up-traversals. Therefore, DOP alignments can
be reduced further by saving the aligned DOP with the node.

86

3.5 Hierarchical collision detection

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90100

#
B

V
al

ig
n

m
en

ts

kilo-polygons

top-down, sphere

♦

♦
♦

♦
♦

♦ ♦
♦♦

incremental, sphere

++ + + + + + +

+
top-down, torus

¤
¤

¤ ¤ ¤ ¤ ¤ ¤

¤
incremental, torus

×× × × × × × ×

×

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90100

#
B

V
te

st
s

kilo-polygons

top-down, sphere

♦

♦
♦

♦
♦

♦ ♦

♦
♦

incremental, sphere

+

+
+ +

+
+

+
+

+
top-down, torus

¤
¤

¤ ¤ ¤ ¤ ¤ ¤

¤
incremental, torus

××
× × × × × ×

×

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90100

#
n

o
d

es
vi

si
te

d

kilo-polygons

top-down, sphere

♦

♦

♦
♦

♦
♦

♦
♦

♦
incremental, sphere

+

+

+

+

+

+ +

+
+

top-down, torus

¤
¤

¤ ¤ ¤ ¤ ¤
¤

¤
incremental, torus

×
×
× × × × × ×

×

Figure 3.48: The aver-
age number of BV align-
ments for the incremen-
tal and the top-down al-
gorithm.

Figure 3.49: The average
number of BV tests.

Figure 3.50: The average
number of nodes visited.
It is slightly larger for the
incremental algorithm.

Note that in the bad case (“no intersection”), still the same number of nodes
have to be visited during simultaneous traversal of the BV trees. In the good
case (“there is an intersection”), it should find a witness early on. In the bad
case, the number of DOP alignments and BV tests will be decreased signifi-
cantly (see below).

Results

For the evaluation of my incremental algorithm and for its comparison with the
non-incremental version, I have used the procedure described in Section 3.5.10.
All results have been obtained on a 195MHz R10000 with 2×32 kBytes primary
cache and 4 MBytes secondary cache.

The test scenario results in graphs such as Figures 3.46 and 3.47. I have inves-
tigated several characteristic numbers, namely the number of BV alignments25,
the number of BV overlap tests, and the number of nodes visited.

As one can see from the plots, the number of explicit BV alignments and the
number of BV tests have been reduced significantly with the incremental algo-
rithm. Experiments with other polygon numbers (I have done 5,000 through
100,000 polygons) show that the relationship stays constant: the incremental
algorithm does about 5 times less BV alignments than the top-down algorithm.
Similarly, the relationship between the incremental and the top-down algo-
rithm remains constant for the number of BV tests for different numbers of
polygons.

Because my algorithm can defer the verification of a link (i.e., BV alignment),
a node can be visited several times – each time has been counted separately,
even if nothing is done except adding a link to the list of deferred links. This is
why the number of nodes visited is larger for the incremental algorithm than
for the conventional top-down method.

When averaged across all distances, we can evaluate the algorithm’s depen-
dence on the number of polygons. Figures 3.48, 3.49, and 3.50 show the char-
acteristic numbers for spheres and tori of different sizes, respectively.

25 This is one step of a BV overlap test – other hierarchical BV algorithms might involve similar steps,
such as the transformation of a sphere.

87

3 COLLISION DETECTION

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

ti
m

e
/m

ill
is

ec

distance

sphere, top-down

♦

♦

♦♦♦♦

♦♦

♦

♦

♦
sphere, incremental

+

+

++++++
+

+

+
torus, top-down

¤¤
¤

¤
¤

¤¤¤¤¤

¤
torus, incremental

×××
×

××

×××××

×

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

ti
m

e
/m

ill
is

ec

kilo-polygons / object

sphere, top-down

♦

♦
♦

♦
♦

♦
♦♦

sphere, incremental

+

+

+
+

+

+

+
torus, top-down

¤
¤

¤
¤ ¤ ¤

¤

¤
torus, incremental

×
×

×
×

× ×
×

×

×

Figure 3.51: The collision query time
depends on the distance of the two ob-
jects (approx. 23,000 pgons/object). I
believe that the incremental algorithm
does not perform better due to a sig-
nificantly higher number of secondary
level cache misses.

Figure 3.52: The performance of the
incremental and the non-incremental
top-down algorithm compared for sev-
eral polygon counts.

Of course, the most important measure is the collision query time. Plots sim-
ilar to the previous ones are shown in Figures 3.51 and 3.52 for the time. Un-
fortunately, the timing results are not as expected: both algorithms take about
the same time.

I believe that this cannot be explained satisfactorily by the algorithm’s re-
peated visits of some nodes. (In the case of the torus, the number of nodes
visited by the incremental algorithm is actually the same as for the top-down
algorithm!) Profiling showed that the incremental algorithm produces about 6
times more secondary cache misses then the conventional top-down algorithm.
I suspect that this is fatal, because “leaving” the secondary cache can incur a
performance penalty of factor 4–10 (see Section 3.11.3).

Still, I believe that the results on the characteristic numbers are quite promis-
ing. What needs to be done is a better up-traversal scheme which does not
need to defer the alignment of BVs, yet utilizes lazy evaluation when comput-
ing them.

Discussion

The algorithm’s complexity in the worst case is still the same as for the con-
ventional top-down algorithm. However, the results are quite satisfactory in
terms of the reduced number of BV tests and DOP alignments. This shows the
algorithm’s potential for improving the query time in the case of successive
collision tests with only slightly moved objects.

Under certain assumptions, [LC98] have pointed out that the maximum
speed-up by an incremental algorithm is a factor of 2. However, I believe that
these assumptions hold true only for a particular type of algorithm.

88

3.6 Non-hierarchical algorithms

Figure 3.53: Other representations could make faster collision detection possi-
ble. For instance, the basic step with voxels and point clouds is very fast.

3.6 Non-hierarchical algorithms

3.6.1 Points and Voxels

So far, the basic operation has been the intersection of two polygons (or an
edge and a polygon), or the overlap test of two bounding volumes. The goal of
almost all algorithms so far was to reduce the number of these basic operations.
But instead of looking at new ways to further reduce it, we should also look at
other object representations.

In contrast to checking polygons against polygons, we can also check points
against voxels. In a sense, this means that we represent objects (for the pur-
pose of collision detection only) by different primitives. This idea has been
presented by [MPT99] in the meantime.

So the idea is to represent one of the objects of a pair by a point cloud. The
points should be distributed equidistantly on the surface of the object. The
other object is decomposed in a volume of voxels, in this case just binary voxels.
If the object is closed, then we could mark also those voxels black which are
completely inside the object — this depends on the definition of “collision” we
want to adopt.

Let us assume that object P is approximated by a point cloud26 and object Q
is approximated by a voxel volume (see Figure 3.53). A brute-force algorithm
would then transform each point of P into the coordinate system of Q, calculate
indices, and access the voxel volume of Q.

The plain voxel grid is very memory-inefficient. If Q’s bounding box is a
cube of size s and it is voxelized by an n3 grid, then the approximation error
is ε ≤ √

3 s
n . We need 1 bit per voxel, so the memory needed for voxeling Q

is ≥ (
√

3s
2ε)3. For instance, to approximate an object with bbox size 100 mm

and 1 mm resolution we need about 0.6 MB, and for 0.1 mm resolution we
need about 620 MB. Let us assume that the area of the surface of an object
with bounding box of size s is 2 4

3 π(s
2)2 (2× the area of a sphere). If any point

on the surface is no more than ε away from one of the clouds (measured on
the surface), then the surface must be covered completely by disks of radius
ε. Suppose the total area is covered by 130% of the area of all disks. Then we
need to approximate one object by a point cloud of 1.3×4

3 (s
2ε)

2 many points.

26 In general, we will want to approximate that object by a point cloud which is the smaller one. For
a given resolution, this will result in fewer points.

89

3 COLLISION DETECTION

With the same example as above, we need about 44,000 points or 0.5 MB for an
approximation error of 0.1 mm.

In order to reduce memory or increase resolution, one of the octree tech-
niques [Sam90c, CCV85, GA93, WSC+95] can be used (see Section 3.8). Res-
olution can be increased further by an exact octree represent [CCV85]. Of
course, this decreases speed significantly. As with hierarchical collision de-
tection, an efficient trade-off has to be found which minimizes a cost equation
similar to 3.1.

In order to increase speed, the point sets should be stored hierarchically. Sev-
eral methods could be employed, such as k-d trees [Ben90], octrees for points
[PS85], or even BoxTrees or OBB-trees (see Sections 3.5.4 and 3.5.8).

If objects can be represented exactly by polygons (which is generally the case
if they have been modeled using polygons), then the point cloud and voxel
representations introduce an approximation error. However, in virtual proto-
typing applications polygons are always approximations themselves. In order
to keep the error low, one should, of course, create the point clouds and voxels
from the CAD model directly.

For covering polygonal models by point clouds, [Tur92] have presented an
algorithm.

This representation has the advantage that it becomes fairly easy to compute
the minimal distance between P and Q. To that end, Q’s voxel volume has to
hold scalars, which will increase the memory usage (by a factor 32 if the scalars
are floats). Each voxel contains the minimal distance from that voxel to Q. Such
a distance field can be pre-computed.

3.7 Flexible Objects

Flexibility of objects complicates the collision detection problem significantly,
because precomputations are generally invalidated by a deformation. On the
other hand, it seems non-trivial to devise algorithms not depending on precom-
putations yet still as fast as the ones depending on them, such as hierarchical
algorithms.

Collision detection of flexible objects can even be complicated further if self-
intersections have to be checked, too [MW88]. It cannot be reduced to general
collision detection of flexible objects. It is more complicated than general col-
lision detection, because the algorithm has to filter out those pairs of polygons
which are adjacent. These polygons always touch or intersect each other.

A different representation is used by [Gas93]: objects are modeled by a skele-
ton and a field function. Thus every object is closed. Collision detection is done
by sampling the surface and testing each point if it is inside or outside.

[Sny95] use parametric or implicit curved surfaces and an interval Newton
method to find the minimum of a certain function, which describes the condi-
tions for a collision.

In order to speed up collision detection of deformable polygonal models,
[VT94] assume smoothly discretized models. Based on that they develop a
criterion for pooling manu adjacent polygons, so that they can be checked si-
multaneously.

The approach taken by [vdB99] is simply to ”re-fit” an existing box tree by
traversing it bottom-up. This approach works for AABBs and seems to be faster
than rebuilding OBB trees for reasonable polygon numbers. It would also work

90

3.7 Flexible Objects

t = t2

t = t1

t = t2 + n

t = t1 + n

Figure 3.54: DOPs are updated during withdrawal of the “grow-shrink” algo-
rithm. Otherwise they grow each frame according to the temporal coherence
assumption.

for DOP-trees. [SAK+95] basically rebuild an octree for the faces of all objects
participating in collision detection.

3.7.1 The “grow-shrink” algorithm

Even though objects are flexible, it would be nice to be able to still utilize hierar-
chical collision detection. A brute-force way to do that would be do rebuild the
hierarchy each time the object has deformed. This approach would probably be
slower than the algorithm of Section 3.3 for most practical complexities. How-
ever, simply re-fitting the whole tree ([vdB99]) seems to be overkill, because
many nodes of the tree are not involved in an overlap test, especially those at
the lower levels.

The idea is to retain the structure of the BV hierarchy and re-fit its node when
necessary. So, we need a criterion when to update nodes. The brute-force
method would traverse the complete hierarchy of both objects before doing
the collision test. However, by making an additional assumption we can refine
the criterion: let us assume that any vertex of object P does not move farther
than ∆P (in object space). This assumption captures temporal coherence of the
deformation of objects. It should be valid especially in virtual environments.

Let us assume that we are given two DOPs27 dP and dQ (with the definitions
of Section 3.5.9). Let us further assume that f frames have passed since they
were computed exactly the last time. Then, the following DOP overlap test tells
us if the polygons enclosed cannot intersect:

∃ i : dP
i + f ∆P < −(dQ

i+ k
2

+ f ∆Q) , 0 ≤ i <
k
2
∨

∃ i : −(dP
i + f ∆P) < dQ

i+ k
2

+ f ∆Q ,
k
2
≤ i < k

27 Of course, the algorithm works with any type of bounding volume which can be expanded inex-
pensively.

91

3 COLLISION DETECTION

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ti
m

e
/

m
se

c

distance of object centers

Grow-shrink algorithm with 2 spheres, each 880 polygons

bbox pipeline
grow-shrink

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900

av
g.

ti
m

e
/

m
se

c

polygons

Grow-shrink algorithm with 2 spheres

bbox pipeline
grow-shrink

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ti
m

e
/

m
se

c

distance of object centers

Grow-shrink algorithm with 2 tori, each 968 polygons

bbox pipeline
grow-shrink

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
av

g.
ti

m
e

/
m

se
c

polygons

Grow-shrink algorithm with 2 tori

bbox pipeline
grow-shrink

Figure 3.55: The grow-shrink algorithm seems to perform always worse than the
bounding box pipeline algorithm. This might be because the algorithm will tra-
verse the hierarchy to a larger depth.

In other words, the idea is to “grow” a DOP so that it still contains all the
polygons assigned to it, even if they have moved as far as possible under the
assumption. Of course, the overlap test really has to be done in world space by
applying the algorithm from Section 3.5.9.

Obviously, if grown DOPs do not overlap, then we do not need to traverse
further into that part of the tree. Every frame this happens, the DOPs will
grow further by one shell. So, eventually they will overlap (this will happen
the sooner, the closer they are). At this point, they need to be “shrunk”. This is
done by a union of the children of the DOP during withdrawal (see Figure 3.54).

Each node in the BV tree has one additional parameter, namely a time-stamp
telling for which time it is “exact”. With this time-stamp the algorithm knows
how much to grow the DOP during traversal. Analogously to Section 3.5.1, the
following pseudo code outlines the algorithm:

Grow-and-Shrink hierarchical collision detection

a = bounding volume of P’s tree,
b = bounding volume of Q’s tree,
f = frame time
a[i], b[i] children of a and b, resp.
growshrink(a, b, f):
test grown(!) (a,b) for overlap
no overlap
−→ return 0
a and b are leaves −→

shrink DOPs of a and b
test (a,b) for overlap

92

3.7 Flexible Objects

no overlap
−→ return 0
test polygons of a and b for overlap
return result

a or b is not leaf −→
forall (ai,bj) ∈ children(a,b):

growshrink(ai,bj)
(ai,bj) intersect

−→ break
shrink DOPs of a and b {if possible }
return result

Shrink a DOP

a = bounding volume
f = current frame time

a is leaf −→
compute new extent of a
t := f

a not leaf −→
if mini{t(ai)} > f −→

t := mini{t(ai)}
a :=

⋃
i ai

Unfortunately, this algorithm seems to perform worse than the bounding box
pipeline (see Section 3.3) in all practical cases. Figure 3.55 shows the behavior
of the algorithm in detail for tori and spheres. Although benchmarks for larger
complexities have not been carried out, the trend suggests that this algorithm
is always slower than the bounding box pipeline algorithm.

It seems that this algorithm traverses many more levels than expected. Of
course, the algorithm will traverse the bounding volume hierarchies to increas-
ingly deeper levels as the BVs “grow”. But as soon as leaves overlap, BVs on
higher levels shrink to their minimal size. Maybe the bounding box pipeline is
more efficient than one would think it is, i.e., maybe it is very good at reducing
the number of pairs of polygons.

3.7.2 Sorting

Basically, collision detection is the problem of finding pairs of overlapping
boxes. If we consider axis-aligned boxes, this problem can be reduced to find-
ing overlapping one-dimensional intervals (along three axes). In the static case,
several data structures have been invented to solve that problem. Among them
are segment trees and interval trees [Ove88b, SW82], and R∗-trees [BKSS90].
Actually, R∗-trees are suitable for n-dimensional queries. However, it is not
clear how these data structures can be adapted to the dynamic case in which all
boxes move continuously as well as change their size.

When the boxes move relative to the object’s coordinate system, it is not triv-
ial to maintain hierarchical data structures of boxes with less effort than re-
building them from scratch each time. Still, we would like to take advantage of
temporal coherence of the motion of the boxes.

Suppose we are given two sets of boxes, one set of red boxes, and one set
of blue boxes. The idea is to project the boxes on all coordinate axes. Along

93

3 COLLISION DETECTION

b

2

aba

1 2 1

Figure 3.56: An incremental collision detection algorithm can be derived from
maintaining sorted red and blue brackets on three axes.

each coordinate axis, we are then given a set of red and blue intervals (see
Figure 3.56). Each interval consists of two brackets : an opening bracket (or left
bracket) and a closing (or right) bracket. The goal is to find all overlapping
intervals, one of which is red and the other one blue. This can be done by three
sweeps across each axis, with the interval endpoints sorted along them.

During the sweep, we keep a list of active intervals. An interval is active, if
we have encountered an opening bracket, but not yet its closing bracket. When
the sweep encounters a closing bracket, the interval is removed from the list of
active intervals. When the sweep encounters an opening bracket, two things
happen: we increment a counter for all pairs of red/blue intervals, where one
of them is the interval currently selected by the sweep, the other interval is
from the list of active intervals; after that, the current interval is added to the
list of active intervals.

For each red/blue interval pair, a counter is maintained in an overlap matrix.
After all 3 sweeps have been finished, this counter tells whether or not the two
intervals overlap.

Temporal coherence can be utilized by incrementally sorting the intervals
along each axis. Once the brackets are sorted along an axis, they should be
“almost” sorted in the next frame. I use Bubblesort for updating the ordering
of the brackets.

The overlap matrix could become very large for moderate polygon sizes,
even if a single char is used for each entry. In general, it is a sparse matrix.
In particular, if a pair of intervals does not overlap along the first axis, then we
won’t need to create an entry for it during any further sweeps. Therefore, the
overlap matrix is implemented as a list of lists. Furthermore, the algorithm can
be optimized by the following observation: if two intervals do not overlap on
one of the axes, then we do not have to test the corresponding pair of intervals
on any of the other axes.

Unfortunately, this algorithm performs even worse than the one in the pre-
vious subsection. One problem is that the contents of the matrix are computed
from scratch each time. In addition, profiling has shown that accessing the
sparse matrix takes a lot of time. In addition, I suspect that each single access
causes several cache misses (see Section 3.11.3).

In order to speed up this kind of algorithm, several problems would need to
be solved: a fast implementation of sparse matrices, and a method that allows
to re-use the contents of the overlap matrix. The idea is to update only those
matrix entries that need to be changed, because many intervals that overlapped
during the last frame are likely to do so in the current frame. This would re-
quire to utilize both the intervals as of last frame sorted along each axis and
the current position of all intervals. However, as polygons become smaller and
smaller the benefit of this is questionable. In addition, housekeeping for such
an update algorithm seems to me to become too difficult to yield any speed-up.

Ideally, one would like to completely do away with the overlap matrix.

94

3.8 The object level

3.8 The object level

Some VEs and some simulations need to calculate the behavior of a huge num-
ber of moving objects, or of several objects moving in an environment of a
huge number of stationary ones. These environments pose the all-pairs prob-
lem on a global level — just like the all-pairs problem on the face level.28 Of
course, before doing any collision check between two objects, we first check
their bounding volumes for intersection. Still, the complexity is quadratic, i.e.,
with n moving objects we have to do ∼ n2

2 bounding volume checks. Usually,
the objects are distributed fairly evenly about the volume of interest (the “uni-
verse”), so even in the case where one object moves among n stationary ones,
checking n bounding boxes for overlap is too expensive.

Although the problem bears some similarity to collision detection on the
polygon level, the methods developed there do not necessarily apply as well
to the global problem. The difference is that here, the basic primitives (i.e., ob-
jects) maintain no relationship to one another. In particular, all of them can
move with respect to one another. Even methods developed for collision de-
tection of flexible objects might not be applicable to the global situation, in par-
ticular if they utilize some smoothness or topological or hull property of the set
of polygons (or subsets).

There are basically two methods to solve the problem, both of which exploit
space coherency: most regions of the universe are occupied by only one object
or empty. Consequently, each object has a very small number of “neighbors” (in
some sense); only these neighbors have to be tested for collision with the object
itself. One class of methods is space indexing which builds on space parti-
tioning data structures (possibly hierarchical ones), the other class of methods
is “object-oriented” in the sense that objects are maintained in a hierarchy or
sorted in some order.29

One might wonder when it does actually pay off to determine neighbors by
a global method, i.e., is it always worth to try to avoid n2

2 bounding box tests?
Let

Pb(n) = number of neighbor pairs according to BV,
Ps(n) = number of neighbor pairs according to space indexing

Tb = time needed for one BV neighbor test
Ts(n) = time needed for space indexing neighbor test

Tp = time needed for one exact collision test (average)

Then, space-indexing is more efficient if

Pb(n)Tp + Ps(n)Tb + Ts(n) < Pb(n)Tp +
n2

2
Tb ⇒

Ps(n) <
n2

2
− Ts(n)

Tb

28 In some sense, these problems and levels are similar to the levels addressed by hierarchical ra-
diosity and clustering. The only difference is that in radiosity polygons are usually considered the
basic “objects”. Hierarchical radiosity tries to solve the all-pairs problem for a pair of objects (i.e.,
polygons), by building hierarchies of patches (which are the basic entities an object consists of),
while clustering tries to solve the all-pairs problem for the complete scene by building hierarchies
of objects.

29 Here, one might draw the analogy to the concepts of screen precision and object precision, or screen
space and object space.

95

3 COLLISION DETECTION

If there was no additional BV test after the space-indexding, then the break-
even point would be

Ps(n)− Pb(n) <
n2

2 Tb − Ts(n)
Tp

This fits well with my experience: if there are only a few, large objects, a
global neighbor-finding method is not worthwhile; on the other hand, for a
large number of objects consisting of only a few polygons, a global method is
necessary.

3.8.1 Other approaches

Sweeping plane. The basic idea by [CLMP95, BF79a, PS90] is to sweep a
plane along the x-axis; whenever this plane intersects more than two boxes
at a time, we check all the rectangles obtained by the actual intersection of the
sweep plane at the current position with those boxes. This is now a similar test
in two dimensions, which can be performed by the same method, now with a
sweep line instead of a plane. This method is well suited for exploiting tempo-
ral coherence.

Since there are only finitely many boxes, we can first sort the set of x-values
of all boxes. Then, the sweep along the x-axis can be done by “hopping” from
one x-value to the next in the sorted list. During the sweep, we maintain a list
of y-values and z-values. At each x-value found in the list we either enter, or
leave a box; correspondingly, we add or remove its y- and z-values from the y-
and z-value arrays. Since the sweep along the y-plane will need the y-array to
be sorted, too, we will add and remove y- and z-values by insertion sort (which
involves at most one pass over the two lists).

Bounding-volume hierarchy. The idea is to exploit the scene graph hierar-
chy which is already present in the scene, or, if there is none yet,30 to create
such a hierarchy ([YW93]). The idea is similar to bounding box hierarchies of
polygons. The differences are: here, we are given only one tree, and we have
to find overlapping pairs within that single tree; and, second, all leaves are,
potentially, moving.

For ray-tracing, bounding box hierarchies work very well [KK86], because
the scene is entirely static; so, the hierarchy can be built once at start-up time.
In order to yield any significant improvements compared to the quadratic all-
pairs case, the hierarchy must be well modeled and fairly deep.

However, with this approach there are two problems:

1. In dynamic environments, the hierarchy would have to be rebuilt every n-
th frame in order to maintain a fairly optimal correlation between spatial
locality and tree locality. Since ray-tracers have to build the hierarchy
only at start-up time, they can create a much finer and better optimized
hierarchy on polygon level.

Imagine an assembly line scenario with many objects moving through
large volumes and many robots moving within their stationary working

30 Scenes in virtual prototyping applications are not yet modeled hierarchically. This will probably
change in the next decade for automotive applications, as car makers are building product data
management systems, tools, and design guidelines to create so-called “process data”. These will
contain, among others, hierarchical model information.

96

3.8 The object level

volume. In such a scenario, any bounding box hierarchy will soon be-
come useless, because there will be no correlation between geometrical
locality and topological locality.

2. Usually, there are many objects of the scene which do not have to be
checked for collision (see Section 3.9). In that case, the scene graph is
sparse in terms of collision objects. Therefore, large parts of the scene
graph will be traversed just to “find” a single collision object.

3.8.2 Bounding Volumes

In order to gain any speed, we will deal only with bounding volumes through-
out this whole section. So, whenever I use the term “object” in this section, I
mean its bounding volume. Of course, the bounding volume must be much
simpler an object than the object it bounds. At the same time, this is the general
disadvantage of bounding volumes: depending on the geometry of the object
“inside”, they can contain very much “empty” space. Some of the desirable
characteristics of bounding volumes are:

• easy to compute,
• little memory requirements,
• fast transformable,
• simple overlap check,
• tight fitting.

There are a few very simple, commonly used bounding volumes: axis-
aligned bounding box (AABB), sphere, DOP. AABBs are probably the optimal
BV with respect to fast overlap tests. Unfortunately, they are not invariant un-
der rigid motions. An enclosing AABB of a transformed AABB can be up to 2
times as large in volume as the original bounding box. They can be computed
by 45 FLOPs (18 mult. + 18 add. + 9 comp.) [Zac94b, Gla90].

The geometry of spheres is probably the simplest one, which makes them
attractive. Spheres are invariant under rigid motions. However, an overlap
test between two spheres is not quite as inexpensive as an overlap test between
two axis-aligned boxes. Computing the optimal bounding sphere is not nearly
as easy as computing an AABB. The brute-force method is in O(n4). For exact
optimal bounding spheres, the algorithm usually chosen is linear or quadratic
programming [Meg83, EH72]. Computing an almost-optimal solution seems
to be more feasible [Wel91, Rit90, Wu92].

DOPs seem to have been considered first for ray tracers [KK86]. They can
be considered a generalization of AABBs. The advantage is that one can trade
tightness for overlap test speed.

Cylinders and prisms seem to be simple, too [BCG+96]. However, they
do not seem to be too useful, even with static scenes, probably because their
geometry is already too complicated [WHG84]. For curved surfaces, such
as splines, curved BVs such as spherical shells seem to be a good choice
[KGL+98, KPLM98].

3.8.3 Space-indexing data structures

The problem of finding neighbors (in some sense) of an object among a set of
similar objects is sometimes called space indexing, space partitioning, range

97

3 COLLISION DETECTION

search, space covering, etc. Many data structures have been developed in the
past to help find neighbors, determine proximity, and many similar problems.
Computational geometry has recognized the range search problem very early
[BF79b].

All of these methods exploit space coherency and the fact that most regions
of the “universe” are occupied by only one object or they are empty. Conse-
quently, each object has a small number of neighbors, compared to the total
number of objects.

As mentioned before, most of the data structures developed so far (espe-
cially those in the field of computational geometry), assume a static environ-
ment. However, the serious challenge is the dynamic quality of the environ-
ment. While the only criterion with static environments is fast retrievability and
fast neighbor-finding, the criterion with dynamic environments is, in addition,
fast updating for moving objects.

BSP. Binary space partitioning was developed to partition a whole scene (a
set of polygons), so as to solve the hidden surface problem [FKN80]. For visual-
ization of dynamic scenes, the data structure has been augmented by so-called
“auxiliary planes” [Tor90]. These try to divide space without cutting objects.

Despite the simplicity of the basic idea, there is the annoying problem of
cut objects. In general, this cannot be avoided, and the size of a BSP tree can
get rather large — the lower bound is Ω(n2) for n objects. Only recently an
algorithm has been presented which can construct the optimal BSP (see [PY90]).

It seems to me that BSPs have been mainly used for solid modeling, where
objects can be represented and operated on by using BSPs [TN87a, NAT90a].

Cell subdivisions. Cell-based neighbor-finding implies the following defini-
tion: given a set of cells, each of which can be “occupied” by one more object(s).
Two objects are neighbors, if there is a cell occupied by both of them.

There are two basic classes of cell decompositions of space: uniform and hi-
erarchical. Usually, boxes are used (which yield a space subdivision), but other
BVs can be used as well, such as spheres (which yield a space covering).

In contrast to BSPs, uniform cell subdivisions are not “object oriented” but
space oriented, i.e., the data structure itself does not depend on the arrange-
ment of objects. Instead, this data structure is built once at start-up time; later
on, cells are just “filled” with the objects they contain.

Hierarchical cell decompositions try to overcome this shortcoming by recur-
sive subdivision of cells, based on criteria on the objects’ distribution. They
can better handle uneven object distributions. The most common scheme
are octrees [Sam90a, Sam90b]. They have been heavily used for ray-tracing
[GA93, MSH+92, Sun91], and solid modeling [TKM84, FK85, NAB86]. Oc-
trees have been combined with B-reps in order to combine fast algorithms for
boolean operations and exact object representation [CCV85].

The most basic cell subdivision are uniform grids. Grids are such a simple
data structure that there is not too much literature on them [Ove88c, Ove88a,
HT92]. For ray tracing, regular grids have proved to be the second-best data
structure [MSH+92].

Grids are used in a dynamic environment by [ZOMP93]. However, they use it
in a very large environment where objects are very small compared to grid cells.
In fact, they are so small, that objects are approximated by points. Furthermore,
cells are large enough so that objects cannot traverse more than one cell per

98

3.8 The object level

frame. In molecular modeling, [Tur89] has used grids to speed up collision
detection time among spheres. [CAS92] applied octrees for collision avoidance
with tele-operation in a dynamic context.

I have developed algorithms for updating grids and octrees quickly in a dy-
namic environment (see below).

Macro-regions are based on a (fixed) grid and, like octrees, the method tries
to group large areas of contiguous empty voxels [Dev89]. They are more flexi-
ble, though, because they do not superimpose other grid layers. Instead, these
areas of empty voxels (called “macro-regions”) are rectangular, and as large as
possible. They may (and usually will) overlap.

Adaptive grids have been developed by [KS97] for accelerating ray tracing.
They are a hybrid approach, combining hierarchical space partitioning with the
benefits of regular grids.

Field trees are somewhat similar to adaptive grids, in that they comprise sev-
eral layers [FB90b]. Unlike adaptive grids, however, they seem to be more suit-
able for uniform object distributions and densities.

3.8.4 Octrees

In the following I will describe algorithms for quickly updating octrees in a
dynamic environment of moving objects (boxes). First, I will describe basic
insertion; then, how to update an octree efficiently.

The fundamental step for finding neighbors is insertion. A simple algorithm
to insert all objects in the octree. Then, we can simply enumerate all cells oc-
cupied by an object by just executing the insertion algorithm once more. When
objects move between frames, the octree has to be updated. Again, this can be
done naively by using the insertion algorithm: we make one insertion with the
old position to remove any reference to the object to be moved, then we make
a second pass with the new position to insert it again.

Basic insertion algorithm

The basic algorithm for inserting an object B is quite simple:

Octree insertion

input: box B, octant o

o is leaf −→
add B to o’s list
return

o completely inside B −→
add B to o’s list
return

i = 1 . . . 8:
B intersects with sub-octant oi
−→ insert B in oi

Since an octree is (conceptually) a multi-layer uniform grid, we can use inte-
ger arithmetic to do the box-octant comparisons. This defines a voxel to be a
“half-open” cube [vx , vx + δx]× [vy, vy + δy]× [vz, vz + δz].

99

3 COLLISION DETECTION

object data base

object array

octant
node

Figure 3.57: Octree data structure enhanced with octant arrays.

Finding neighbors

After all objects have been inserted in the octree, the next step is to find all
“nearby” objects to a given one. This can be done very simply by just using the
insertion algorithm again; except instead of inserting the object, we just read
the list of “occupants” attached to each cell.

The only difference to insertion is the case when an octant is completely in-
side the object. With insertion, we are finished with recursion at this point.
For finding neighbors, however, we have to descend further down, since there
might be objects which are attached only to some octant at a deeper level.

We can do a little better by enhancing the data structure by octant arrays.
Every object has its own octant array. This array contains references to every
octant whose occupant list has got a reference to the object in question (see
Figure 3.57).

When trying to find neighbors of an object, we do not have to traverse the
octree from the top. Instead, we can start traversal at those nodes which are
referenced by the object’s octant array. (Most of them will be leaves; see below).

Moving an object

When an object has been moved by the application, the octree has to be updated
accordingly. The naive way to do this is first to remove all references to this
object from any octree cell, then to insert it again. This could be done by two
traversals through the octree. With octant arrays used for neighbor-finding, we
can remove object references faster (the insertion phase remains the same).

In most real-time applications, however, objects move only a small distance,
and rotate probably a little bit (temporal coherence). Therefore, their new bound-
ing box is “almost” the same as of one frame before. With two traversals for
updating the octree, most of the references to an object would be removed only
to be inserted immediately again by the next traversal.

We cannot speed up the object removal phase very much. All we can do is to
scan the object’s octant array and remove the object from all those cells which
are no longer in the new bounding box.

Now we only have to insert the object in those cells which have not been oc-
cupied before. Given the “new” box Bnew and the “old” box Bold, we partition
the difference Bnew \ Bold into (at most) six boxes, which I will call entering
boxes Ei:

100

3.8 The object level

newly occupiedold boxnewly occupiedold box

Figure 3.58: Symmetric set difference of “new” and “old” bounding boxes. The
“new” part is partitioned into rectangular boxes. When moving an object, an oc-
tree traversal has to be done for only those cells which are in the box-difference.

E0 =[Bnew
xmin, Bold

xmin − 1]× [Bnew
ymin, Bnew

ymax]× [Bnew
zmin, Bnew

zmax]

E1 =[max(Bold
xmin, Bnew

xmin), Bnew
high]× [Bold

ymax + 1, Bnew
ymax]× [Bnew

zmin, Bnew
zmax]

E2 =[max(Bold
xmin, Bnew

xmin), Bnew
high]× [Bnew

ymin, Bold
ymin − 1]× [Bnew

zmin, Bnew
zmax]

E3 =[max(Bold
xmin, Bnew

xmin), Bnew
high]× [max(Bold

ymin, Bnew
ymin), min(Bold

ymax, Bnew
ymax)]×

[Bnew
zmin, Bold

zmin − 1]

E4 =[max(Bold
xmin, Bnew

xmin), Bnew
high]× [max(Bold

ymin, Bnew
ymin), min(Bold

ymax, Bnew
ymax)]×

[Bold
zmax + 1, Bnew

zmax]

E5 =[Bold
xmax + 1, Bnew

xmax]× [max(Bold
ymin, Bnew

ymin), min(Bold
ymax, Bnew

ymax)]×
[max(Bold

zmin, Bnew
zmin), min(Bold

zmax, Bnew
zmax)]

Of course, these calculations are done using integer coordinates. Mostly, 3 of
the entering-boxes Ei are empty; all six are non-empty only if the box has grown
but moved very little.

Then we do an insertion traversal with each non-empty of the entering boxes
Ei (see Figure 3.58). This should result in much fewer cells being visited.

Implementation

An efficient implementation of the basic insertion algorithm for octrees has to
take advantage of the following simple conditions:

Bmin
x > omid

x → do not consider the 4 left sub-octants at all
Bmax

x > omax
x → do not consider the 4 right sub-octants at all

where omid is the center of the current octant o. Similar tests with y and z yield a
decision tree of depth 3. For each leaf of the decision tree we can use a different
sub-octant traversal scheme which minimizes assignments (see Figure 3.59).
On some architectures, this yielded a speed-up of 20%.

Including an octant’s bounds and its midpoint in the node structure does not
seem to speed-up the insertion. So we can as well compute the bounds of sub-
octants at recursion time, which saves about half of the memory required by
the plain octree.

The octree backbone, i.e., all octant nodes, are created at initialization time.
They remain throughout the whole run time. This is done so as to minimize

101

3 COLLISION DETECTION

Figure 3.59: For the case where all sub-octants have to be visited, this traversal
scheme minimizes assignments of octant bounds. Similar traversal schemes are
used for the cases where less sub-octants have to be visited.

memory allocation and deallocation. Occupant lists are also created at initial-
ization time, but only very small ones. Their size can grow and shrink, depend-
ing on how many objects are in an octant. However, this growing/shrinking is
controlled by some hysteresis, so the number of memory reallocations is kept
low. Tests showed that by increasing this hysteresis from 5 to 10, the number of
memory reallocations was decreased by a factor 3. However, the overall run-
ning time did not decrease significantly — apparently, memory reallocations
are fast compared to an octree traversal.

Octree results

The first test was designed to measure pointer distribution with respect to oc-
tree depth. The octree spanned a 103-cube, containing 100 objects, each of size
13 (in local coordinate system).

octree #object pointers at depth (%)
depth 1 2 3 4 5

2 0 100
3 0 0 100
4 0 0 0.6 99.4
5 0 0 0.03 3.5 96.4

This means that with an octree of depth 5, say, 96% of all object pointers of
the whole octree are stored in leaves. (A depth 5 octree has got 32 × 32 × 32
voxels.) It seems that an octree is an efficient space subdivision only if objects
are large in comparison to the voxel size.

The same set-up was used to measure memory usage and actions.

octree usage #mem. actions/frame
depth (kBytes) malloc realloc free

2 8 9 78 9
3 16 114 78 114
4 264 839 55 839
5 2264 4821 14 4818

Memory usage includes the octree backbone plus all object arrays. Profiling
revealed that memory allocation or freeing does not consume significant time.

Timing. Figure 3.60 shows the results of the improvements over the naive
algorithm, proposed in this section. Obviously, the algorithm which visits only
those nodes it really has to is the fastest. The tests were run on an SGI Onyx
(R4400, 150 MHz).

102

3.8 The object level

2

10

100

300

2 3 4 5 6

ti
m

e
(m

s)

depth

object + occupant lists

♦
♦

♦

♦

♦♦
box difference

+ +

+

+

+

+

3

10

100

200

0 10 20 30 40 50 60 70

ti
m

e/
fr

am
e

(m
s)

size (#cells per axis)

simple
♦ ♦

♦

♦

♦

♦
doubly pointered+ +

+

+

+

+
w/ bbox pre-check¤ ¤

¤

¤

¤

¤

Figure 3.60: Performance gain by incre-
mental maintaining of octrees of dy-
namic scenes. A depth of 0 corre-
sponds to one cell only. Both variants
use occupant lists, but one of them vis-
its only cells which are in the box dif-
ference.

Figure 3.61: Comparison of the sim-
ple and the doubly-pointered grid data
structure. Grid updating plus genera-
tion of “close” object pairs with 100 ob-
jects. The third curve is with the addi-
tional pre-check whether the new and
the old bounding boxes (in integer co-
ordinates) are the same.

3.8.5 Grids

The general idea of grids is extremely simple: every cell maintains a list of
objects which are (partially) in that cell. When moving an object in the grid, we
can use the same box-difference technique as above for octrees, in order to visit
only those cells which have to be changed. The performance of the grid data
structure is shown in Figure 3.61.

In order to reduce the number of cells an object occupies I tried to use its
non-axis-aligned bounding box. In order to find the occupied cells, a stabbing
algorithm was implemented. A box is stabbed by a set of parallel rays which is
just dense enough. This yields a set of columns of cells. However, this method
is faster only for grids with more than 453 cells.

Timing. When there is only one moving object among several stationary ones,
the threshold of benefit of a grid is reached with smaller object numbers. The
scenario here was: one moving object (20 polygons) among 500 stationary ob-
jects, each with 52 polygons (altogether 25,000 polygons). Exact collision detec-
tion was done.

without grid 1.0 msec/frame
with 83 grid 0.2 msec/frame

Grids seem to provide the optimum speed-up (compared to the all-pairs test)
with a size of 5× 5× 5 through 10× 10× 10 voxels. This is in the same order
as for octrees in static settings.

3.8.6 Comparison of grid and octree

Octrees and grids have been compared with each other and with the n2-method
(see Figure 3.62). The scenario is n objects moving inside a cube without exact
collision detection. So objects can pass through each other, but this should not
affect the timing. In order to keep the density constant as the number of objects

103

3 COLLISION DETECTION

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

m
s/

fr
am

e

#objects

Octree 16

♦

♦ ♦

♦
♦

♦
♦

♦
♦

♦
Grid 14

+
+ +

+ +
+

+

+

+

Octree 8

¤ ¤ ¤ ¤
¤

¤
¤

¤

¤

¤
Grid 6

× × ×
×

×
×

Bbox

4 4 4 4 4
4

4

4

4
4

Figure 3.62: Comparison of grid, octree, and n2

2 bounding box tests. The graph
labeled “grid 14” corresponds to a grid with 143 cells; similarly for the other
graphs.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

m
s/

fr
am

e

#objects

25 polygons/sphere

Lin-Canny

♦ ♦ ♦ ♦
♦

♦

♦

♦♦
Grid 14

+ +
+

+

+

+

+

Grid 6

¤ ¤
¤

¤
BBoxes

× ×
× × ×

×
×

×

×
×

Sep.Plane

4 4 4 4 4
4

4

4

4

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

m
s/

fr
am

e

#objects

900 polygons/sphere

Lin-Canny

♦ ♦
♦

♦

♦

♦
♦

Grid 14

+ +
+

+

+

Grid 6

¤ ¤
¤

¤

¤
BBoxes

× ×
× × ×

×
×

×
Sep.Plane

4 4
4 4

4

44

Figure 3.63: A comparison of various neighbor-finding algorithms. Exact colli-
sion detection (DOP-Tree) has been performed if a pair was found to be “close
enough”, and it is part of the times obtained. Scenario: n spheres bouncing off
each other inside a cube. The density (defined as the number of collisions per
frame) is constant through all object counts.

increases, the size of the cube is increased accordingly. Density is defined as
the average number of collisions per frame.

With very small numbers of objects, the n2-method performs better than the
grid. In contrast to static environments, octrees are always less efficient than
grids. This is in contrast to results obtained by [MSH+92] for ray tracing, which
suggest octrees in favor over grids.

I believe that, in general, a space indexing data structure for dynamic envi-
ronments has to be much less complex than a data structure for static scenes.
Complex data structures tend to be “precomputation-biased”: the computa-
tional burden is shifted to their updating, so that queries can be more efficient.
In highly dynamic environments, I believe, the simpler data structure is su-
perior to complex data structures in terms of speed, because they need to be
updated constantly.

3.8.7 Comparison of grid and separating planes

It is not trivial to compare grids and the separating planes algorithm. It is easy,
of course, to compare them to each other by themselves. However, since we
want to use them for nearest-neighbor finding, there are a lot of side effects.

104

3.9 The collision detection pipeline

One characteristic property is complexity, in the context of nearest-neighbor
finding: grids are essentially in O(n), while the separating planes algorithm
and I_collide are in O(n2) (n = number of objects). On the other hand, there is
quality : by this we understand how often a neighbor-finding algorithm passes
a pair of objects to the exact collision detection although they do not collide.
Obviously, the grid has a lower quality than convex hull based algorithms.

Another property is the dependence on object complexity. The grid is in-
dependent of object complexity (unless tight-fitting bounding boxes are used),
while the convex-hull-based algorithms depend on it, because usually the com-
plexity of the convex hull depends to some degree on the number of vertices of
the objects.

So, if the number of polygons is large or the number of objects is large, then
a grid is probably more efficient. On the other hand, if the number of objects
is small or each object has only few polygons, then the separating planes algo-
rithm is probably better. Exactly where the break-even point is depends, again,
on several factors, such as how fine the grid is, and how fast the exact collision
detection algorithm is.

Figure 3.63 substantiates these considerations. Clearly, there is a break-even
point, which depepnds on the number of polygons per object. The BBox graph
shows the performance of n2

2 bounding box checks. Obviously, this brute-
force method has a very small constant factor, so that it will exhibit the n2-
characteristic only with many more objects than 100.

Depending on the number of objects, either the separating planes algorithm
alone should be used, or it should be combined with a grid, so as to form 2
stages of the collision detection pipeline (which could be considered a filtering
pipeline). The idea is that the grid serves as an O(n) prefiltering stage while
the separating planes algorithm performs a more precise proximity check on
those pairs that have passed the grid. That way, I assume, the good properties
of both neighbor-finding algorithms can be combined.

3.8.8 Combining grid and separating planes

As the previous section has shown, the grid and another algorithm based on
convex hulls, such as the separating planes algorithm, should be combined to
perform neighbor “filtering”. That way, the grid ensures basically O(n) perfor-
mance, while the separating planes algorithm ensures that only those pairs of
objects are checked for collision which are very close to each other.

This scheme has not yet been implemented in the collision detection module,
but I am planning to do so in the near future.

3.9 The collision detection pipeline

A fundamental concept in computer graphics is the pipeline. It is interesting to
realize that this concept is appropriate for the implementation of many mod-
ules in a computer graphics system. Probably the first pipeline identified was
the rendering pipeline ([AJ88]), which is still valid, although somewhat mod-
ified, even in modern architectures [Bar97, MEP92]. Other pipelines are the
visualization pipeline [Fel95] and the haptic pipeline [Zie98].

Collision detection can be regarded as a pipeline of successive filters. The
input is a set of objects (namely all objects in the scene graph), while the out-
put is a set of polygons (namely the ones overlapping). The difference to the

105

3 COLLISION DETECTION

rendering pipeline is that in the collision detection pipeline pairs of entities are
passed down.

In previous sections I have described all parts necessary to implement a col-
lision detection module. In this section I will briefly describe the collision de-
tection pipeline.

I will not discuss the issue of dynamically pre-fetching objects and auxil-
iary collision detection data for walk-throughs (and similar applications), if the
complete environment does not fit in main memory. A system solving this
problem has been described by [WLML99].

The collision interest matrix. In a VR system the collision detection module
is used by many different high-level modules (like interaction manager, inverse
kinematics, rigid body dynamics, etc.). Each module is interested in different
collisions. In addition, there are usually a lot of object pairs which no module
is interested in. Finally, sometimes a module just “knows” that certain pairs of
objects cannot collide at all, or that a pair of objects will collide all the time.

The collision detection module, on the other hand, needs to save certain data
with each pair of objects to be checked for collision, such as callbacks, cached
information obtained during the last collision check, time stamps, etc.

Conceptually, we need a collision interest matrix to hold all these per-pair in-
formation. The data structure is usually a diagonal matrix.31 Other data struc-
tures could be hash tables, sparse matrix, or lexicographically ordered lists. In
my experience, however, a diagonal matrix is satisfactory.

The pipeline. The data flow in the collision detection pipeline is conceptu-
ally as follows (see Figure 3.64). The object handler tells the collision detec-
tion module about any objects that have been moved by any other module.
These are added to a list buffer. Eventually, the buffer is emptied, and any
global neighbor-finding data structure is updated according to the new posi-
tions. Then, a list of pairs is generated from the collision interest matrix. This
list of pairs is filtered by one or more neighbor-finding algorithm (e.g., grid
and/or collision detection of their convex hulls).

This produces an intermediate list of pairs of objects “close” to each other. For
each of these an exact collision detection is performed. This finally produces a
list of colliding objects.

Finally, for each colliding pair one or more callbacks are executed.

31 Of course, only for occupied cells memory is allocated. All unoccupied cells just hold one pointer.

106

3.9 The collision detection pipeline

b
o

x-
tr

ee

fl
ex

ib
le

o
b

je
ct

-
cl

o
se

fr
o

n
t-

en
d

co
lli

si
o

n
p

ai
rs

h
an

d
le

r
m

o
ve

d
o

b
je

ct
s

gr
id

co
n

ve
x

ap
p

lic
at

io
n

in
te

re
st

co
lli

si
o

n

p
ai

rs
in

te
re

st
in

g

p
ai

rs
co

lli
d

in
g

m
at

ri
x

Fi
gu

re
3.

64
:T

h
e

co
lli

si
o

n
d

et
ec

ti
o

n
m

o
d

u
le

im
p

le
m

en
ts

th
is

p
ip

el
in

e.

107

3 COLLISION DETECTION

3.10 Parallelization

In general, there are several models of parallelization. One of them is the
producer-consumer model. A pipeline can be viewed as a sequence of pro-
ducers and consumers, each consumer being the producer for the next one.

Another model is the master-slave model. Here, one master doles out pieces
of work to the slaves. The slaves return the results to the master. The master is
responsible for balancing the work-load.

Yet another model is the anarchist model (such as Linda [Car98]). The idea is
that every producer puts work-pieces in a work-pool. The workers take a piece
out of this pool. When a piece of work is finished, they put the result back into
the pool. 32

These models are mostly helpful for designing coarse-grain and distributed
parallelization. Basically, they are ways to think about load-balancing. On the
fine-grain and shared-memory level, a different perspective is more helpful.
On this level, we have a continuous spectrum of models.

Given a task, which can be partitioned into arbitrarily-sized “chunks”. If we
partition it into as many chunks as there are processes, then we have static
load balancing. Assume that we partition the task into many small chunks, so
that we have much more chunks than processes. Then, each process can work
on as many chunks as possible, until all chunks are finished; this is dynamic
load-balancing.

At the other end of the spectrum, there is what I call the “stride-based” ap-
proach. When all the chunks have elementary (or, atomic) size, then a static
load-balancing scheme is needed, otherwise synchronization overhead would
be overwhelming. The scheme works in an “interleaved” fashion: all elements
are stored in an array; then each process takes elements id, n + id, 2n + id,
. . . (where id is the process’ ID, starting from 0).

I have implemented parallelization on both levels coarse-grain and fine-
grain. In the following I will discuss these efforts in more detail.

3.10.1 Coarse-grain parallelization

The coarsest-grain parallelization is concurrency between the collision detec-
tion module and all the other modules. The appropriate model is producer-
consumer, where all modules are both. This will be discussed in more detail in
Section 3.11.4.

If one thinks about the pipeline-nature of the collision detection module (see
Section 3.9), the usual pipeline parallelization (as implemented in CPUs) comes
to mind. However, as we all know from CPUs, it is crucial that the pipeline be
balanced. With the collision detection pipeline, this is definitely not the case.
All the heavy work is in the back-end, while the space-indexing stage has to
do very fairly “light-weight” work (usually), and all other stages are more of a
organizational or glue nature.

In addition, it would not be trivial to parallelize the grid. Access to grid cells
would need to be exclusive. If synchronization would lock the whole grid at
once, then most processes would be waiting all the time. On the other hand,
providing each cell with its own lock would probably make access to cells slow.

Therefore, I have not parallelized the pipeline.

32 Internet-wide distributed projects like “Seti@Home” or “Crack RSA” seem to share characteristics
with both the master-slave and the anarchist model.

108

3.10 Parallelization

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p

ef
fi

ci
en

cy

processors

speedup

♦

♦

♦

♦

♦

♦
efficiency

+

+
+

+
+

+

Figure 3.65: Coarse-grain parallelization of the back-end yields good speed-ups,
if there are enough object pairs to be checked with each collision frame.

The back end, on the other hand, is almost trivial to parallelize. After the list
of possibly colliding pairs has been filled, each process takes out one pair and
checks it for collision. Here, load balancing must be completely dynamic, be-
cause collision detection times can vary between pairs by orders of magnitude
(depending on their complexity and relative position).

A parallel back end can yield almost linear speed-up, because there is al-
most no synchronization overhead (see Figure 3.6533). Of course, this can be
achieved only if there are enough pairs in list of possibly colliding objects and
if those pairs are really close enough. It seems that this is true only for very
dense environments.

Pretty often, only one pair “survived” the grid, the collision interest matrix,
and the convex hull test. In order to take advantage of several processors in
that case, fine-grain parallelization is needed.

3.10.2 Fine-grain parallelization

The algorithm of Section 3.3 lends itself very well to fine-grain parallelization.
Various phases can be parallelized: the collect-phase, transformation of arrays
of vertices, and the outer loop.

It is very important to make sure that a parallel implementation does not
invalidate the cache too often (see Section 3.11.3)!34 So, a “chunk-wise” par-
allelization is often best. On the other hand, polygons and vertices tend to

33 Measured on a 6× 194 MHz R10000.
34 Here is a live example. In my first attempt of fine-grain parallelization of the BBox-pipeline algo-

rithm (see Section 3.3), I parallelized the transformation of the vertices into world space like this:
each process would stride through the vertex array. The stride length was the number of processes.
Unfortunately, two processors needed about twice as much total time, although profiling showed
that no time was spent at barriers!

Now, the memory layout of the vertex data structures is such that the vertex’ coordinates in local
space and those in world space are always next to each other (they are both in the same struct).

The problem with the stride-through approach, together with this special memory layout, is,
that whenever a process writes to memory, the caches of all other processes become invalid in that
area. Because of the striding, many other processes are bound to read from that area. And since all
processes would stride from bottom to top through the array, a lot of cache misses occurred!

A much better approach here is the “chunk-wise” approach, which assigns each process one
range of vertices up front.

In this example, the “stride-wise” parallelized transformation of about 10,000 vertices took
26 milliseconds, while the “chunk-wise” approach took only 10 milliseconds! (2 processes, so each
took 13 and 5 milliseconds, resp.)

109

3 COLLISION DETECTION

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

sp
ee

d
u

p

processors

Sphere, 132

♦

♦
♦ ♦ ♦ ♦

♦
Sphere, 462

+
+

+ + +
+

+
Sphere, 992

¤

¤

¤ ¤
¤ ¤

¤
Sphere, 2652

×

×
×

×
×

×

×
Sphere, 10302

4

4

4

4

4
4

4

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

sp
ee

d
u

p

processors

Hyper, 122

♦ ♦ ♦ ♦ ♦ ♦

♦
Hyper, 442

+
+

+

+ +

+

+
Hyper, 962

¤
¤

¤

¤
¤ ¤

¤
Hyper, 2602

×
×

×

×

×

×

×
Hyper, 10202

4 4

4 4
4

4
4

Figure 3.66: The algorithm presented in Section 3.3 lends itself well to fine-grain
parallelization as the speed-up shows. On the left, two spheres were used, on
the right two hyperboloids were used.

be stored contiguously in memory, in the sense that polygons close in mem-
ory tend to be close in space, too (this is a consequence of how tesselation
and striping algorithms work). So, when checking polygons for intersection,
“stride-wise” parallelization is better. With chunk-wise parallelization, the load
would be poorly balanced, because some chunks will be completely outside the
bounding box of the other object, and some chunks will be completely inside.

Although parallelizing one algorithm is fine-grain parallelization, this works
well for the BBox-pipeline algorithm. Figure 3.66 shows the speed-up with
two different objects. It is not quite clear to me, why there is practically no
speed-up with the “nice” sphere object. With less “nice” geometry (such as a
hyperboloid), parallelization yields fairly good speed-ups.

It remains to be seen whether parallelization of the Boxtree algorithm (see
Section 3.5.4) or DOP-tree algorithm (see Section 3.5.9) is feasible.

3.11 Implementation issues

In this section I will describe some of the more technical issues that have oc-
curred during my implementing the collision detection module.

This is not the end of the story. At one point, the non-parallelized version of the algorithm
calculates a tight bounding box. Profilings showed that this took an insignificant amount of time.
So, in my first attempt, I didn’t parallelize this section of the algorithm, resulting in

start parallel section
transform chunk of vertices

end parallel section
calculate tight bounding box

Calculating the bounding box took 9 milliseconds total, while in the non-parallelized version it
took only 6! Again, this was caused by cache misses, because after the parallel section, the cached
vertices of process 0 (which participated in the parallel section) were invalid except for its own
chunk. Having realized that, the cure was obvious: move the calculation of the bounding box into
the parallel section:

start parallel section
transform chunk of vertices
calculate tight bounding box for own chunk

end parallel section
merge bounding boxes

110

3.11 Implementation issues

3.11.1 Requirements

During my work on the collision detection module and its application (such
as described in Sections 4.5.4 and 5.2), several requirements on such a module
have emerged.

The collision detection module must provide an API, so that modules using
collision detection can optionally specify the order in which the collision detec-
tion module executes callbacks. Reason: Sometimes a module has registered
several pairs of objects for collision detection. It can happen that more than
one pair is colliding during the same collision frame. However, if a certain
pair is colliding, then all other collisions are “uninteresting” to that module.
While each module could implement this kind of feature itself, the right place
to implement it is the collision detection module for several reasons.

Each object registered with the collision detection module must have a flag
whether or not it could move, and whether or not it is flexible. That way, the
collision detection module can select the algorithm appropriate for each pair of
objects. In addition, each pair of objects must have a flag whether or not some
module wants to know all intersecting polygons. Finally, each pair must have
a flag telling if some module wants the collision detection module to calculate
the minimal distance. In that case, a different algorithm must be used.

It should be possible to disable temporarily any collision checks with an ob-
ject. Still, the collision detection module should remember whether or not the
object has moved during its “hibernation”, so that when the object is activated
again the collision detection module will check it, even if it has not moved after
its activation.

A module using collision detection should be able to disable collision call-
backs of any other module for an object. This is necessary when a module needs
several collision queries (such as physically-based simulations) which are not
of interest to other modules, because they represent a kind of “intermediate”
state.

There are different types of requests to a collision detection module (collision
detection query, additions, callbacks, etc.). These must be entered in a single
queue in front of the collision detection module’s front-end.

3.11.2 Time-stamping

One does not want to compute things more often than necessary. Often in com-
puter graphics, the “things” are arrays of entities such as points, normals, face
bounding boxes, etc. With collision detection, often only some of the entities of
an array need to be computed or transformed. So, the idea is to store the de-
rived results for those entities being actually computed/transformed, and later
consult a flag (each entity having its own flag) to find out whether that result
has been computed already.

The problem is that whenever the input changes, all flags need to be reset.
With collision detection, in almost all cases this happens when an object has
been moved, when it changes geometry, or just before the next collision loop.
However, it is way too expensive to visit all flags of an array of entities which
have become invalid.

Here, time-stamps help. We introduce a counter for each array of entities
(e.g., one counter for all face normals of an object). This counter is the “timer”
for its associated array. When all of the entities of an array are changed, we
simply increment that counter. When we transform/compute one of the enti-

111

3 COLLISION DETECTION

1

4

16

64

256

1024

4096

8k 16k 64k 256k 1M 4M

N
an

o
se

co
n

d
s

Array size (Bytes)

rand., float

♦ ♦ ♦ ♦ ♦ ♦
♦

♦
♦ ♦ ♦

♦ ♦ ♦
♦ ♦ ♦ ♦ ♦

♦ ♦ ♦

♦
rand., double

+
+

+ + +
+

+

+
+ +

+ +

+ + + +
+

+ + +

+
rand., int

¤ ¤ ¤ ¤ ¤ ¤ ¤
¤

¤
¤ ¤

¤ ¤ ¤
¤ ¤ ¤ ¤

¤

¤ ¤ ¤

¤
sequ., float ×

sequ., double 4
sequ., int ?

Figure 3.67: Memory access patterns cannot be neglected with the design of
collision detection algorithms.

ties, we copy the value of the counter (the global “time”) to the entity’s flag.
Two examples are given below.

For instance, the algorithm of Section 3.3 spent 30% of the total CPU time
with clearing all the flags for face normals, without the time-stamping tech-
nique!

3.11.3 The CPU cache

In my experience, a careless implementation of collision detection algorithms
can mar performance completely. In several cases, I have seen a performance
gain by a factor 2 when the implementation was improved.

With some algorithms, even during their design the architecture of the ma-
chine has to be taken into account. I have noticed that during profiling of the
algorithms presented in Section 3.5.5 and in Section 3.5.11.

One of the most important features of computer architectures is the cache.35 It
has great impact on “bus-intensive” algorithms, i.e., algorithms reading and
writing data from/to memory very often compared to the time these data
spend in CPU registers. If such algorithms show a linear memory access pat-
tern, then a cache improves performance a lot. However, for algorithms with a
random pattern often accessing memory parts “far away” from previously ac-
cessed parts, a cache does not help and might even slow down performance.36

Therefore, I investigated the impact of the primary-level and secondary-level
data caches on R10000 architectures. The instruction cache, of course, could
have considerable impact, too. However, in my experience, implementations
of collision detection algorithms show a naturally high code locality, so they
already benefit from the instruction cache.

The cache test I performed involves a simple operation on a large array. The
size of the array is varied, so that a larger or smaller part of the complete array
fits into the caches. For each array size, a completely random and a completely
linear access pattern was executed on the array.

35 Another important question is whether or not the CPU’s floating-point unit is as fast as the integer
unit.

36 An early version of the algorithm of Section 3.5.11 was actually consistently slower than the algo-
rithm of Section 3.5.9. Profiling revealed that this was due to a highly non-linear memory access
pattern, whereas the algorithm of Section 3.5.9 has a much more linear access pattern since it is a
depth-first tree traversal.

112

3.11 Implementation issues

The tests were carried out on a 194 MHz R10000 equipped with with 32 KB
primary data cache and a 1 MB secondary unified instruction/data cache size.
Figure 3.67 shows that there is a considerable performance loss when the pri-
mary cache’s limit is reached, and that there is an even higher performance loss
when the secondary cache cannot hold the array anymore. The time shown in
the plots is for two accesses to the array, one load and one store.

This proves that with current hardware architectures the RAM access time
and the memory access pattern of an algorithm can no longer be neglected. Es-
pecially when comparing the access times with other operations, for instance,
any float arithmetic takes approximately 30 nanoseconds. See also Section 3.10
for a discussion of the effect of cache invalidations on parallelized algorithms.

3.11.4 Concurrent collision detection

Collision detection is one of the major CPU “hogs” in many virtual prototyping
applications, particularly those which do some sort of physically-based simu-
lation. So, in VR systems, this module must run concurrently to all the other
processes. Otherwise, the VR system’s response to the user’s movements and
the frame-rate would be seriously impaired, which would disturb the feeling
of immersion.

The model chosen in my implementation is the classic producer-consumer
model, except that the buffer in-between is not, as usually, a FIFO but a double-
buffer, for reasons explained below. The conventional producer-consumer
model has to be modified as follows. In VR systems, the producer must never
be kept waiting. So, should the buffer become full, entries must be thrown
away. In my excperience, this has never happened, though. Second, the col-
lision detection module does not wait for the front-buffer to become full; it
starts checking collisions as soon as the back-buffer is empty and all collision
callbacks have finished.

With concurrent collision detection, the programmer of collision detection
callbacks must be aware that the callback itself is part of the collision detec-
tion process (although the code is part of the application module). As a con-
sequence, should the callback communicate with the rest of the application
module via shared data structures, these probably must be implemented as
double-buffers, too.

113

Chapter 4
Interacting with Virtual
Environments

I hear and I forget.
I see and I remember.
I do and I understand.

CONFUCIUS

Interaction in general can be approached from two points of view [FvDFH90]:

• Task- or feature-oriented.
Some basic recurrent tasks in 2D as well as 3D are selection, grasping, cre-
ating, and destroying objects, text input, etc. In 3D, navigation is another
basic task.

• Technique-oriented.
This point of view focuses on the interaction paradigms and metaphors
being employed to realize or implement the interaction task or feature.

To some degree, the interaction paradigm depends necessarily on the in-
put devices being used — not every paradigm can be implemented with
every device, and some devices suggest or imply a certain paradigm.

For instance, in 2D the paradigm of choice for selection is the pointer,
which can be implemented very naturally with a mouse and its mouse
buttons. Of course, other devices could be utilized, for example the cursor
keys of the keyboard, or eye tracking combined with speech recognition.

Interestingly, in 3D the distinction between the feature-oriented and the tech-
nique-oriented point of view becomes much clearer. The “3D button” feature

(see Section 4.5.1) can be realized by several different techniques: collision detec-
tion, ray-object intersection, or cone-object intersection; the ray might emanate
from the finger, or from the eye through the finger; etc.

4.1 VR devices

Virtual reality basically was “born” with the invention of new input and out-
put devices and their becoming affordable by research institutes. Of course,
some applications and visions existed before that: Flight simulators clearly be-
long to the field of VR, although nobody called them that way (and still no-
body does). As early as 1965, when computer graphics was just born, Ivan
Sutherland expressed his vision in the often-cited paper “The ultimate dis-
play” [Sut65], where he proposes ideas such as eye tracking, force-feedback,
and speech recognition. His ultimate display is essentially a “holodeck”. Prob-
ably, he was also the first to realize a head-mounted display (HMD) [Sut68].
Also, the military utilized some of the “classic” VR devices (HMDs for exam-

115

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

type advantages disadvantages

fish-tank VR best resolution and least
distortion;
familiar and easy-to-use;
fairly inexpensive.

low immersion;
stereoscopic violation be-
cause of clipping;
small range of user’s
movements.

head-coupled VR best immersion because
of large field-of-view, all-
surrounding view, and al-
most no stereoscopic vio-
lation;
fairly large range of user’s
movements;
affordable.

either heavy or low reso-
lution;
large distortion because of
wide-angle optics;
not easy-to-use (intruding
interface).

projection-based VR high resolution, large
field-of-view;
high degree of presence,
because user can see him-
self;
easier to share;
easy-to-use.

needs more graphics
pipes for more walls;
possible stereoscopic
violation, because user’s
limbs always occlude
virtual objects;
requires a lot of space;
not so easy to maintain.

Table 4.1: The different characteristics of input and output devices imply dif-
ferent types of VR, distinguished mainly by the (characteristics of the) output
device.

ple) a long time before they became widely available and affordable. However,
only when devices such as trackers, HMDs, and gloves became available and
affordable the field of VR came into being and attracted a lot of research.

As of 1998, it is clear that current VR devices are still in their infancy [CN97].
It is also understood that there is no single combination of devices which is best
for all applications. Certain characteristics are inherent to the devices, at least
they will prevail for a long time. These imply several different types of VR, dis-
tinguished mainly by the (characteristics of the) output device (see Table 4.1).

By fish-tank VR I understand desktop-based VR, i.e., a stereo monitor and
shutter glasses. Head-coupled VR is based on the use of HMDs or booms
(possibly strapped to the head). Projection-based VR utilizes 1 up to 6 stereo
screens; this includes devices such as the workbench (1 wall as a table [Ros97]),
2-screen workbenches, panorama walls (curved or flat), and the cave (3 to 6
walls) [CSD93, Dee92]. In almost all environments, the user’s head is tracked,
mostly the hand, too, and sometimes the user wears a glove or other input
device.

4.1.1 Input device abstraction

Although the author of virtual environments usually wants to specify the input
devices to be used for interaction,1 my experience has shown that an abstraction

1 For instance, the author defines the “sentence” a user has to speak in order to invoke a certain
action, and the author wants to specify exactly which tracking sensor is to control the user’s hand.

116

4.1 VR devices

co
m

m
.

server

server

co
m

m
.

d
evice

d
evice

application

communication

EthernetRS 232

(button, space, ...)
abstraction

Figure 4.1: The framework for integration of input devices consists of an abstrac-
tion layer, a communication layer, and a server layer. That way, devices can be
connected to any host in the LAN, and development of the interaction handler
is simplified.

of input devices does help with the implementation of a VR system [Fel95,
FSZ94]. In addition, an architecture which allows flexible configuration of the
hardware has proven to be extremely helpful if not necessary for development.
I will call this module device handler.

I have implemented such a framework and abstraction layer. It consists of
two parts: the abstraction layer itself, and a set of device servers which provide
basic services for talking to the devices. Those two layers are connected to each
other by a communication layer, e.g., via ethernet, (see Figure 4.1). The servers
are separate applications running concurrently and asynchronously as fast as
they can. This helps reduce system lag. In addition, they can perform CPU-
intensive data processing, such as filtering and correction (see Sections 4.3.1
and 4.3.2).

Potentially, a server can run on any host in the LAN. This can be very helpful
for development. Of course, for serious VR applications all servers should run
on the same (multi-processor) host where the main VR system is running, too.
In that case, communication should be performed via shared memory, so that
the renderer can read the latest viewpoint data right before it starts culling.

The abstraction layer supports logical input devices, so that the exact type of
physical input device needs to be known only at very few places in the overall
VR system. In my experience, it is sufficient to provide the following logical
devices: button (binary), space (6D), and hand (flex vector). Logical buttons
can be mapped on physical buttons (keyboard, mouse, spacemouse, etc.) and
on speech recognition (see Section 4.2.2), spaces can be mapped on trackers,
spacemouse, mouse, etc. In general, logical buttons will be used to trigger an
action, while spaces will be used for all kinds of continuous motions.

Devices like location (3D), orientation (3D), value (1D), choice (1-of-n), or
picker are unnecessary. Location and orientation can always be extracted from
a space, and there is no benefit in implementing those “sub-devices”. A picker

Of course, an author has to provide alternatives for different hardware (e.g., fully immersive or
desktop).

117

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

is basically used for selecting objects in the scene graph. It is not directly con-
nected to any input device (see Section 4.5.2). In addition, a VR system might
want to use different metaphors for selection in different modes (e.g., our sys-
tem uses a different metaphor for selecting annotation markers than for select-
ing parts). So, experience has shown that from a system architecture point of
view selection should be implemented in the interaction module, which has
been done in our VR system.

It has been argued that the coordinates of 6D physical devices should be nor-
malized by the server before delivering them to the application (e.g., in the
range [±1]; [Fel95]). However, in my experience this is not a good idea. There
are basically 2 types of 6D devices: absolute and relative devices. Absolute
devices provide absolute coordinates, relative to some origin in the real world;
such devices are electromagnetic and optical tracking systems, the boom, etc.
Relative devices do not have an origin in real world; they include spacemouse,
spaceball, mouse, etc. For relative devices, the raw output is converted into
absolute coordinates by integration. Therefore, there is no canonical way to
convert those absolute coordinates into a normal range. For absolute devices
there would be a canonical way.2 However, this is different for each device;
it can be different even for the same device but with different configuration
(e.g., a long-range transmitter instead of the standard one). Eventually, the (di-
mensionless) coordinates must to be converted back to meaningful units (e.g.,
millimeters for manufacturing applications). So, the application would need to
know about the exact type of device at many more places.

The abstraction layer should provide both relative and absolute logical de-
vices no matter on which physical device they are being mapped. So, the
application should be allowed to request a relative or an absolute space de-
vice, no matter whether it is mapped on a spacemouse, say, or a Polhemus
tracker. This is very convenient, since for navigation both types are needed,
depending on whether the space is used for steering the cart or the camera (see
Section 4.4). The integration over time necessary to convert relative into abso-
lute data should be done by the servers, because they can run with a constant,
known “loop rate”. It could be done by the abstraction layer, but temporal
aliasing will be much more noticeable, because the frame rate (or “loop rate”)
can vary by a factor 3 or more. Differentiation (computation of deltas) should
be done by the servers, too; however, the abstraction layer must accumulate all
deltas until the application polls the (relative) logical device. The communica-
tion layer cannot do that, because, in theory, several logical devices might be
mapped on the same physical device, but the application might choose to poll
the logical devices at different frame times.

It has been proposed to implement a polling mode as well as an event mode
for logical devices. When in event mode, a logical device executes a callback
whenever it receives new data from a server, while in polling mode it just waits
to be polled by the application and then returns the latest data. I have imple-
mented and used both modes; however, for the sake of a uniform design of
the event generation mechanisms in the interaction handler (see Section 1.1),
the polling mode should be used only. It might be helpful to provide the event
mode for other, less complex, applications.

In order to keep communication overhead to a minimum, servers transmit
data only when they have changed. For continuous data, a threshold can be

2 Divide the coordinates by the maximum range of that device.

118

4.1 VR devices

specified which tells when data are to be considered sufficiently different from
old ones.

It has turned out that fault-tolerance (in a certain sense) is an important issue
here. Many things can go wrong at start-up time or during run-time: the device
configuration file is wrong; the device does not respond, because it was left in
a bogus state by the application before; a data record got scrambled on the
serial line from the device to the host, or the host dropped a part of the record
(this does happen); the device did start fine, but later it quits.3 Therefore, each
server must be able to handle all of these conditions. This requires, that it can
detect such a situation, and either handle it gracefully (in the case of drop-outs),
or give appropriate feedback to the device abstraction layer. In the case of a
faulty device configuration file, the abstraction layer should provide feedback
to the user and present a configuration editor. Then, the server can re-read the
configuration file, and try again; or, the device handler has to start the server
anew on a different host.

Finally, the current implementation also can provide visual feedback for
some devices. For instance, the logical device handling glove input can ren-
der a virtual hand, and a logical button device can be mapped on a graphical
object. However, in my experience this has turned out to be unpractical for
various reasons. From a system design point of view, this is not an elegant so-
lution, because it makes the device handler dependent on the object handler
and renderer, while it is really a peer module.4 In addition, it is less flexible
when more complex simulations are to be done with the glove input in order
to determine the position of the virtual hand (see Section 4.5.3). Therefore, the
device handler will be implemented as a strictly input module in the redesign
of our VR system.

4.1.2 The data pipeline

There are (at least) two streams of data in any VR system: data generated by
local input devices (see Figure 4.4) and data coming in from other participants.
These data are of two kinds: discrete and continuous. Eventually, both streams
of data will be output to the display and/or other participants.

There are many sources of lag in both streams: latencies in input devices,
the network, filtering, expensive computations, video refresh rates, etc. All
latencies can build up to large lags in the feedback to the user, which could
cause “simulator sickness” [Dit97] or impair user performance.

4.1.3 Dealing with lag

Several general techniques and strategies have been devised to overcome the
lag in the pipeline.

With continuous data, one can try to predict future data by extrapolation of
current and past data. In some cases, this can be combined with filtering (see
Section 4.3.1). Of course, the predicting algorithm needs to know the time delta
it has to “see” into the future. This is easiest if that delta does not change, i.e.,
if the frame rate of the renderer is constant over time. This can be achieved
by various level-of-detail techniques [Red96, Tur92, LT99, FS93]. Of course,

3 This happens with Ascension systems fairly often, in particular if one of the sensors gets too close
to heavy metal. But even under perfect conditions, this system quits in about 2–3%.

4 The device handler should be strictly for input, while the renderer is strictly an output module.

119

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

data kind lag handling network data structure

continuous “better never than late” UDP shared memory
discrete “better late than never” TCP queue

Table 4.2: The handling of lag in the streams of the two kinds of data in a VR
system.

there are techniques to estimate the time to render the next frame. However,
introducing such feedback loops for all places where prediction is needed com-
plicates the overall system design, especially if they have to go back through
some network. Prediction of the continuous data is complicated especially if
there is a network between renderer and predictor, because this would add
more uncertain latency to the estimated time the next continuous data are due.

Another way to deal with delayed continuous data can be applied if they can
be generated faster than the frame rate. This is called better never than late, i.e.,
whenever the renderer is ready to draw another frame, only the most recent da-
tum of the continuous stream will be used; all earlier data will be thrown away.
This scheme can be applied to tracking data, continuous transformations, etc.
The rule of thumb is that if the data can be sent over UDP, then this scheme can
be applied to get the most up-to-date images.

With discrete data, the situation is different: here the principle better late
than never is prevalent. This is true especially for data which bear a “trigger”
semantics, i.e., data which generally switch some action or properties on or off.
The analogy from a IP point of view is that these are data which must be sent
via TCP. See Table 4.2 for a comparison.

4.2 Processing input data

Some input data sent from device servers need to be processed further in order
to be useful to the interaction manager. Two cases are posture data and voice
recognition data.

4.2.1 Posture recognition

A dataglove has traditionally been used to give commands to the computer
through some sort of “sign language”. This consists of a set of postures, if only
one data set at a time is considered, and it is a set of gestures, if a sequence of
postures is considered. Sometimes, postures are referred to as static gestures,
whereas gestures are called dynamic gestures.

Postures can be recognized fairly reliably, while the recognition of gestures
bears the same problems as that of natural speech recognition, such as noise,
different time scaling, and different amplitude for the same gesture.

From my experience, the number of postures being used in a VR system
should be kept at a minimum and as intuitive as possible [Zac94a] (two for
navigation, one for grasping, and one for opening/closing a menu, say, seems
about the maximum for an occasional user).

For the same reason, I do not think that dynamic gestures should be used in
VR systems to be employed in manufacturing industries.

120

4.2 Processing input data

Therefore, I will consider only static postures in this section. From the dis-
cussion above it is clear that gesture recognition to be utilized in a traditionally
CAx-based environment should fulfil the following requirements:

• Robustness, in the sense that postures are recognized correctly, only these
are recognized, and transitory postures do not trigger any action;

• User-independence;

• Training is acceptable at most once per glove.

In order to reduce training, the glove server performs self-calibration, by
mapping joint values on a predefined range. Since the range of raw joint an-
gles can vary significantly across users for the same glove (and even from day
to day for the same user), the server constantly keeps the range of raw joint
values. This range is adjusted as new values are read. In order to avoid ex-
cessive “stretching” of this range by outliers, the range is narrowed gradually
over time, if the minimum/maximum has not been observed again.

Different postures can be pretty close to each other in posture space. This
could cause a “transitory” hand posture to be recognized, which in turn might
trigger some action unintentionally. This is even more a problem when pos-
tures are defined in the interior of the posture space. A solution is to create a
trigger only when the same posture has been recognized for a certain duration
(half a second seems to be a good value).

Postures can be defined as ellipsoids in Rd (where d = 18 or d = 22, typi-
cally). Then, they can be recognized by a simple point-in-ellipsoid test

d

∑
i=0

(
fi
ri

)2 ≤ r2,

where f is the flex vector. In order to save CPU time, other norms could be
utilized as well, for instance the l∞-norm.

Experience showed that this approach still required each user to train the
recognition for himself. Plus, recognition was not as reliable as necessary for
use in every-day work.

Another approach turned out to meet the requirements set forth above. It
exploits the fact that all postures our VR system understands are located near
the “border” of [0, 1]d, i.e., some of their flex values are (almost) maximal or
minimal5 (see Figure 4.2).

The idea is to discretize a flex vector f ∈ [0, 1]d into f′ ∈ {−1, 0, +1}d (0
means the corresponding flex value is indeterminate, i.e., neither close the min-
imal nor maximal value). Then, f′ is compared with each sample g from the
database. If there is one for which

||f′ · g|| = ||g||

then f′ is recognized. The database should be constructed such that ∀g 6 ∃g′ :
||g · g′|| = ||g||.

Although I have not performed a formal user study, our experience from sev-
eral years is that this approach is extremely robust and reliable. Our database
usually consists of 5 postures, which has been sufficient for all applications.

5 In fact, even in our every-day life there are only very few postures which are in the interior of that
posture space.

121

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

+1-1

10-1

for one posture
equivalence class

Figure 4.2: Joint value vectors of valid postures tend to be close to the border of
posture space.

The database needs to be constructed only once. It suffices to calibrate the
glove once for one user’s hand; starting from that, the glove server does an au-
tomatic flex value adjustment on-line, in order to make the range of flex values
close to [0, 255] [ZLB+87]. Thus posture calibration has never been necessary
for other users.

Other approaches. Posture recognition has been a field of research at least
since data gloves have been available [DS77, ZLB+87, SZ94]. Biomechanical
analysis of the human hand had been performed earlier [ACCL79].

Automatic scaling and filtering transitions have been described by [ZLB+87].
Back-propagation networks (perceptrons) [VB92] are quite well suited for

gesture recognition. Still, a good glove calibration is essential; also, each user
should have their own gesture definition data or neural network. Findings by
[WS99] suggest that it might be possible to achieve user-independent gesture
recognition by training a 3-layer back-propagation network with training sets
of several different hands.

An interesting approach is the application of fuzzy set theory [TS98]. They
represent postures by vectors of polar coordinates (each finger tip is rep-
resented by (φ, θ, r) relative to its proximal joint), which are discretized in
{0, . . . , 3}5 × {0, 1}3. Their success rate is 98% with a database of 20 postures.

Dynamic gesture recognition has been applied to sign language recognition
by [LO96, NW96]. Both of them propose hidden Markov models, which have
been proven to perform quite well for speech recognition. Often, dynamic ges-
tures are defined as the trajectory of any pointing device, such as a tracker or
the mouse. The recognition approach of [SGS97] is based on discretization and
three levels of representations for gestures. The success rate is about 90-95%.
Fuzzy logic can also be applied to dynamic gesture recognition [Bim99],

Ultimately, one would like to get rid of any kind of data glove. This idea
has been pursued by posture recognition research based on computer vision.
However, it seems to me that reliable vision-based posture recognition will not
be achieved in the near future.

An intermediate solution to untethered posture recognition might be optical
tracking of markers on the wrist, palm, and each finger joint. Occlusion, and
markers too close to each other are always a problem with optical tracking

122

4.2 Processing input data

— even more so with “optical” posture recognition. For instance, with the
fist posture, many markers would be invisible to all cameras, and most others
would be very close to each other on the cameras’ frames.

Augmented postures. Since the number of intuitive postures is very limited,
I implemented an augmented type of posture. Their parameter set comprises
joint angles plus one dominant direction reflecting where the thumb of the
hand is pointing. This direction can assume one of 6 different values.

With the notion of augmented postures, the posture input space is increased
significantly. For example, in order to control the playback of an object path,
the hitch-hike augmented posture can be used: pointing the thumb up means
“stop”, while pointing right or left denotes “forward” and “backward”, respec-
tively.

4.2.2 Voice input

Voice input is one of the most natural ways of human communication. Since
speech recognition has become quite robust and almost real-time, it is a matter
of course to use this input channel for interacting with virtual environments.

I have developed a simple grammar for specifying speech commands (sen-
tences). This grammar is used in specifications of VEs in order to trigger ac-
tions. The general syntax is

w11|w12| . . . n1 w21|w22| . . . n2 . . .

This sentence will trigger when the word w11, or w12, etc., is received, followed
by at most n1 “noise words”, followed by the word w21, or w22, etc. The concept
of noise words allows to discard unimportant utterances of users (e.g., “path
[go to] [the] next position”).

Some commands include a parameter which must be conveyed to the ac-
tion. For instance, the command “rotate by n degrees about axis x” contains
two parameters. Therefore, instead of specifying a word (or several alternative
words), the grammar also allows to specify a (formal) parameter. When the
sentence has been matched, the corresponding actual parameters are delivered
to the action. The sentence matching engine does not perform any “type check-
ing” (it would require that words do have a type); this is done by the action in
a simplistic manner.

Because of parameterized sentences, sentence matching cannot be done by
the device server. In my first implementation, sentence matching was done by
the device abstraction layer. However, this has turned out to complicate mat-
ters (because of parameters). So, sentence matching is done by the interaction
manager’s class for speech input (see Section 2.4).

It would be possible to parse the user’s utterances by the speech recognition
engine. Most of them offer a grammar-driven recognition mode anyway. How-
ever, like [EWQ99] we have found that parsing the input on the application side
offers much more flexibility (in that case, the speech recognition engine runs in
“list” mode, i.e., it just gets a dictionary of words it should recognize). First,
grammars usually need to be compiled; secondly, my “grammar” is much sim-
pler and can be learned by non-programmers in a matter of minutes; finally,
with the grammar based approach, each application would need its own gram-
mar — with my approach, the grammar is basically specified in the description
file of the virtual environment.

123

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

During the course of my work with voice input in VEs, several guidelines
have emerged, which have also been reported by others.

Utilize speaker-independent speech recognition, although the recognition rate
is slightly less than with a speaker-dependent one. As of today (1999) the recog-
nition rate is about 95%. Therefore, there must be always a fallback input mode,
should the system not recognize some words (for instance, the recognition rate
can drop significantly when the speaker is under stress). That fallback will
usually be the keyboard or menus.

Develop an easy-to-remember command language. This is more natural than
keyword spotting, because, for robustness reasons, the speech-recognition is
not continuous anyway. Additionally, this helps keeping the interface sim-
ple and efficient. Furthermore, speech recognition systems generally get more
reliable when provided with a simple unambiguous grammar. The interface
should be tolerant for variations of commands (e.g., synonyms), so that users
do not have to remember the exact form. This is in accordance with [JFH92].

The number of functions in a VR system will continue to grow. Right now,
our virtual assembly simulation application understands over 170 speech com-
mands (not counting synonyms). It is impossible to remember all of them,
especially for irregular users. Therefore, it is important to offer other input
metaphors by which the user can find the command. Menus are such a met-
aphor; they have proven to be quite useful. It is important that menus are
organized in such a way that the user can derive the corresponding speech
command canonically. As explained in Section 4.5.1, they should be 2D menus.

Modes should be avoided, which is true for all user interfaces in general. It is
particularly true for the speech input mode, because there is no persistent way
to keep the user informed about the current mode. Also, the system should
always provide some sort of immediate feedback whenever it has recognized a
speech command. Sometimes, this is an action performed on the scene so that
it can serve as the feedback itself. Sometimes, just a simple acknowledgement
should be issued, e.g., a short sound or voice playback.

Data entry can increase user performance considerably [JFH92]. This is in ac-
cordance to the wish of users of virtual prototyping applications in the field for
the possibility to position objects by a certain numerical translation or rotation
in order to investigate alternatives and proposals (see Section 5.2).

Provide a simple switch so that users can turn on and off speech recognition
quickly and easily. [OCW94] have pointed out that off-line speech contains
1,200 times more unintelligible words than on-line speech directed to the sys-
tem.

The findings of [ODK97] indicate that users tend to strongly claim to prefer to
interact multimodally, but they actually interact most of the time unimodally,
which corresponds to my experience. They also find that the majority (63% in
their application) of commands were done using speech only.

4.3 Tracking

By tracking we understand the capability to determine the position and/or
orientation of certain points in the real world. This is one of the enabling tech-
nologies for VR. It is utilized mostly to track the position and orientation of a
user’s hands and head, or to track instruments such as an endoscope and scis-
sors. They are also utilized in real-time motion capture systems to track a set of
key points and joints of the human body.

124

4.3 Tracking

Frequency / Hz

Po
w

er
/d

B

-10

0

10

20

30

300 5 10 15 20 25

40

50

60

Po
w

er
/d

B

Frequency / Hz

10

15

20

25

30

0 15 20 25 30105

35

Figure 4.3: Power density spectrum of Polhemus tracker signals of translation
(left) and orientation (right). Obviously, this is (almost) white noise, so it cannot
be filtered by notch or low-pass filters. (The sensor was about 1.5 m away from
the normal-range transmitter.)

Virtual reality always includes humans in the real-time simulation and visu-
alization loop (which would be called a “steering-loop” in scientific visualiza-
tion [ES88]). This is one of the great benefits of VR. On the other hand, depend-
ing on the degree of immersion, it requires high-fidelity tracking, in the sense that
there is no latency, no noise, and no spatial tracking error (in an ideal system).
For styling reviews (in a cave or in front of a large-screen stereo wall) spatial
accuracy and noiselessness is most important, for assembly tasks (with glove
and HMD) low latency and noiselessness are more important. Augmented re-
ality makes even higher demands on tracking fidelity. [Hol97] has analysed
the objective registration error in see-through HMDs; one of the results is that
system delay causes more registration error than all other sources combined.

After a brief review of tracking technologies, I will describe some solutions
to all three problems related to tracking. They are tailored for electro-magnetic
tracking systems, because these are still the prevailing technology with VR set-
ups.

4.3.1 Filtering

Almost all real-world VR environments comprise computers, monitors, loud-
speakers, and projectors, etc. All of them radiate electro-magnetic fields which
disturb electro-magnetic tracking systems.6

Noise in the tracking data of a user’s hand can be annoying, and even make
difficult assembly tasks impossible, while noise in the position data of a user’s
head can cause eye strain, or dizziness, and break even the feeling of immer-
sion. Noise in the head sensor’s orientation data is most easily perceptible,
because a slight rotation causes the rendered image to change much more than
a slight translation.

Therefore, the output of electro-magnetic tracking systems must be filtered.
As explained above, it is important to filter both translations and orientations.
We will see that filtering can solve two of the problems mentioned above at the

6 Polhemus (and Ascension?) provide hardware support for synchronization with monitors in order
to reduce the interference, but this is not always doable, and it does not account for other sources
of interference.

125

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

60 Hz

0 - 1650 0 - 16

Main application
RS-232

3836160 t / millisec

Comm. Render

88

Ethernet

Monitor60 Hz
20 Hz

104

≥ 4 20 2

Video
hardware

Tracking Filter
(in server)hardware

Figure 4.4: There are many stages in the data flow pipeline of any VR system
where latency is introduced inherently. The pipeline shown is typical, although
shortcuts could be implemented. The delays on the serial line and on the ether-
net wire have been measured by myself.

same time, namely noise and latency. In fact, both must be solved by the same
approach, otherwise one of them deteriorates while the other one is improved.

Traditional filters used in audio signal processing, such as notch filter or low
pass filter, will not suffice, because the noise in tracker data is almost white,
i.e., all frequencies are present. Figure 4.3 shows the power density spectrum
of two signals (Polhemus and Ascension).

An inherent disadvantage of all types of filters is that they introduce ad-
ditional latency. However, latency is already inherent in the data pipeline
of any VR system. See Figure 4.4 for an overview of the stages introduc-
ing latency in a typical system. This matches well the findings of other re-
searchers [LSG91, WO94]. There are many sources of delay: the tracker itself,
serial communication, ethernet communication, image generation, video sync,
and video display. Some of the delays can be reduced: for instance, the se-
rial communication can be done at 115 bps; the tracker device can be run in
“continuous mode”; when rendering concurrently to the main application, the
rendering processes can retrieve the latest tracking data just before they start
filling the pipe; when rendering in mono, a higher display rate can be used.
However, there will always be some delay, no matter which tracking technol-
ogy is being used or how fast the rendering can be done.

Since filtering has to compensate for its own latency anyway, it can as well
compensate for other lag in the system. On the other hand, even if there was
no noise in the tracking data, we would still need to extrapolate them in order
to compensate the lag. So, filtering is a by-product of lag compensation, and
system lag compensation is a by-product of filtering.

Related work

The problem of noise and latency has been recognized by several researchers.
Internal tracker latency has been examined extensively for Polhemus and

Ascension by [AJE96]. They found that the internal lag is about 8 msec, and
that the measurement error increases as sensors move faster (much more pro-
nounced with Ascension’s Flock of Birds).

Overall system lag has been identified as the number one source of registra-
tion errors by [Hol97]. Although I have not done a formal study, it is my expe-
rience that static tracker measurement error can introduce even more mismatch
between the image displayed by the computer and the situation perceived by
the user (through his eyes or kinesthetic senses; see Section 4.3.2).

Kalman filtering has been proposed by [LSG91, FSP92]. It can do optimal
linear prediction of some state vector. Usually, the state vector is the current
(linear and angular) position, velocity, and acceleration. Like with other filters,

126

4.3 Tracking

the longer the prediction is made, the more noise and overshooting is produced
by the filter itself. The overshoot of a Kalman filter with 90 msec look-ahead
can be as much as 5 cm [FSP92]. In addition, Kalman filters have quite a few pa-
rameters, such as the system noise model and a model for the spectral density.
Finding optimal parameters is not straight-forward at all [FSP92], and they are
not necessarily the same for all sensors (e.g., head vs. hand sensor, [LSG91]).

The ad-hoc filter based on averaging, differencing, and extrapolation using
the differences, exposes similar overshoot problems like the Kalman filter. In
addition, under certain cirtcumstances it introduces a lot of noise [FSP92].

For smoothing data, moving-window weighted-average filters are used fre-
quently (most common is (1

4 , 1
2 , 1

4)). Windowing can also be done on the FFT
of the time-series; see [PFTV88] for an implementation of tapered windowing.

In signal processing, digital FIR (finite-impulse response) low-pass filters are
employed often. They can be constructed fairly easy by doing an FFT of the
transfer function and some manual tweaking of the coefficients [CM91]. How-
ever, they do not lend themselves to prediction naturally. In addition, the noise
level should be at most -60 dB requiring high-order filters, which would in-
troduce too much latency. More powerful are IIR (infinite-impulse response)
filters, and they can be used for linear prediction (not to be confused with lin-
ear extrapolation). However, they perform only well at predicting smooth and
oscillatory signals, and it is not trivial to find coefficients which yield a stable
filter.

An approach using grey system theory has been presented by [WO94]. How-
ever, the quantitative results are not quite clear.

Requirements

From my experience, a filter for tracker data to be used in VR should possess
the following properties:

• It must be predictive. As we have seen above, a VR system can delay the
data by as much as 100 milliseconds. So, this is the prediction length a
filter should be able to handle.

• It must be very responsive when the position of the tracker suddenly
changes. A user can turn his wrist about 90◦ within about 1

4 sec with-
out any effort. So, with a tracker update rate of 60 Hz, we get only about
15 samples for the whole wrist turn.

• When the tracker is motionless, then the filter output should be motion-
less, too. While a user will never be able to hold his head perfectly still
(apart from the noise in the signal), it is extremely annoying when the
image is jittering even though the user thinks it should be still.

Filter pipeline

In order to meet the requirements, I propose a hybrid filter pipeline (see Fig-
ure 4.5). The first stage is a spike filter. This has proven to be necessary in
some environments, where occasional spikes or outliers are present in the data.
Then, the data are inserted in a ring buffer. A number of the latest data items
are used to feed the monotonicity detector. If it has detected a monotone trend
in the most recent data, then the whole buffer is used to feed the polynomial

127

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

sensor

averaging

higher order

spike filter

round-robin
history buffer

discriminator
threshold

monotone?

Figure 4.5: I propose a hybrid filter pipeline. It provides predictive filtering in
the case of user motion, and optimal filtering in the motionless case.

filter. Otherwise, the averaging filter is used. Finally, a threshold filter prevents
minimal drifts.

The monotonicity detector tries to determine whether or not the tracker is in
motion. The idea is that when the tracker is actually still, then prediction is
not necessary and we should use the best filter for stationary signals. I assume
the noise to be Gaussian; therefore, the average is the best estimate of the true
signal.

If the tracker is in (significant) motion, then the polynomial filter steps in. It
does polynomial least-squares approximation of the whole data in the buffer.
Then, the polynomial is evaluated at some point in the “future” so as to obtain
a prediction.

Monotonicity is determined for each coordinate separately. If there is one
coordinate with monotone data, then the tracker is assumed to be in motion.
Only a small subset is considered for this test, because it must be decided very
quickly. If too many samples were considered, then the averaging filter would
be used too long before the detector would switch over to polynomial filtering;
in other words, the graphical response would lag behind too long.

When the pipeline switches back to averaging, the buffer is flushed and then
successively filled with new data. This avoids discontinuities when the user
stops his hand, say, from a motion. Flushing is not necessary when switch-
ing from averaging to polynomial prediction, because discontinuities are not
noticed when the user starts a sudden motion.7

If the user performs very slow motions, then the monotonicity test might fail
to recognize it. However, this is not a problem, because in that case prediction
is not necessary anyway.

The purpose of the threshold filter at the back-end of the filter pipeline is to
make the output perfectly still in the motionless case. It compares the newest
datum with the one before. As mentioned above, it is annoying when the user
“means” to hold his head motionless, still the viewpoint is wobbling. In addi-
tion, it prevents spurious position data to be presented to the interaction man-
ager, so there will be no unnecessary computations such as collision detection.

7 Gradual acceleration or deceleration seems to be rare when humans perform every-day tasks.

128

4.3 Tracking

0
20
40
60
80

100
120
140
160
180

10 15 20 25 30 35 40

x
/

cm

time / sec

Filter: degree 3, length 15, prediction 6

measured
filtered

0

20

40

60

80

100

120

140

160

10000 11000 12000 13000 14000 15000

x
/

cm

time / msec

Filter: (3, 15, 6) detail

measured
filtered

0
20
40
60
80

100
120
140
160
180

17000 18000 19000 20000 21000

x
/

cm

time / msec

Filter: (3, 15, 6) detail

measured
filtered

Figure 4.6: The polynomial filter (with degree 3, length 15, and look-ahead 6)
applied to real tracker data. The two bottom graphs are details of the top graph.
Although the time look-ahead can vary (as opposed to the sample look-ahead),
this has not been noticed by any user.

The filter pipeline proposed above has the following parameters:

• Length of monotonicity test; this should be significantly less than filter
length.

• Length and degree of polynomial approximation. That length is also the
length of the buffer and the length of the average filter.

• Look-ahead for polynomial extrapolation.
• Threshold of the back-end.

Fortunately, good parameters can be found interactively without too much
experimentation, because they are fairly independent. Although not nec-
essarily optimal, I have found the following tuples to be good parameters:
(4, 33, 3, 14.5, 2× 10−5), (4, 33, 2, 15.0, 2× 10−5), (4, 15, 3, 6.0, 3× 10−5).

The result of the polynomial filter is plotted in Figures 4.6 and 4.7. A minor
disadvantage is that the look-ahead time can vary a little bit, because the look-
ahead evaluation remains constant. However, this has never been noticed by
us or customers. The advantage is that there is no overshoot. This is very
important, because overshoot is noticed very easily and users are annoyed by
overshoot even more than by lag.

In order to find optimal parameters for the polynomial filter, a hill-climbing
algorithm can be applied. A synthetic signal (s0

i) is constructed which resem-
bles real tracker motions (this can be found by “reverse engineering”). Noise
is added to this signal synthetically which yields the signal (si). The algorithm

129

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

0
20
40
60
80

100
120
140
160
180
200

10 15 20 25 30 35 40

x
/

cm

time / sec

Filter: degree 4, length 33, prediction 15

measured
filtered

0

5

10

15

20

25

10000 10500 11000 11500 12000

x
/

cm

time / msec

Filter: (4, 33, 15) detail

measured
filtered

0

20

40

60

80

100

120

140

160

13000 14000 15000 16000 17000 18000
x

/
cm

time / msec

Filter: (4, 33, 15) detail

measured
filtered

Figure 4.7: The polynomial filter with degree 4, length 33, and look-ahead 15.

starts with several good parameter tuples found empirically. For a given fixed
time look-ahead t ∈ N, it calculates the penalty function

E(d, n, l) = ∑
i

(f(d,n,l)(si)− s0
i+t)

2

where d =degree, n =length, and l =look-ahead of filter f .

Filtering orientations

This can be done very similarly to filtering positions by using quaternions. The
monotonicity test works exactly the same: if the tracker is in rotational mo-
tion, so are the quaternions on the unit sphere. Averaging on the unit sphere is
done by ordinary Cartesian averaging with subsequent normalization. Analo-
gously, polynomial extrapolation is performed. I am aware of the fact that with
this kind of extrapolation the look-ahead cannot be very large. However, this
problem has not occurred in my experience.

There is only one pitfall which (sometimes) needs to be addressed: the
quaternions q and −q represent the same orientation. So, some tracking de-
vices or algorithms restrict their quaternion output to one hemisphere only. In
other words, a “path” on the quaternion unit sphere might have a discontinu-
ity (when it would otherwise cross the border of the hemisphere), while the
orientations it represents does not.

Instead of quaternions, matrices could be used as well. This might be advan-
tageous if this is the standard representation of orientations throughout the VR
system. Matrices can be averaged by successive linear interpolation. Or, they
could be averaged component-wise, and then re-orthogonalized.8 Determin-

8 From a mathematical point of view, this is not really allowed, but in my experience, it works well.

130

4.3 Tracking

Figure 4.8: Without correction of the
magnetic field tracking, an off-center
viewer in a cave will see a distorted im-
age. The effect is even worse when the
viewer moves, because objects seem
to move, too.

Figure 4.9: With my method, the per-
spective is always correct, even if the
viewer moves. Data courtesy of Volk-
swagen AG.

ing monotonicity of matrices can be just like the test on quaternions, since each
row/column of a matrix must be on the unit sphere. By applying the same sort
of “dirty” math, we can do polynomial approximation and extrapolation: we
just do it component-wise; the resulting matrix is then re-orthogonalized.

4.3.2 Correction of magnetic tracking errors

Electro-magnetic trackers have become the most wide-spread devices used in
today’s VR systems ([Zac94a, AFM93]). Commercial optical tracking systems
are getting more mature; still, for several reasons electro-magnetic tracking sys-
tems will prevail for a few years. The main advantage is that they will be more
inexpensive than optical systems for the next few years.

Unfortunately, there is one big disadvantage of electro-magnetic trackers: the
electro-magnetic field itself, which gets distorted by many kinds of metal. Usu-
ally, it is impossible to banish all metal from the sphere of influence of the trans-
mitter emitting the electro-magnetic field, especially when using a long-range
transmitter: monitors contain coils, walls, ceiling, and floors of a building con-
tain metal trellises and struts, chairs and tables have metal frames, etc. While
tracking systems using direct current seem to be somewhat less susceptible to
distortion by metal than alternating current systems, all ferro-magnetic metal
will still influence the field generated by the transmitter.

A distortion of the magnetic field directly results in mismatches between the
tracking sensor’s true position (and orientation) and the position (orientation)
as reported by the tracking system. Depending on the application and the set-
up, mismatches between the user’s eye position (the real viewpoint) and the
virtual camera’s position (the virtual viewpoint) impair more or less the us-
ability of VR. For example, in assembly tasks or serviceability investigations,
fine, precise, and true positioning is very important [DFF+96]. In a cave or
at a workbench, a discrepancy of 7 cm (3 in) between the real viewpoint and

131

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Figure 4.10: Visualization of the dis-
tortion of the field: the nodes of the
lattice are measured points of a uni-
form lattice. The discrepancy can be as
much as 40–50 cm (15–20 in).

Figure 4.11: The lattice of sampling
points. At each of those points, the
tracking sensor’s value has been aver-
aged and recorded, which produces
the field’s “snapshot” on the left.

the virtual viewpoint leads to noticeable distortions of the image,9 which is, of
course, not acceptable to stylists and designers. For instance, straight edges of
objects spanning 2 walls appear to have an angle (see Figure 4.8), and when
the viewer goes closer to a wall, objects “behind” the wall seem to recede or
approach (see [HD93] for a description of some other effects). Mismatches are
most fatal for Augmented Reality with head-tracking in which virtual objects
need to be positioned exactly relative to real objects [OY96].

In order to overcome these adverse effects, I have developed an algorithm
which can correct these distortions of the magnetic tracking field [Zac97a]. The
algorithm is based on measured data which relate the true position to the po-
sition reported by the tracking system at several points within the volume of
interest. At run-time of a VR session, the algorithm interpolates these a priori
measured values with the currently reported position of the sensor.

Since the distortion of the magnetic field is captured by a set of points, a
fundamental assumption of my method is that the field does not change over
time. Fortunately, in our labs this seems to be true — I could not find any
significant changes (see below). Of course, if the set-up is changed, then the
magnetic field has to be measured again; the field changes, for instance, when a
nearby projector is moved, speakers are installed, or the whole set-up is moved
to another place.

My algorithm has several desirable qualities which makes it very suitable for
VR systems. First of all, the algorithm is very fast, so it does not introduce any
latency into the VR system. Second, the set of measured points can be chosen
arbitrarily (it does not need to have a lattice-like arrangement), and more points
can be added to it at any time. The remaining error of corrected points does not
depend on distance from the transmitter, nor does it depend on the amount of

9 This is just a rule of thumb, of course. The threshold at which a discrepancy between the real and
the virtual viewpoint is noticeable depends on many variables: expertise, distance from the cave
wall or projection screen, size of the cave, etc.

132

4.3 Tracking

device program
alignment

device
tracking

tracking

program
tracking
device

sensor

of distortion
of magnetic field]

[data acquisition

alignment

data

sensor

[at runtime]

[alignment of home position]

sensor

server

snapshot

appl.

field
snapshot magnetic

Figure 4.12: The flow of tracking data including alignment and distortion correc-
tion.

local “warp” in the magnetic field. Finally, it does not cause any additional
latency in the VR system, and it is easy to implement.

In my implementation, the tracking device server has been burdened with
the task of correcting tracking errors. So the data flow, as far as the device
server is concerned, is: get data from the device (usually via serial line), con-
vert to calibrated coordinate system, filter, correct distortion error, convert to
application’s coordinate system, send to application (see Figure 4.12).

While this section reports on measurements carried out using commercial
systems, the results reported are not to be taken as a characterization of these
systems. Except where otherwise noted, the Polhemus Fastrak with a long
range transmitter was used to generate all the measurements.

Repeatability

By repeatability I understand the constancy of the magnetic field’s distortion. It
is a fundamental assumption in all static correction methods, and the accuracy
of the interpolation algorithm can be no better than the constancy of the field.

The good news is that the distortion of the field remains sufficiently constant
over time (see Figure 4.13). On the same site, the magnetic field has been mea-
sured two times as described in Section 4.3.2, the second time 6 weeks after the
first time. The distribution of the distance between corresponding lattice nodes
shows that the distortion of the field does not change significantly over time.

Another measure of constancy is the traditional correlation function. How-
ever, it is not clear what a correlation value of c ∈ [0, 1] maps to in terms of
(maximum or average) absolute error (with units of centimeters or inches).

Comparison of Polhemus and Ascension

Ascension claims that its Flock-of-BirdsTM is less susceptible to ferro-magnetic
metal than Polhemus’ FastrakTM. In my experience, however, the Flock-of-Birds
still has large distortions. Some have reported that Ascension is less susceptible
when the sensor is mounted directly on a metal device. However, at least on
various sites I have found the tracker error due to distortion unacceptably large
(see Figures 4.14, 4.15).

133

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8

#n
o

d
es

distance between corresponding lattice nodes (cm)

Figure 4.13: The distribution of the distances between corresponding lattice
nodes of two snapshots of the magnetic field on the same site. The second
snapshot was taken 6 weeks after the first. Most of the distances are within the
measuring accuracy of the data. This verifies the assumption of a static distortion
of the magnetic field (at least on our site).

The set-up

The first step of the method is to capture the distortion of the magnetic field so
that it can be corrected subsequently based on this data. The measuring needs
to be done only once per site and set-up. Obviously, it is still quite desirable
that it can be done in a minimum amount of time.

For that reason, I have chosen a regular lattice for the set of measuring points,
even though my correction algorithm can take an arbitrary point cloud. A lat-
tice was chosen, because it allows to generate the true positions of the measured
points automatically, thus minimizing the measuring time. Furthermore, I use
four sensors, which further reduces the time. Of course, I take the average of
many values (usually 50) when measuring one position sample, because the
quality and precision of the data will affect the correction later-on.

In order to take snapshots of real fields, a device is needed for precise po-
sitioning of sensors to well-defined points in space. So I devised a wooden
apparatus, as depicted in Figure 4.16. Several sensors are strapped to wooden
blocks precisely oriented. The apparatus and strappings do not contain any
metal. In order to position the sensors at well-defined x- and z-coordinates,
we fixed paper to the floor (wide wall-paper, for example) and marked those
coordinates with a pen.

With a set-up as described above, we are able to measure the field at 144
points (= 6× 6× 4) in about 20 minutes. Four positions are recorded at a time,
which takes about one second for 4 × 50 samples (for averaging). Measuring
time could be reduced further if more sensors would be used simultaneously.

Like [GAS+95], I have tried to use an ultrasonic measuring device to ob-
tain the true positions of the sensors. The advantage is that no “hardware” is
needed to guide the positioning of sensors. In addition, the data matrix ob-
tained is the inverse of the one obtained by my method, because the sensor is
guided by visual aids (e.g., cubes). So the grid of measured positions is (almost)
a regular one (in particular, it is rectangular), while the grid of true positions is
warped. However, there are more disadvantages: The ultrasonic device intro-
duces too much measuring error (they report an error of about 1% of the mea-
sured distance, my experience is about 2%, i.e., 4 cm if the device is 2 m from
a wall). Also, a display device is needed, so the person placing the sensors in

134

4.3 Tracking

Figure 4.14: In one of our customers’
VR lab, the distortion of the Ascen-
sion’s field is about 50 cm max. The
volume measured is about 2x2x1 m3,
with a long-range transmitter posi-
tioned 2 m above the floor and 3 m be-
low the ceiling.

Figure 4.15: Another real-world field of
one of our demo sites. The volume
measured is about 1x1x2 m3, the long-
range transmitter was about 1 m above
the ground.

sensors

markerspaper

Figure 4.16: A schematic view of the apparatus I have used to take snapshots of
electromagnetic fields.

space has to wear an HMD, Boom, or the Cave has to be switched on. Further-
more, it is not clear to me how the procedure suggested in [GAS+95] could be
modified such that orientational data can be measured too with the necessary
precision. And finally, positioning several sensors precisely at the same time
seems impossible to me, because they must be positioned completely indepen-
dently.

There are many ways of visualizing the measured distortion. While [Bry92,
GAS+95] use error vectors, I believe that visualizing the measured lattice pro-
vides more insight into the data. One such measured lattice is shown in Fig-
ure 4.10 with the sampling points shown in Figure 4.11. The long-range trans-
mitter is located near the upper right corner in the front. One can see clearly
that the distortion tends to increase with the distance from the transmitter, al-
though there are also regions closer to the transmitter that also have a large
distortion. The influence of one of the projectors (which is very close to the
cave due to space limitations) can be seen in the back of the lattice.

135

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

4.3.3 Scattered data interpolation

The problem we are faced with can be stated as the well-known interpolation
problem in 3-dimensional space: given two sets of points P = Pi ⊂ R3 and
Q = Qi ⊂ R3, we are looking for a function f : R3 → R3 such that f (Pi) = Qi.
Furthermore, we want the function to be sufficiently “smooth”: it should be at
least C1-continuous, and it should interpolate “intuitively nice”, in particular,
there should be no oscillations.

I will call P the measured points in tracker space, or, a snapshot of the mag-
netic field; Q will be called the true points in true space.

All interpolation schemes can be classified into two categories: global and
local. Global methods take all Pi into account, while local methods consider
only some Pi within a certain neighborhood. One might also consider the ap-
proximation problem. However, I opted for interpolation.

Many of the scattered data interpolation methods are not affinely invariant,
i.e., y = f (x) ⇒ Φy = Φ f (x) does not hold. [NF89] has described a method to
modify interpolants such that they become affinely invariant. It can be applied
to all methods which are based on evaluation of a metric (e.g., the Euclidean
distance function).

In general, the following characteristics are desirable for scattered data inter-
polation methods: it should be general, i.e., it should not depend on a certain
topology of the data to be interpolated (such as a grid-like topology); it should
be at least C1; it should be affine invariant; and, the effects of free parameters
should be understood, so that acceptable defaults can be provided.

Polynomial interpolation, approximation, and look-up tables

To my knowledge, little work has been done on the specific problem of ex-
amining and correcting the errors of magnetic tracking devices. All methods
presented so far are mostly some sort of simple local interpolation.

[Bry92] has carried out some experiments on tracker error and noise. Three
algorithms for correction were presented: polynomial approximation and lo-
cal interpolation with two different weight functions. Although all three al-
gorithms were evaluated, it is not clear to me whether the local interpolation
methods define continuous functions. The error of those correction algorithms
is in the range of 2–10 cm. The evaluation seems to indicate that accuracy de-
creases with increasing distance from the transmitter.

Local interpolation methods involve a look-up of the closest points or the
enclosing cell. This needs some additional data structures if the look-up is
to be exact or if it is to be fast. One way or another, there is always some
computational burden imposed by the look-up itself, which is another reason
why I have chosen a global method.

Of course, if the data matrix is acquired such that the grid of measured posi-
tions is regular, then the look-up is negligible. Then polynomial local interpo-
lation can be done trivially ([GAS+95, LS97] do trilinear interpolation). How-
ever, for reasons discussed above, the measurement method required for that
was not an option to me.

The approach of [Kin99] is very similar, except that he uses global polyno-
mial approximation. He chooses degree 3 polynomials. Orientations are rep-
resented by Euler angles. I believe this choice might cause problems when a
“wrap-around” of angles occurs.

136

4.3 Tracking

Interpolation using B-Spline-Volumes

B-Spline volumes are defined just like B-Spline surfaces [HL92, Far90], except
that the dimension of the domain is the same as that of the image. In our case,
since we are looking for an interpolating function f : R3 → R3, we define a
tensor product B-spline volume as

X(u, v, w) =
p

∑
i=0

q

∑
j=0

r

∑
k=0

dijk Nl
i (u)Nm

j (v)Nn
k (w) (4.1)

with the knot volume (analogously to the knot vector in the 1D case),

T = Tu × Tv × Tw

Tu = (u0 = . . . = ul−1, ul , . . . , up, up+1 = . . . = up+l)

Tv = (v0 = . . . = vm−1, vm, . . . , vq, vq+1 = . . . = vq+m)

Tu = (w0 = . . . = wn−1, wn, . . . , wr , wr+1 = . . . = wr+n)

The Nl
i (t) are the basis functions defined on the knot vector Tu. For a given

knot vector the Nl
i are a basis for the vector space of piecewise polynomial

functions of degree l − 1 on the range [ul−1, up+1]× [vm−1, vq+1]× [vn−1, vr+1].
For an interpolation problem the number of points M must match the num-

ber of segments, i.e., M = (p + 1)(q + 1)(r + 1). Since p ≥ l − 1 is required, we
need at least M ≥ 64 sample points for an interpolant of degree 3 × 3 × 3 (if
M = 64 then we would get a single Bézier surface).

The interpolation (or approximation) problem generally tackled with B-
Splines is: given a set of points Qi ∈ R3, find a function f : [0, 1]× [0, 1] → R3

such that all Qi ∈ f ([0, 1] × [0, 1]). The main issue is to find a good parame-
terization for the Qi which means: find “good” parameters Pi = (ui , vi) such
that f (Pi) = Qi. A good parameterization is one which yields a “nice” f , which
means that f should not oscillate “unnecessarily”. For the 1D interpolation
problem (i.e., f : R1 → Rd) there are fairly straight-forward parameterization
techniques such as chord length, centripetal, or the Foley parameterization. For
the 2D case (i.e., f : R2 → Rd, d > 2) parameterization becomes much more
“heuristic” and involved; also, for almost any method there are reasonable in-
put data which make the parameterization method fail.

In the case of our interpolation problem f (Pi) = Qi , i = 0 . . . M − 1, we are
already given a parameterization by the Pi =: (µi , νi , ξi). So the interpolation
problem amounts to solving the following linear equations:

n0
000 n0

00r · · · n0
pqr

n1
000 · · · n1

pqr
...

...
nM−1

000 · · · nM−1
pqr

d000
...

dpqr

 =

Q0
...

QM−1

 (4.2)

with ns
ijk := Nl

i (µs)Nm
j (νs)Nn

k (ξs). The coefficient matrix of this set of linear
equations is quadratic and of size M × M. If M is large compared to l, m, n,
then it will be a sparse matrix, because each N does not vanish only on an
interval which is small compared to the whole domain T. So, one of the meth-
ods specially devised for sparse matrices should be utilized to solve the linear
equations [Gv89]. In the 2D case, the coefficient matrix can be re-arranged so
that it becomes block diagonal.

137

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Remark: Since the parameters Pi are not arranged in a rectangular grid, we
cannot exploit the tensor product nature to compute the deBoor points dijk
more efficiently (ironically, the Qi are on a rectangular grid when we measure
a field by the set-up described above). Let us assume for a moment that we are
given the following interpolation problem

X(µa, νb, ξc) = Qabc, a = 0 . . . A, b = 0 . . . B, c = 0 . . . C

Then we can rewrite equation 4.1 as

X(µa, νb, ξc) =
p

∑
i=0

Nl
i (µa) ·

q

∑
j=0

r

∑
k=0

dijk Nm
j (νb)Nn

k (ξC)

︸ ︷︷ ︸
d′i(j,k)

= Qabc

So, in the first iteration we can solve for the d′i(j, k) by the linear equations

Nl
0(µ0) · · Nl

p(µ0)
...

...
Nl

0(µA) · · Nl
p(µA)

d′0(0, 0) · · d′0(B, C)
...

...
d′p(0, 0) · · d′p(B, C)

 =

Q000 · · Q0BC
...

...
QA00 · · QABC

The coefficient matrix is a band diagonal matrix. Also, by using a back-substi-
tution scheme, the LU-decomposition has to be done only once. Similarly, this
scheme can be done recursively until we get the dijk. Thus the work needed for
this kind of interpolation problem is by orders of magnitude less than for the
general problem.

Back to our more general interpolation problem. Before we start setting up
the linear equations 4.2 we still need to determine a knot volume T such that
there will be no gaps in the coefficient matrix. We can achieve this by a simple
recursive procedure, which we’ll outline here for u:

Calculate knot vector for (µi)
assume sequence of (µi) is sorted

split (µi) sequence at median in two halves
calculate knot vectors for the two halves

We need to expand the domain [ul−1, up+1], since B-splines are constant zero
outside. Otherwise, the correction would not be able to extrapolate if the user
moves a sensor outside the captured region. This happens quite frequently,
though, because in general it is not possible to capture the whole volume to be
tracked due to time limitations or constraints of the capturing device and the
environment.

Shape functions

The problem of interpolation frequently arises in the area of scientific visual-
ization. It is often very convenient to do calculations in computational space
rather than in physical space [Frü97, Bat82, Bun07]. Usually, some physical
data (like pressure, stress, etc.) are given on a set of sample points in physi-
cal space. Often, this is a curvilinear 3D grid (grid cells are called elements,
grid nodes are called just nodes). However, visualizing the data by display-
ing stream lines, for example, or doing ray casting for volume visualization is

138

4.3 Tracking

c1

n8

n1

physical space

c8

computational space

Figure 4.17: Shape functions are used in scientific visualization to transform be-
tween physical and computational space.

n27

n1

Figure 4.18: Higher order elements can be used to increase accuracy.

computationally much cheaper for regular grids (see Figure 4.17). Again, this
basically involves a bijective mapping in 3-space, such that the curvilinear grid
is mapped to a regular grid (of course non-scalar tensors given in the nodes
need to be mapped, too).

Conversion of points from computational space (a rectangular element) into
physical space is trivial (trilinear interpolation). However, in order to convert a
point given inside a certain element in physical space into computational space,
the notion of shape functions has been introduced. Suppose we are given a
point p ∈ R3 inside the element specified by the nodes n1, . . . , n8 ∈ R3 in
physical space.10 The corresponding element in computational space is given
by c1, . . . , c8 ∈ R3 (see Figure 4.17). Then the shape function f for that element
is defined as

c = f (p) =
8

∑
l=1

f l(px , py, pz) · nl (4.3)

Generally, linear shape functions are considered, therefore

f l(x, y, z) = f l
1 + f l

2x + f l
3y + f l

4z + f l
5xy + f l

6xz + f l
7yz + f l

8xyz

So, a linear shape function f for a 3D element is defined by 8× 8 coefficients. It
changes linearly when moving on an edge of the hexahedron.

10 I will not consider hexahedron elements with more than 8 nodes (edge centered and/or face cen-
tered nodes), since they are not relevant for scattered data interpolation.

139

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

If f l(nk) = δlk (δ being the Kronecker symbol), then f does interpolate the
ck. So, the coefficients can be obtained by solving 8 sets of linear equations
A f l = el , l = 1 . . . 8, el = (δl1, . . . , δl8), or in expanded form

1 n1
x n1

y n1
z n1

xn1
y n1

xn1
z n1

yn1
y n1

xn1
yn1

z
...

...
1 n8

x n8
y n8

z n8
xn8

y n8
xn8

z n8
yn8

y n8
xn8

yn8
z

f l
1
...
f l
8

 =

0
...
1
0
...

In order to increase accuracy of the interpolant, higher-order shape functions
can be considered. However, memory usage increases exponentially with the
order. In the quadratic case (see Figure 4.18), elements can be specified by
up to 27 nodes and f l(x, y, z) = ∑222

ijk=000 f l
ijkxiyjzk , l = 0 . . . 26. (The 20-node

hexahedron element is quite common.) Thus, a quadratic shape function for
one 3D element is defined by up to 272 coefficients.

The faces of hexahedral elements in physical space are not necessarily planar.
In order to determine whether a point is inside an element physical space, it can
be transformed into the unit element in computational space (after checking the
bounding box). If it is inside the unit element, then it must also be inside the
element in physical space.

Hexahedron elements can be used only if the data are arranged in a grid
topology. One way to overcome this problem is to use tetrahedron elements.
The grid composed of tetrahedra is called an “unstructured grid” in FEM par-
lance.

Let n1, . . . , n4 denote the nodes of a tetrahedron element. The shape function
for the unit tetrahedron T0 = (x, y, z)|x ≥ 0, y ≥ 0.z ≥ 0.x + y + z ≤ 1 is trivial:

f 1(p) = px

f 2(p) = py

f 3(p) = pz

f 4(p) = 1− (px + py + pz)

(4.4)

Shape functions for an arbitrary tetrahedron T can be obtained by concatena-
tion of 4.4 with the affine transformation mapping that tetrahedron onto T.

In order to do scattered data interpolation via shape functions, the “unstruc-
tured grid” approach seems to be most promising. Given a set of data points,
a Delaunay triangulation has to be computed. This yields a triangulation such
that each tetrahedron’s circumsphere does not contain any other point. Also, it
is that triangulation which maximizes the minimum angle of all tetrahedra.

For large data sets (> 10, 000 points), shape functions are better suited be-
cause of better numerical stability. However, they have a few drawbacks: most
of them provide only C1-continuity, additional data structures storing topolog-
ical information is needed, and there is always a little overhead in order to look
up the appropriate shape function.

Here, consecutive interpolation points are temporally coherent, i.e., they will
usually be close to each other. In order to speed up the point location problem,
we can exploit this by saving the enclosing tetrahedron. The enclosing tetra-
hedron for the next point is probably close to the old one (if not the same). In

140

4.3 Tracking

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6 8 10

Q

P

HMQ, R2 = 10
HMQ, R2 = 0.1
HMQ, R2 = 0 :

Lagrange

♦

♦

♦
♦ ♦

♦

♦

♦

♦
♦

Figure 4.19: 1D examples of HMQ interpolation functions through 10 points with
various R2 parameters. For R2 = 0 the function is piecewise linear. The Lagrange
interpolant exposes fatal oscillations.

general, it can be found in a few steps by a simple hill climbing procedure (with
each step the algorithm goes to the neighbor tetrahedron which is closer to the
point).

4.3.4 Hardy’s Multiquadric

Hardy’s Multiquadric method (HMQ) [HL93, FN94] can be used to construct
an interpolation function f : Rn → Rm, with arbitrary m, n. The general form
of the interpolation function for m = n = 3 is

f (P) = ∑ Aiωi(P) , P, Ai ∈ R3

with

ωi(P) =
√

(P− Pi)2 + R2 , R > 0

Requiring f (Pi) = Qi leads to three sets of linear algebraic equations with a
symmetric matrix. All three matrices have size N × N, N = number of mea-
sured points.

We cannot use the Cholesky decomposition, because the matrix is not posi-
tive definite, since the upper-left 2× 2 sub-determinant is negative:

∣∣∣∣
|R| β12
β21 |R|

∣∣∣∣ = R2 − β12 < 0

with βij =
√

(Pi − Pj)2 + R2 > R2, provided P1 6= P2. LU decomposition
[PFTV88] is, therefore, a natural choice for solving these equations, which is
what I do.

The HMQ method does not tend to oscillate as polynomial interpolation
schemes do (e.g., Newton or Lagrange interpolation), since the degree of the in-
terpolating function does not depend on the number of sample points. Instead,
the smoothness of the HMQ interpolation function depends on the parameter
R2. It can be shown that f ∈ C∞ for R2 > 0 [HL93]. Figure 4.19 compares the
HMQ method to Lagrange interpolation (in 1D), and shows the effect of vari-
ous R2’s. Figure 4.20 compares the HMQ method to plynomial approximation
(see above).

There are other scattered data interpolation functions such as Shepard inter-
polation, or natural Hermite spline interpolation [Fra82]. However, all of these

141

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

0

0.5

1

1.5

2

0 0.5 1 1.5 2

distortion of synthetic field

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Correction with polyn. approx.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Correction with HMQ

Figure 4.20: Comparison of HMQ interpolation with polynomial approximation.
The graph on the left shows a synthetic distortion function, while the graph in
the middle and on the right show the correction using polynomial approcima-
tion and HMQ, resp. The interpolation functions were computed with the grid
points shown in the graph pon the right, while the interpolation in the middle
and on the right were done on the lines right between those grid points.

do not seem to be better than HMQ (sometimes much worse) while being much
more involved [NT94].

I have also tried a close variant of HMQ, the reciprocal multiquadric (RMQ),
which is defined by basis functions

ωi(P) =
1√

(P− Pi)2 + R2
, R > 0

Although I expected the RMQ to produce fairer interpolations, this is not true.
Also, selection of the optimal R2 seems to be more critical than with HMQ.

The more general form of multiquadrics is defined on basis functions

ωi(P) = ((P− Pi)
2 + R2

i)
µi

However, as [Fra82, Dyn87] point out, results are best when µi = µ and Ri = R.
I have experimented with µi = 1

4 , 1
2 , 2, and ‖ · · · ‖. I found, that interpolation is

best for µi = 1
2 . For some of the other exponents a good R2 is very critical and

the coefficient matrix might even be near-singular.
A solution to the multiquadric equations exists and is unique, with or with-

out polynomial precision.
The HMQ method by itself is not affine invariant, i.e., the interpolant is

not invariant under affine transformations of the input data. More precisely,
the HMQ is not invariant under uniform scalings (it is invariant under rota-
tions and translations, though). Since my implementation does not include
the method of an invariant metric as described above, I investigated its perfor-
mance always in our problem domain (i.e., input data are given in units of cm
and in the range ±300 approximately).

Polynomial precision refers to a method’s ability to reproduce a polynomial
of a given order. By augmenting the MQ method by a polynomial term it
can achieve polynomial precision, too: While this might be important in other
fields, such as computer-aided graphic design, polynomial precision has no
significance in our application, since we do not know anything about the input
data. [CF91, FT96] found that, unless the surface may be closely approximated

142

4.3 Tracking

Figure 4.21: The dashed lines show the locus of points as reported by the tracker
when the sensor is moved along a perfectly straight line. The dash-dotted lines
show the same lines with correction. The error of the corrected positions from
the true positions is less than 4 cm.

by a low-order polynomial, the MQ basis should not be augmented (sometimes
not even by a constant), because it may lessen the quality of the MQ fit.

It is well-known that the solutions to radial basis functions can be problem-
atic for large numbers of points. The condition number of the coefficient matrix
rises with N. This can be remedied to some extent by scaling the data to the
unit square. The condition number is usually better for the MQ method than
for the thin plate spline method. The scaling strategy is known to allow for the
solution of problems involving about 1000–2000 points.

The multiquadric method proved to be one of the best methods for interpo-
lating over a set of different “known" surfaces from (not too) scattered obser-
vations [Fra82].

The optimal parameter R2

Admittedly, the HMQ method does have one “magic” parameter (R2) in the
basis functions ωi(P). It has considerable influence on the “smoothness” of
the interpolation function (see Figure 4.19). The bad news is, no simple and
robust formula is known to determine an optimal R2 [HL93]. It depends on
the number of points, the diameter of their circumcircle, and the values f (Pi).
[Fra82] have used R = 1.25 D√

N
, with D = the diameter of the circumcircle of all

measured points and N = the number of points. [CF91] proposed an algorithm
which produces near-optimal values for R2.

Therefore, I developed a program to investigate the effects of R2 interactively.
Given a snapshot of the field, a few lines of tracker data, and their true posi-
tions, we can determine an optimal R2 within a few minutes. The good news is
that with 100–200 measured positions, R2 = 10 . . . 1000 is optimal, and within
that range the exact value has very little impact on the quality of the interpola-
tion.

143

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Accuracy

I have tested my method with very satisfactory results. With a data set of 144
measured points within a volume of (2.4 m)3 (see Figure 4.10), the corrected
points are usually within 4 cm (≈ 1.5 in) of the true points, while some of the
measured points (without correction) are displaced by over 40 cm (≈ 15 in; see
Figure 4.21).

With my algorithm, the error of the corrected points from their true positions
does not depend on the distance to the transmitter, nor does it depend on the
amount of local “warp” of the magnetic field.

One of the evaluations of the accuracy of the HMQ method was done by
moving a sensor along several well-defined straight lines within the measured
volume. Then, for all points on the same line, two out of three coordinates of
the corrected points should remain constant and have a known (true) value.
Accuracy here is the maximum deviation of these coordinates from the true
ones. The proposed algorithm and field measuring method reduce the error of
a tracking sensor’s position to 2–5 cm, which remedies any distortions in the
images projected on our cave walls (see Figure 4.9).

There are a few factors affecting the quality of the corrected position: ac-
curacy of the measured field data on which the interpolation is based, the
sampling density, constancy of the magnetic field, and the parameter R2 (see
above).

I feel that it is very difficult to achieve an accuracy of better than 1 cm when
acquiring the sample data of the magnetic field, especially when measuring a
large volume such as a cave. In order to improve the accuracy of the data, a
much more precise way of positioning the sensors within the volume would be
needed.

Mathematical experiments

In order to find out the theoretical limits of the HMD method, I devised 6
“distortion” functions which warp 3-space. These functions are evaluated at
grids, and the images are regarded as snapshots of a distorted “field”. With
p = (x, y, z), the functions fi : R3 → R3 are:

f0(p) = p

f1(p) = 0.9

0.4x + x
d(p) + y

6
0.4y + y

d(p)
0.4z + z

d(p)

 with d(p) = 0.4

(
p + (30, 30, 30)

s

)2
+ 1

f2(p) = 0.6
(

l + s ·
(

e
p−l

s − 1
))

f3(p) = (0.7, 1.3, 1)
(

l + s · sin
(

π

2

(
p− l

s
+ 1

)))

f4(p) = f1(f2(p))
f5(p) = f1(f3(p))

f6(p) =

0.9 x
1.2 ((y− ly) + 200) sin(α(y, z))

0.7 (hz − (y− ly) + 200) cos(α(y, z)) + x
10 + sz

2

144

4.3 Tracking

Figure 4.22: Two of the mathematical “distortion” functions used in the mathe-
matical experiments to assess the theoretical accuracy of the HMQ method.

with

α(y, z) = arccos

 y− ly + 200√

(y− ly + 200)2 + (z− lz)2

− 0.2

where vector multiplication, division, exponentiation, and sin/cos of vectors
are all meant component-wise. l = lx,y,z is the lower corner of the domain of
the synthetic field (i.e., the working volume measured), h = hx,y,z is the upper
corner of that domain, and s = h− l = sx,y,z is the extent of that domain. Many
of the functions above (and below) contain some “magic constants”. These
are just there for scaling the output so that the distortion is not too small or
too large when applied to the set [−120, 120]3, which is a typical range of our
working volumes (in particular, of our cave).

Functions 1–4 produce pretty “nasty” distortions while functions 5 and 6 look
more like real-world distortions (see Figure 4.22).

The overall distortion of the functions can be seen in Figure 4.23. Figure 4.25
shows the remaining error after HMQ interpolation with an optimal R2 for
translations and different “grid” sizes. Of course, in order to determine the
residual error the functions are evaluated at points “between” the lattice points
used for “training” the HMQ.

Optimal R2 values have been determined by an exhaustive search for each
function and each grid size (see Figure 4.26). It is not clear to me why for most
of the functions there seems to be no optimal R2. Furthermore, I do not have a
satisfactory explanation as to why the “well-behaved” functions 5 and 6 do not
show a reasonable optimum.

145

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

0
200
400
600
800

1000
1200
1400
1600
1800

0 50 100 150 200 250 300

translational deformation g(x)-x [cm]

function 1
function 2
function 3
function 4
function 6

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

orientational deformation g(x)-x [deg]

function 2
function 3
function 4

Figure 4.23: Histogram of distortions
produced by the functions f1, . . . , f6.

Figure 4.24: Histogram of distortions
produced by the functions o2, . . . , o4.

For orientations, I have carried out similar experiments. The distortion func-
tions were

o1(x, y, z) =
(
(1, 0, 0), (0, 1, 0)

)

o2(x, y, z) =
(

cos(α(y)) −sin(α(y)) 0
sin(α(y)) cos(α(y)) 0

)
with α(y) = 0.8

π

2
y
sy

o3(x, y, z) =
(

s(y)O00 − c(y)O02 O01 c(y)O00 + s(y)O02
s(y)O10 − c(y)O12 O11 c(y)O10 + s(y)O12

)

where O = o2(x, y, z), s(y) = sin(α(y)), c(y) = cos(α(y))

o4(x, y, z) =
(

sin(α(z)) cos(β(y)) cos(α(z)) − sin(β(y)) cos(α(z))
0 sin(β(y)) cos(β(y))

)

with

α(z) =
π

2
log

(
1 + 1.4

z− lz
sz

)
and β(y) =

π

2
log

(
1 + 1.4

y− ly
sy

)

No translational distortion was done so as to isolate the quality of the correc-
tion for orientations. A histogram of their distortion can be seen in Figure 4.24.
The quality of correction is plotted as histograms in Figure 4.27.

It seems that orientational errors can be corrected much better than transla-
tional ones. It is not quite clear to me why that is. One reason might be that for
orientations the interpolation function lives in a higher dimensional space (R6)
than for translations (R3).

Timing

Computation of f (P) is linear in the number of measured samples Pi. Interpo-
lating one 3-dimensional position by f (P) with i = 144 (i.e., 144 samples) takes
0.5 milliseconds on a 250 MHz R4400 processor. Since the correction of the
field’s distortion takes so little time, no additional latency is introduced into
the VR system. In fact, a transmission of one complete data record from the
tracking system to the host takes much longer.

Solving the three sets of linear equations in order to compute the coeffi-
cients Ai is on the order of seconds; for 144 sample points, it takes about 2 sec
(250 MHz R4400).

146

4.3 Tracking

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8

#p
oi

nt
s

distance corrected point - real point [cm]

Function 1

5x5x5 grid
6x6x6 grid
7x7x7 grid
8x8x8 grid

0

200

400

600

800

1000

0 2 4 6 8 10

#p
oi

nt
s

distance corrected point - real point [cm]

Function 2

5x5x5 grid
6x6x6 grid
7x7x7 grid
8x8x8 grid

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

#p
oi

nt
s

distance corrected point - real point [cm]

Function 3

5x5x5 grid
6x6x6 grid
7x7x7 grid
8x8x8 grid

0

200

400

600

800

1000

0 2 4 6 8 10 12 14

#p
oi

nt
s

distance corrected point - real point [cm]

Function 4

5x5x5 grid
6x6x6 grid
7x7x7 grid
8x8x8 grid

0

200

400

600

800

1000

0 2 4 6 8 10

#p
oi

nt
s

distance corrected point - real point [cm]

Function 6

5x5x5 grid
6x6x6 grid
7x7x7 grid
8x8x8 grid

Figure 4.25: Histograms of the translational error after HMQ interpolation with
optimal R2 for different grid resolutions (5× 5× 5 . . . 8× 8× 8.

147

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

0

2

4

6

8

10

12

14

0 20 40 60 80 100

av
er

ag
e

R2

fct 1, 5x5x5
fct 2, 5x5x5
fct 3, 5x5x5
fct 4, 5x5x5
fct 5, 5x5x5
fct 6, 5x5x5
fct 1, 8x8x8
fct 2, 8x8x8
fct 3, 8x8x8
fct 4, 8x8x8
fct 5, 8x8x8
fct 6, 8x8x8

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

R
M

S

R2

fct 1, 5x5x5
fct 2, 5x5x5
fct 3, 5x5x5
fct 4, 5x5x5
fct 5, 5x5x5
fct 6, 5x5x5
fct 1, 8x8x8
fct 2, 8x8x8
fct 3, 8x8x8
fct 4, 8x8x8
fct 5, 8x8x8
fct 6, 8x8x8

Figure 4.26: The dependence of the remaining distortion error on the parameter
R2 (left: average error; right: RMS).

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

#p
o

in
ts

angle (degrees)

Function 2

5x5x5 Gitter
6x6x6 Gitter
7x7x7 Gitter
8x8x8 Gitter

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2
angle (degrees)

Function 3

5x5x5 Gitter
6x6x6 Gitter
7x7x7 Gitter
8x8x8 Gitter

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5
angle (degrees)

Function 4

5x5x5 Gitter
6x6x6 Gitter
7x7x7 Gitter
8x8x8 Gitter

Figure 4.27: The rotational error after HMQ interpolation with optimal R2.

“Boxed” HMQ

In some cases there can be a considerable “shift” (or translational bias) in the
snapshot compared to the true positions (see Figure 4.28). Since the HMQ in-
terpolation is invariant under uniform scalings, I presumed that it might be
worthwhile to scale/translate the snapshot to better fit the true grid positions
before calculating the HMQ interpolation coefficients.11

The idea was to compute an outer bounding box and an “inner” bounding
box of the snapshot (see Figure 4.29). Then the scaling/translation is deter-
mined such the bounding box of the true grid is contained evenly between the
transformed outer and inner bounding boxes of the snapshot.

It seems that, unfortunately, this transformation has not significantly im-
proved the residual error of the correction — with an optimal R2-value the
error of the corrected positions of the synthetic “fields” (see above) is reduced
by only 2–3%. With non-optimal R2’s the improvement is a bit larger, of course,
but I feel this not relevant.

Correcting orientations

In a cave or at a workbench, a skewed orientation of the viewpoint is not as
fatal as an offset, since the orientation determines only the parallax between the

11 Thus, in order to correct a measured position at run-time, a similar scaling/translation has to be
done, then the interpolation, then the inverse scaling/translation.

148

4.3 Tracking

inner bbox

scale/translate

snapshot
outer bbox

true grid position

Figure 4.28: In some cases the snap-
shot can contain a significant amount
of translational bias.

Figure 4.29: Scaling/translating the
snapshot to better fit the true grid po-
sitions has not improved the residual
error of the correction.

Id
distortion

MiPi

Qi

correction

O
M

P′P

O′

Figure 4.30: Orientations can be
viewed like a smooth space tangential
to positional 3-space.

Figure 4.31: Orientations can be cor-
rected similar to positions.

two images for the left and the right eye, respectively. A skew will, of course,
introduce vertical parallax, which can break the stereoscopic effect altogether.
But in our experience, the human eye seems to be highly tolerant of vertical
parallax.

When tracking the hand of a user who is trying to perform a virtual assembly
task, however, a mismatch between the true and the virtual hand’s orientation
might lead to confusion and frustration. Especially in a cave, a distorted ori-
entation of the virtual hand becomes very obvious. The most demanding ap-
plication with respect to tracking is AR. In my experience, a tracking error of
1 deg can be annoying.

Orientations can be corrected similar to positions. There is a difference in that
they are like a smooth space tangential to positional 3-space [Lau60, Str64], i.e.,
each point carries its own coordinate system (see Figure 4.30). Therefore, orien-
tations cannot be interpolated directly, that is, we cannot construct a correction
function f : R6 → R6 or f : R4 → R4 (depending on how orientations are
represented).

One of the assumptions made here is that the orientational space associated
with each location is orthogonal. If this were not true, then a rotation of the sen-
sor about n degrees (with constant location) would produce a tracker output
of a rotation 6= n degrees. In other words, the orientational distortion would
depend on both position and orientation. In that case, we would have to mea-

149

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Figure 4.32: Orientations are distorted like positions, but they are not tangen-
tial to the distorted field of positions. In addition, they tend to be slightly less
distorted.

sure several orientations at the same location, and the interpolation function
would be f : R3+6 → R6 (assuming 2-vector representation of orientations).
Fortunately, the orientational space is orthogonal, which I have verified by ex-
perimentation. This is in contrast to the findings of [LS97], but maybe that is
due to different tracking systems.

With orthogonal orientational space, the measurement procedure is pretty
much the same as for correction of positions only. The only difference is that the
sensor(s) must be always positioned in null orientation. This is the orientation
in which calibration has been done, i.e., it is the orientation where the tracker
should return always the identity matrix. During measurement, the values re-
turned by the tracker for position Pi and orientation Mi will be averaged and
recorded in the snapshot. The true orientation does not have to be recorded,
because it is known to be the identity matrix.

It turns out that the distorted null orientations are not tangential to the dis-
torted positions (see Figure 4.32). Also, it seems that orientations get not as
much distorted as positions and that there is no direct correlation between the
amount of orientational distortion and positional distortion.

Assume we are given a measured point P and an orientation O together with
that point. In order to correct orientations, it suffices to construct an interpo-
lation M = g(P). The corrected orientation is O′ = M−1O (see Figure 4.31).
I have used the matrix representation for orientations; I will explain the rea-
sons below. More precisely, I used the 2-vector representation, so the function
g : R3 → R6, i.e.,

g(x, y, z) =
(

mx
my

)

and mz = mx ×my. Then,

O′ =

...
...

...
mx my mz
...

...
...

 O

150

4.4 Navigation

We still need to construct g. The interpolation problem is a little bit different
from the one in Section 4.3.3. Here we need to find g such that

∀i : g(Pi) = Mi

and

∀P ∈ R3 : g(P) ∈ SO3

All interpolation methods described above do not necessarily meet that con-
straint, whether we choose matrices or quaternions to represent orientations.
So I chose to drop that constraint and apply the standard HMQ interpolation.
Afterwards, the resulting matrix is orthogonalized and normalized. The results
have been satisfactory.

Correction of dynamic fields

My approach assumes a static distortion of the magnetic field. However, in
set-ups comprising a Boom plus magnetic tracking (e.g., Boom plus glove), the
magnetic field is changed by the Boom. Unfortunately, the “shape” of the dis-
tortion depends significantly on the position and orientation of the Boom (I
learned that the hard way). I am not sure whether or not this kind of dynamic
distortion is “repeatable” in the following sense: given a certain position and
orientation of the Boom, the measured position of a tracking sensor remains
constant over time. If the assumption is true, then this kind of dynamic dis-
tortion can be corrected by an interpolation function f : R3+3+6 → R3, i.e.,
P′ = f (Ptracker, Pboom, Mboom). If the “shape” of the distortion depends not
only on the Boom’s position but also on its orientation (which it probably does),
the process of measuring the field is probably very time-consuming.

Automatic field measurement

Because the HMQ method does not rely on a certain topology of the field snap-
shot, it is well-suited for automatic field measurement as suggested by [Kin99].
The idea is to set up a more precise tracking system (such as an expensive op-
tical tracking system) temporarily. Then, during regular VR sessions (possibly
with uncorrected tracking), the measurements from the precise tracking system
are recorded as true positions/orientations, together with the actual measure-
ments from the imprecise system. When enough samples have been recorded,
the precise tracking system can be removed again.

Using a precise tracking system, one can, of course, also do manual field mea-
surement. The advantage then is that this can be done in a matter of minutes.
The tracker just has to be moved about the volume of interest — this could even
be done in a chaotic manner.

Of course, before performing the HMQ interpolation, the samples should be
“weeded” out, so that the distribution becomes as uniform as possible.

4.4 Navigation

Navigation is probably the most fundamental interaction technique in VEs,
which can be found in all VR systems and applications. It is also one which
can often not be modeled after the real world for practical reasons (how does
one navigate through a virtual city efficiently?). Because of that, a wide range of

151

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

navigation metaphors has been investigated [GMPP95, CW92, MCR90, WO90,
RH92, Han97].

By navigation I understand any method of controlling the viewpoint in a
virtual environment. This is not to be confused with the cognitive process of
wayfinding, by which a user determines his own position and the direction of
the target position based on his mental map of his (virtual) environment. Ob-
viously, navigation by itself should burden the user with as little cognitive load
as possible.

A taxonomy of navigation has been presented by [BKH98]. It is three-dimen-
sional:

1. Target:

• selection of direction: this includes pointing in some direction by a
(tracked) body part, e.g., the hand, the torso, the head (gaze direc-
tion);

• discrete selection of target: such as selecting a (named) position
from a menu, selecting a target object (the system will place the user
nearby), or by typing or speaking the coordinates;

• selection on a map: maps can be conventional 2D maps, 3D maps
like WIM, inset views from different viewpoints, etc.

2. Velocity (or acceleration):

• constant;

• automatic by the system (e.g., adaptive to distance from selected tar-
get);

• selected by the user, for instance through a menu, speech commands
(“faster”), or a joint’s flex value.

3. Trigger (i.e., what input conditions start/stop navigation):

• no trigger needed, because navigation is always on;

• start and/or stop, e.g., gesture, speech command (“forward”, “left”,
etc.), joystick button, etc.;

• automatic by the system.

Most techniques can be mapped on the flying carpet metaphor. The idea is
that the user is riding a cart while he can look around (see Figure 4.33). This
corresponds to a subtree of the scene graph as shown in Figure 4.34. Concep-
tually, both the cart and the camera are controlled by a 6-DOF input device. By
using the abstraction of logical input devices, all navigation modes are com-
pletely device-independent (see Section 4.1.1).

In the subtree of Figure 4.34, there are a few nodes more than might seem
necessary. However, they are needed when one wants to attach other objects
to the cart, the viewpoint, or the hands. None of the navigation modes must
rely on the assumption that the cart is an immediate child of the root. We might
wish to make the cart a child of another object, e.g., in a crash-test visualization,
we might want to attach the cart to the car.

I learnt, by experience, that it is highly desirable that all navigation modes
can be mapped on all possible configurations of input devices. While some
combinations of navigation mode and input devices will be utilized much more
often than others, a general mapping scheme comes in handy now and then.

152

4.4 Navigation

camera

cart

hands

camera

scaled cart

cart (body center)

root

fingers

viewpoint

hand

application
specific

hand
left right

Figure 4.33: All navigation modes can
be deduced from the flying carpet
model. Not all modes utilize all of the
“devices” shown.

Figure 4.34: The flying carpet model
is implemented by this subtree of the
scene graph.

The model of the (virtual) user, as far as navigation is concerned, is comprised
of navigation speed, size and offset of the hands, scaling of head motion, the
head model (see below), eye separation, zero parallax distance, etc.

4.4.1 Controlling the cart and camera

Most navigation modes can be distinguished by the way they control the posi-
tion of the cart. In general, there is a 6-DOF input device whose value will be
used to determine the cart’s position (e.g., an electro-magnetic sensor, a Boom,
or a virtual trackball); I will call this device the cart controller. Another con-
troller (sometimes the same as the cart controller) determines the position of
the camera. Usually, the camera controller’s values are fed directly into the
viewpoint while the cart controller’s values are processed before feeding them
into the cart’s transformations.

One of the most common modes is eyeball-in-hand : this paradigm is imple-
mented by feeding the controller’s output directly to the viewpoint and the
viewing direction, while the cart remains fixed. This technique is most appro-
priate for close examination of single objects from different viewpoints.

In point-and-fly mode the user moves the cart by pointing the controller in
the desired direction. The motion is only started when a certain event triggers.
An additional one-degree device can be used to control the speed of the motion.

A more sophisticated variation of this mode has been suggested by [MCR90]:
it might be named object-centered point-and-fly. The user points with a ray at
some object he wants to approach. The system scales the speed by the distance
to the object, which yields exponential speed. The advantage is accelerated
navigation without losing fine control. In addition, the path can be determined
by the system, based on the object’s surface normal at the intersection point
with the ray. In this case the cart will be moved sideways as well such that
the user will look straight onto that part of the object. The disadvantage is that
users first need to identify an object as the navigation center, which can become
quite tedious. Sometimes there are simply no objects to select, for instance
in immersive scientific visualization (e.g., galaxy collisions, vortices in CFD
visualization).

153

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Contrary to eyeball-in-hand is the scene-in-hand mode. Depending on the
application, this can be quite useful for orientation or object placement. Espe-
cially in “fishtank” (i.e., desktop) VR many users find it more intuitive to rotate
the scene rather than the viewpoint.

Sometimes it is desirable to be able to control the viewpoint “without hands”.
In that case, speech recognition can be used in order to move the cart by utter-
ing simple commands such as “turn left”, “stop”, etc. This has become feasible
with today’s user-independent speech recognition systems and fast processors.
Actually, this mode of navigation can be generalized to what I call the start-
stop mode: motion in any direction is turned on and off by (different) events.
Several orthogonal directions can be combined. This type of navigation is use-
ful to provide very simple and robust navigation for very inexperienced users.
I would like to mention an implementation detail so as to avoid confusion:
although the cart is controlled and moved, the direction is derived from the
viewpoint’s coordinate system.

Teleportation is probably the simplest navigation mode. The user just se-
lects a location (via 3D menu or spoken commands) from a menu of possible
locations provided by the system. In order to overcome the limitation of a pre-
defined list of possible destinations, [PBBW95] invented the notion of hand-
held miniatures of the world (WIM’s). A WIM is a miniature copy of the VE (a
building, say). It could be carried about at the user’s left hand, at a “tool belt”,
or it could be popped up like a 3D menu. The user can then jump to a certain
location by pointing at it in the miniature world.

4.4.2 Human factors

The task of navigation comprises two components: a cognitive task, i.e., build-
ing a mental map of the environment, and an action, i.e., giving input to the
computer which makes it perform the locomotion by transforming the view-
point in the desired direction. The mental map is constantly updated during
locomotion; the navigation technique and constraints have an impact on the
user’s ease of building that map.

Depending on the application, the cognitive task can be more or less diffi-
cult; for instance, when navigating through large terrains or cities, a map can
be very helpful for the cognitive task. In order to improve user performance
with navigation, several techniques have been developed, such as non-linear
scaling, and world-in-miniature.

Depending on the application, the locomotion component of navigation can
be important by itself, e.g., in training fire-fighters or soldiers in VEs, it is im-
portant that navigation be as natural as possible.

4.4.3 Constraints

Sometimes it is desirable to constrain the cart. Constraints can be rotational or
translational or both.

Translational constraints are commonly used to fix the height of the cart (al-
though the other coordinates can be fixed quite similarly and simultaneously).
A simple constraint just keeps one or more coordinates of the carts translation
fixed at a certain value, e.g., the height. This can be used to keep the virtual
user’s position at eye level, which increases a natural feeling of certain VEs,
for example in a virtual city. A more sophisticated translational constraint is
terrain-following, which also tries to keep the user’s eye level constant while

154

4.4 Navigation

he moves about. In general, this is implemented by shooting a ray in a certain
direction and adjusting the specified coordinate of the cart’s translation. This
can be used to facilitate navigating terrains, or while riding on a piston head or
in an elevator.

Rotational constraints are often used to aid inexperienced or irregular users
in navigating. It can be difficult for those users to prevent tumbling and spin-
ning.12 In that case, the horizon can be kept level by disallowing “roll”.13 This
can be constrained even further by keeping the cart’s up-vector always parallel
to the world’s up-vector (no roll and no pitch, only yaw allowed).

Another constraint, which is not a translational or rotational constraint per se,
is the wall constraint. This mode prevents the viewpoint from “trespassing”
across the boundary of an object (the “wall”). It can be applied to either the
cart alone or the viewpoint. When applied only to the cart, the viewpoint is
still unconstrained by itself, so that the user can still “stick his head” through
walls. When constraining the viewpoint, this cannot occur anymore; however,
since the user’s head cannot be constrained, “popping” of the viewpoint might
occur when the user traces a path in and out of a wall.14

4.4.4 A model of the head

For immersive display devices (HMD, Boom, CAVE), in order to decouple the
viewing direction from the navigation direction, and in order to provide motion
parallax (for large-screen stereo projections), head tracking must be utilized.
This is why my navigation model also comprises a (virtual) camera in addition
to the cart.

There are 3 coordinate systems involved: the tracker, the real world, and
the virtual world coordinate system. They are reflected by several coordinate
frame transformations and calibrations. There is only one way to map head
tracking input on the virtual camera.15 Figure 4.35 shows the model of a user’s
head while Figure 4.36 shows the associated transformations. The position of
the virtual camera is given by

ReTe = Rs(sKTs)(sKT−1
sr)R−1

sr Tl|rRerTer

where
Rsr , Tsr = head sensor in resting position
Rer , Ter = dito for the (assumed) cyclops eye of the user
Rs, Ts = current head sensor position
Re, Te = current eye position
Tl|r = translation for left|right eye
sK = scaling of tracker values (“camera speed”)

The resting position is usually defined to be in the origin of the tracking co-
ordinate system, looking down at the −z axis. The rotation Rer is normally
the identity, however, it is quite convenient for the specification of a virtual
endoscopy, which has a tilted “head”.

12 Of course, this is not a problem when there is no rotation of the cart at all, which is generally true
when using point-and-fly with HMD or Cave.

13 Care must be taken in the implementation to avoid gimbal locking when doing loopings.
14 This popping can be alleviated by a fade-in/fade-out technique. Still, there will be some motion of

the viewpoint which is not directly related to the user’s head motion.
15 Other mappings could be devised and might be fun to investigate, but the canonical one seems to

be the only one relevant in applications.

155

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

sensor

center of head’s rotation

-z

RerTer

cyclop’s eye

x

Tl

Tr

sensor

y

RsrTsr

Figure 4.35: Model of a user’s head. Figure 4.36: Transformations associ-
ated with the head model.

Some tasks in certain VEs necessitate large scale navigation as well as fine
control navigation. For instance, in immersive visualization of CFD simula-
tions, one might want to navigate through the field quickly but still be able to
investigate fine details of the field. If the cart and the camera can be controlled
independently, this can be achieved trivially by assigning different “speeds” to
them.

However, if only the camera can be controlled by the user (through head-
tracking, say), a technique similar to non-linear point-and-fly can be utilized
[SN93]. The idea is to scale the head-motions when outside a certain “do-
main of interest”, which is usually sphere around the tracker’s origin (and thus
around the cart). So, the scaling sK becomes

s(Ts) =

{
sKTs if ||Ts|| ≤ d0,
sK

1
||Ts || e

d−d0 Ts otherwise.

Within the sphere of radius d0, the motion of the camera is linear, outside it is
scaled exponentially with the distance from the origin (see Figure 4.37). The
radius d0 can be made zero and sK can be made small so as to allow “micro-
scopic” and “macroscopic” motions. The function ||s(Ts)|| is C1-continuous in
||Ts||. Of course, other scaling functions can be used as well; they should just
be C1-continuous, so that the transition is smooth.

Non-linear scaling techniques for the camera work only, unfortunately, if
there does not have to be a registration between real and virtual viewpoint.
This is the case for HMD, Boom, or scene-in-hand paradigms. However, in
a Cave or in front of a large screen with head-tracking, this method does not
work, because the images will appear distorted when there is a mismatch be-
tween real and virtual viewpoint (see Chapter 4.3.2).

4.4.5 Implementation

Practically all navigation modes can be implemented by the following proce-
dure:

Navigation

get new deltas ∆R, ∆T from controller

156

4.5 Interaction techniques

0

1

2

3

4

5

6

d0

d
is

ta
n

ce
in

V
E

distance in real world

f(x)

Figure 4.37: Scaling the head con-
troller’s translation can allow for “mi-
croscopic” and “macroscopic” mo-
tion.

Figure 4.38: With a Boom for interior
design, the eyeball-in-hand navigation
technique is used.

if there are no new deltas, use the old ones
scale ∆R, ∆T by rendering time and user-specified speed
T′ := T ± ∆T × R , R′ := ∆R±1 × R

constrain T′ and R′ (independently)
T := T′, R := R′

In order to ensure a smooth motion the cart must be moved every frame even
if there are no new data from the input device. Also, rendering time varies
with each frame; in the worst case, a frame might take twice as long as the
previous one (60 Hz versus 30 Hz)! Therefore, we need to acquire “deltas” from
the controller and scale them such that a smooth motion is obtained. Scaling
rotations can be done nicely via the “axis+angle” representation.

The difference for point-and-fly is that the controller provides absolute in-
stead of relative values, and these absolute values are treated like relative
deltas. Similarly, for start-stop ∆R and ∆T are constant values depending on
the command which has been triggered.

4.5 Interaction techniques

4.5.1 Virtual buttons and menus

Sometimes it can be convenient to trigger an action in the VE by pressing the
analogue of a 2D button in VR. This is called a “virtual button”.

There are many techniques how virtual buttons can be implemented. By
plain collision detection between a finger and the button object, by bounding
box tests, by ray-object intersection, or by cone selection.

Virtual menu can be realized as an array of virtual 3D buttons. This seems to
be appealing, because that way menus are just a generalization of buttons (and
a lot of code can be re-used). In addition, when a 3D menu is just a sub-tree of
the scene graph, it can be modeled and rendered like any other geometry.

Two main problems arise with menus: (1) where to place them, and (2) how
to select an entry. Another (minor) issue is the steps needed on behalf of the
user to pop up the menu and to close it again. It is not easy to place menus
such that entries can be selected with ease, yet do not obstruct the view. This

157

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

fixed position eye-centered body-centered hand-held

Figure 4.39: A lot of metaphors exist to guide the placement of menus in VEs.

is especially difficult when they must be kept around all the time while doing
other tasks.

In our first implementation, the user selected the button of a 3D menu by
touching it with the index finger. However, experience has shown that such
menus are very troublesome to use in VR.

My next implementation utilized ray intersection. In this paradigm, the user
sees a ray emanating from his palm or finger. A menu button is selected when
it is hit by that ray. That way, more buttons can be put in a menu and the
placement is much more flexible. Although this has been a great improvement,
one still needs a steady hand, just like with general selection.

Finally, I implemented an implicit ray intersection technique: the ray is de-
fined by the user’s viewpoint and the tip of the index finger (or thumb). This
gives much finer control, and the paradigm is closer to 2D menus and pointers,
which is easier to explain to users accustomed to the desktop paradigm. This
seems to be the best choice so far.

In order to address the problem of positioning the menu, a number of tech-
niques have been tried (see Figure 4.39):

1. The simplest way is to have the creator of the geometry, or the user, decide
where to put a menu. The menu remains stationary all the time, unless
moved by the user. It could be visible all the time, or it can be switched
visible when needed.

Of course, this requires that the (approximate) position of the user be
known in advance to the person modeling the scene. With that knowl-
edge, however, one can ensure that the menu is visible for the user and
that it does not obstruct other geometry (if possible).

Examples for that kind of “stationary menu” are objects which are part of
the VE by themselves, such as elevator buttons or remote controls.

2. If the menu is merely an “auxiliary object” of the VE, then the VR system
must decide where to put the menu when being popped up by the user.

One way is head-centered positioning. For instance, it could be put it in
front of the viewpoint and within a distance such that it is completely
visible and as close as possible. The menu can be placed right in front of
the viewer or a little bit on the side or below. It can be positioned only
when it is popped up, or continuously while the viewer is turning his
head.

There are a number of problems with this approach. With stereo-viewing,
the positioning algorithm additionally has to take into account eye sep-
aration and zero parallax distance, so that the parallax of the menu does
not get strainful on the eyes.

158

4.5 Interaction techniques

No matter if continuous or pop-up-time positioning is done, the position
of the menu is never quite right: either it obstructs part of the scene, or it
is not completely visible.

3. In order to overcome the problems of head-centered positioning, body-
centered positioning has been investigated. Analogously to [BBDM98,
MBS97], menus can be positioned relative to the user’s body. If body
tracking is not available, the body’s position can be estimated based on
head tracking.

The idea is to attach the menu to the user’s “belt”. For instance, several
tools’ icons can be arranged around the user’s waist in resemblance to a
tool-belt. If there are more icons than would fit comfortably on the front
of the belt, then they can be scrolled, i.e., the belt can be turned (scroll
icons).

With body-centered positioning, the problem of obstruction is reduced a
lot. However, selection of the icons is a bit more difficult.

4. If both hands of the user are tracked, then hand-held (i.e., hand-centered)
positioning can be utilized. In this metaphor, the user holds the menu on
his left hand, while selecting entries (e.g., icons) with the right hand. The
idea is that the menu is “carried” by the left hand like a painter’s palette
or like a tray.

The hand-held metaphor is very appealing, because it solves the position-
ing problem. The user can place the menu himself in a comfortable posi-
tion; stereo parallax is not a problem, because stereo parameters must be
set such that the hands can be viewed without eye-strain. Finally, selec-
tion is efficient, because the menu can be brought close to the right hand,
and human factors research has shown that positioning the right hand on
an object can be done much more precisely, if the left hand touches the
same object (e.g., keyboard). This is due to kinesthetic feedback.

This positioning metaphor has been applied to many other interaction
techniques [PNW98, PBBW95, WMB98].

In addition to the problems already mentioned, 3D menus seem to be incapable
of holding as many entries as their 2D counterparts. This is mostly due to
limited display resolution, size and positioning problems. However, I suspect
that there are also some human factors issues involved.

At the moment, I believe that if one must use menus in VR, then 2D menus
should be used. Our VR system provides a general mechanism to describe
menus and trigger actions from them. The text of such menus is displayed as
an overlay on the scene.16 Menu items can be selected either by augmented pos-
tures (e.g., “thumb-up” moves the highlighting bar up one position, “thumb-
down” moves down; see Section 2.2.8), by sending a ray from the eye through
the menu to the finger, by moving the hand up and down (which seems to be
most efficient), by speech recognition, or by head tracking [MBS97]. If a joystick
is being used as pointing device, then its buttons can be used for controlling the
menu.

16 Menus will occlude everything if displayed as overlays (whether in a heads-up manner or as solid
overlays). Therefore, in the case of stereoscopic rendering, they should be displayed with negative
parallax, so they would appear to be floating in front of the VE. It is not trivial to compute the
perfect parallax, but heuristics seem to be quite sufficient.

159

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

In order to retain at least a 3-dimensional appearance of menus, one can re-
sort to “M-cubes” [WS94], or spheres or circles. However, I believe that such
representations are inappropriate when a large number of items has to be pre-
sented in one menu, which is the case for virtual prototyping applications.

An interesting approach are “mark menus” [Kur93], which are somewhat the
2D analogue of sphere or cube menus. Using a mouse or tablet, user efficiency
can be increased by a factor 3.5. When a user has become an expert, he can use
such menus “blindfold”, i.e., without actually popping up the menus, just by
“marking” the pencil or mouse motions. However, users can access only 4× 4
or 8× 2 menu items by “blindfold” marking.

My findings are somewhat in contrast to the work of [Jay98], who propose
3D menus for virtual prototyping applications.

4.5.2 Selection

Like menus, selection is one of the very frequent interaction tasks. Most tasks
involving manipulation of objects require the user to first select the object. Only
in rare cases the object itself can be “hard-wired” or inferred by the system. As
with menus, there are a number of difficulties when 2D-techniques for selection
are implemented in 3D. However, a lot of research and experimentation is still
going on about which metaphor combines best with each input device.

In 3D a common paradigm for selection is the ray which emanates from a
3D (or 6D) pointer. This metaphor has two parameters: the direction of the
ray and its lateral “extent”. When the ray is a line, selecting objects far away
can be a problem with this metaphor: it can be difficult to hit the right object,
especially when the tracker signal is noisy. Instead of using a ray, a cone can be
used. However, this does not help to select objects very far away and/or very
tiny, because with a cone ambiguities can arise. Another modification of the
ray metaphor is how the direction of the ray is specified by the user. Instead
of using the pointer’s all 6 dimensions, only its position can be used; the ray is
sent from the user’s viewpoint through the pointer’s position (for instance, the
tip of the finger of the virtual hand). The advantage is that the ray’s direction
is less susceptible to noise in tracker data.

Another metaphor are “windowing” techniques. The window is a certain
(rectangular) region on the screen. Objects are selected by assuming a view-
point such that their projection is within that window. As with cone selec-
tion, ambiguities arise when several objects are inside the window. This can be
solved by picking the one which is closest to the center of the window. There
are different ways how the window can be specified by the user. One way is
not to have him specify it at all, i.e. it is fixed. Another way is to enclose the
region by the user’s (or the virtual hand’s) forefingers and thumbs, which re-
quires two gloves, or by spanning the region’s opposite corners by one thumb
and forefinger.

It might be desirable to select objects by speech alone. However, this presents
some non-trivial problems. If objects are to be selected by their name, then they
must have “easy” names. However, this is not the case with manufacturing
scenarios, where objects usually have names like E38_E-Geraet2_08 or ee_-
04.pklappe_gro. So, in order to use object names for selection, a map would
have to be constructed with every scenario. In addition, the distinction among
several instances of the same type of object could become tiresome (e.g., when
there are 10 light bulbs in the scenario, or 100 screws). Furthermore, this kind of

160

4.5 Interaction techniques

selection requires speech recognition which does not need to be trained, even
for these very specific words.

A hybrid selection scheme based on speech recognition and menus might be
practical. The system would present a 2D menu of all the objects to the user.
Then the user could select one of these menu entries as described above (see
Section 4.5.1), for instance by saying “item five”. If there are 10’s of objects or
even hundreds of objects in the scene, the menu has to be organized hierarchi-
cally; which can be non-trivial if the system has to do this automatically.

Another hybrid technique integrates AI with VR. A user can select objects
by “imprecise”, context-dependent, situative descriptions [Sch96, LW98]. Such
descriptions could contain attributes like color, size, place, for instance, “se-
lect small red part on the right”. The user could point approximately in the
direction where the object is, in order to narrow down the set of matching ob-
jects, and utter a command containing a deictic term like “select this tool”. This
approach might soon require the full gamut of speech recognition, sentence
analysis, knowledge representation, etc.17 [ODK97] have found that selection
was done only very rarely in a multimodal manner. However, I believe this is
due to their application which already features an efficient pen-based selection
mechanism.

So far, the selection methods involved speech recognition or an abstract de-
vice like a ray or window. If the graphical echo of the user’s hand or pointing
device is to be used, then some mechanism is needed so that he can reach any
object (at least all of those relevant to his task). This can be achieved by non-
linear scaling of the tracking data when in selection mode [SN93]. There are
many possibilities to choose the scaling function. One of them is an exponen-
tial function, i.e., the further the hand is moved away from the body the larger
the scaling. That way, the user can touch any object which selects it. When the
“interaction radius” is made too large, the same problems as with ray methods
arise: precise positioning of the virtual hand/pointer becomes difficult.

Of course, it is necessary to be able to select several objects, so that all of
them can be processed (e.g., for distance computation). This can be achieved by
making selection a 3-step interaction: enter selection mode, select each object,
exit selection mode.

4.5.3 Grasping

Grasping objects is one of the most fundamental interaction techniques in VEs,
which comes as no surprise since it is also one of the most frequent activities in
the real world. Because of that, I have implemented grasping as an elementary
action (see Section 2.2.10).18

The grasping interaction can be realized in (at least) three different ways:
single-step, two-step, and naturally. Single-step grasping attaches the object to
the hand at a certain event (e.g., a spoken command like “grab thing”).

Two-step grasping comprises the following interaction steps:

1. Some event (e.g., a gesture or the spoken command “grab”) switches
grasping on; at this point, the hand is made “sticky”.

17 A user monologue like the following might happen: “select transparent small object over there”,
“the red one, not the blue one”, “the one behind that one”.

18 As pointed out in Section 2.2.10, the grasping technique can be considered much more general;
should that be necessary in the scenario of a VE, this can easily be implemented by “hand”.

161

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Figure 4.40: Natural grasping is basically a minimization problem for the flex vec-
tor under the constraint that finger-joints (and palm) must not penetrate the ob-
ject.

2. Then another event actually attaches the thing to the hand. This is usu-
ally triggered by a collision between the hand and some object (see Sec-
tion 2.2.10). Of course, other events such as the selection with a ray are
sensible as well.

Releasing the object will still be done by one interaction step only, of course,
which is usually triggered by the same event as step 1.

Attaching an object to the virtual hand can be done in two different ways:
either by re-linking the object in the scene graph making it a child of the hand
node, or by maintaining a transformation invariant between the hand and the
object. If the object is re-linked, then a new transformation must be set for
it, so that it does not “jump”. The new transformation is M′

o = M−1
h Mo,

where Mh is the transformation of the hand at the time of re-linking. If the
object is not re-linked, then the transformation invariant M = Mo M−1

h must
be maintained [RH92]. This can be done by updating Mo every frame with
Mt+1

o = Mt
o(Mt

h)
−1 Mt+1

h .

Natural grasping

The way of grasping described in the previous section is simple to implement,
but not really intuitive. On the one hand, the user has to know that she first has
to issue a speech or gesture (usually the fist) command; on the other hand, the
object being grabbed “sticks” to the hand in an unnatural manner.

What one really would like to do is just close one’s fingers around an object
(see Figure 4.40). The system would need to make sure that fingers do not
penetrate the object, and it would determine when an object is grabbed firmly
so that it can be moved. So, the user would not need to remember a command,
and objects cannot be grabbed by the back of the hand.

Like with force-feedback devices, we need to distinguish between (at least) 4
types of grasping:

1. Precision grasping with three sub-types [Jon97]: tip pinch, three-jaw
chuck, and key grasp,

2. cigarette grasping,
3. 3-point pinch grasping,
4. Power grasping (or just grasping),
5. Gravity grasping (or cradling).

162

4.5 Interaction techniques

Precision grasping involves 2 fingers, usually the thumb and one of the other
fingers; it is used for instance to grasp a screw. Cigarette grasping involves two
neighboring fingers; it is usually used to “park” long thin objects, such as a
cigarette or pencil. 3-point grasping involves three fingers (one of them being
the thumb), giving the user a fairly firm grip, and allowing him to rotate the
object without rotating the hand. Power grasping involves the whole hand, in
particular the palm. With this type of grasp the object is stationary relative to
the hand. Gravity grasping is actually a way of carrying an object.

Related work

There are several papers describing related work. A system for automatic cre-
ation of grasping animations was presented by [ST94]. The system is based on
a predefined set of grasping postures (similar to the above list) and a classi-
fication of the object into a small set of basic shapes (sphere, cylinder, etc.). A
similar system was presented by [RG91]; they also look at different levels of the
task to be synthesized. Algorithms for precision manipulation of objects by a
virtual hand was presented by [KH95]. Their algorithm is based on the notion
of a “finger-tip triangle”, the motion of which determines the transformation
for the object being grasped. Their system also distinguishes between 3 modes
(free, push, and grasped). [RBH+95] present a simple automaton consisting of
3 states and a simple top-down joint locking algorithm. This work has been
taken further in [BRT96], in which they sample a virtual hand by several “col-
lision sensors”. A simple automaton is associated with each finger, controlling
whether it should move the object or slide along its surface.

In the following I will describe an algorithm for solving natural power grasp-
ing and precision grasping. These are the grasp types most often needed in
assembly simulation. My algorithm does not need to switch between modes.
In addition to grasping, my algorithm can determine a push, which moves the
object being touched into the direction the hand is moving. Precision handling,
like turning a screw between two finger tips, is not yet implemented.

The algorithm

For power grasping, the algorithm consists of two simple parts: clasping the
fingers around the object (see Figure 4.41), and analyzing the contact. The for-
mer will be done by an iteration, while the latter is implemented by a simple
heuristic.

The position of the hand is completely specified by (M, F), where M is a
matrix specifying the position of the hand root, and F is the flex vector (usu-
ally 22-dimensional). Given a new target hand position (Mn, Fn), the goal is to
minimize (|MMn−1|, |F − Fn|) such that (M, F) is collision-free. Note that the
position of a finger-joint depends on its flex value and all flex values higher up
in the chain and the position of the hand root. Therefore, I suspect that there
are several local minima, even if we only consider flex values during optimiza-
tion (and keep the position fixed). However, this should not be a problem if
the minimizatin process is fast enough, so that consecutive collision-free hand
positions are not too “distant” from each other.

Minimization must not be done using the visible model of the hand; other-
wise, the user would “witness” the process (because the renderer runs concur-
rently). So, a copy of the hand tree is used for collision detection, and only
after minimization has finished, the new position/flex values are copied to the

163

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

collision copy of handvisible hand
cart, pos/flex →

cart has not moved

no collision
cart has not moved

F

last valid pos/flex
fix some flex values
set collision flags

start iteration
wait for new pos/flex

visible hand, valid pos/flex

B

still unfixed flex values

all flex values fixed

analyse touch set "touching" flags

interpolate unfixed flex values
reset some coll. flags

current pos/flex →

A

cart has moved
collision

E

and # steps < max

cart, pos/flex →

→ visible hand

cart has

C

D

moved

or # steps > max

Figure 4.41: A simplified overview of the algorithm for simulating natural grasp-
ing.

visible hand. This minimization should be as fast as possible, so it should run
as a concurrent process; otherwise, the user might notice considerable latency.

In order to find the optimal flex vector, I use an iteration process interpolating
non-colliding (i.e., valid), and colliding (i.e., invalid), flex values. Here, a flex
value is colliding if its associated finger-joint is colliding or any finger-joint
depending on it. A finger-joint J′ is depending on a finger-joint J, if it is further
down the kinematic chain, i.e., if J moves, then J′ moves, too. Note that a
finger-joint can have many depending finger-joints. (In this context, the palm
is a “finger-joint” like all the others.)

During the iteration process, the position M of the hand is treated like any
other flex value, i.e., it is interpolated. The only differences are that interpola-
tion is done on matrices instead of single real numbers. The “joint” associated
with it is usually the palm or the forearm.

After a few iteration steps, some flex values will be approximated “close
enough” (when the range between valid and invalid flex value is small enough).
Then, they will be fixed. Depending flex values must be considered for fixing,
too: they may or may not be close enough. So, several flex values in a row may
become fixed at the same time. As long as a flex value is not fixed, it will be
interpolated and all its depending flex values. (An alternative would be not to
interpolate depending flex values, but since depending finger-joints need to be
checked for collision anyway, we can as well interpolate them, too. Thus, we
probably achieve an optimum faster.)

During iteration, the algorithm has to mark all finger-joints (including the
palm) which are touching the object. If a finger-joint is not touching the object,

164

4.5 Interaction techniques

I will call it free. At the beginning of the iteration, all finger-joints are free.
When a finger-joint collides, the algorithm sets a collision flag for it. When that
flex value gets fixed, the finger-joint is marked as “touching” if the collision
flag is set (the collision may have happened several iterations earlier). After
a flex value has been fixed, the collision flag of all depending flex values will
be cleared again. This is because possible collisions of depending finger-joints
are due to motions of up-chain finger-joints and not because the depending
finger-joint is touching.

After all flex values have been fixed, the touching analysis tries to determine
the type of grasp. While the clasping algorithm is in general applicable to any
hierarchical kinematic chain, the analysis algorithm needs to know more about
its “semantic”, i.e., it has to know about a palm, it needs to know which finger-
joints belong to the same finger, etc. The heuristic I have implemented is very
simple:

1. only one finger-joint or palm is touching → push;

2. several finger-joints are touching, and none of them is part of the thumb,
and the palm is not touching → push;

This part of the heuristic would need to be more sophisticated if cigarette
grasping should be recognized. However, this type of grasp is not needed
for virtual assembly simulation.

3. one or more finger-joints is touching, one or more thumb-joints is touch-
ing, and the palm is not touching → precision grasp;

4. one or more finger-joints (possibly a thumb joint) and the palm are touch-
ing, and at least one of the finger-joints is a middle or outer joint→ power
grasp;

5. one or more finger-joints and the palm are touching, but all finger-joints
are inner joints → push.

In my algorithm, motion of the cart is handled specially. A cart motion in-
dicates that the user’s (virtual) body is changing place (see Section 4.4). Since
the hand is attached below the cart, a cart motion always brings on a motion
of the hand. In that case, the algorithm does not try to clasp the hand tightly
around an object, because that might cause the hand to be left behind, which
is probably not what the user wanted. Unfortunately, navigation might cause
the hand to end up in an invalid (i.e., colliding) place, so after navigation has
stopped, the clasping algorithm cannot begin until the whole hand has been
moved to a collision-free place by the user.

Future work

The next step should be to implement 3-point grasping, so that a user can turn
and rotate objects without turning his hand. A little bit more difficult is prob-
ably the possibility to turn objects with 2 fingers only (precision grasp). This
type of interaction (and probably others, too) relies heavily on the skin, in par-
ticular its deformability and its high friction.

The human hand is a very complex “mechanical” device. I believe it will take
a few years of research to simulate object manipulations like juggling Qigong-
balls in one hand or turning a screw with two fingers.

165

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

Moreover, the human hand is able to perform several grasps at the same
time, such as: holding a screw with a precision grasp between index finger
and thumb while pushing another object with the little finger; or, a precision
grasp involving index finger and thumb while holding another object with a
gravity grasp; or, handling a pair of scissors with thumb and index finger while
holding a comb with a cigarette grasp between little finger and ring-finger; etc.
It remains to be seen whether or not the approach taken here is suitable to
simulate these complex tasks. On the other hand, alternative approaches like
physically-based ones also have yet to show their suitability for solving such
complex simulations.

Although grasping is more natural than before, I feel that more work needs
to be done to improve the user’s interaction efficiency. This is supported some-
what by [JJWT99].

4.5.4 Sliding

Being able to grasp objects is, for some application domains, not enough (see
Section 5.2.2). What the user really wants is that the hand and objects being
grabbed interact with other objects as in the real world, i.e., they must not pen-
etrate other objects, and “forcing” the object while colliding with others should
make it slide or glide along a path around that other object such that they touch
but do not penetrate each other along that path.

As of this writing, force-feeback systems and algorithms are still not mature
to provide this kind of object behavior. It is possible today to render forces
for a single point or with reduced accuracy at interactive rates. However, for
virtual assembly simulation force-feedback for complex objects consisting of
large polygon counts and for a large work volume is needed. But even when
such force-feeback systems will become doable, algorithms similar to the one
described below must be implemented in order to render forces.

This is a variant of grasping where the tranformation from hand coordinate
system to object coordinate system is no longer invariant. Instead, the motion
of the object is determined by physically-based simulation. For the sake of
clarity, let us assume that the object is collision-free at the time when it is being
attached to the hand. Let us assume further that at that moment we make a
copy of the object which is allowed to penetrate all other objects and which is
being grasped firmly by the hand. I will call this copy the “ghost” of the object.
It marks the position where the object would really be if there was no collision.
There are, at least, three metaphors for guiding the simulation:

• The rubber band metaphor: the object is connected to the ghost by a rub-
ber band. This tries to pull the object as close to the ghost as possible
without penetrating.

• Rubber band and spiral spring: like the plain rubber band metaphor, but
the object is also connected by a spiral spring to the ghost (this is a little
bit difficult to picture). In the plain rubber band metaphor, the user has
no control over the orientation of the object — it is completely determined
by the simulation.

• Incremental motion: when the ghost has moved by a certain delta the
object will try to move about the same delta (starting from its current
position). If there is a collision during that delta, then the simulation
will determine a new direction. So, alternatingly the object is under the
control of the user and under simulation control.

166

4.5 Interaction techniques

coll. callbacks
call

register

user
move

collect

sliding module collision detection module interaction manager

check

wait

direction

sliding

calc new

(de-)activate
callbacks

Figure 4.42: The physically-based simulation module for sliding runs concur-
rently to the other two main loops of the collision detection module and the
interaction manager. Dashed arrows mark rendezvous points.

I have implemented the latter so far, but maybe the “rubber band and spring”
might be more intuitive.

In the discussion below, I will explain the algorithm in more detail. The
reader should keep in mind, that the goal was not to make the sliding behav-
ior of objects as physically correct as possible. Readers interested in physically
correct simulations should refer to the wealth of literature, for instance [Bar94,
GVP91, Hah88b, SS98, BS98].

Instead, the goal was to develop an efficient algorithm which helps the user
to move the object exactly where he wants it, and which helps the user achieve
that in minimal time even in closely packed environments (such as the interior
of a car door).

The main loop

First of all, I will describe the “big picture” of the simulation loop. In subse-
quent sections, I will go into more depth.

From a very high-level point of view, the main loop is just

move object check collisions determine new direction

This a very gross simplificaion in twofold respect: the collision detection mod-
ule runs concurrently, and calculation of new directions consists of several
phases.

Because the collision detection module runs concurrently, we need to imple-
ment the physically-based simulation so that it can handle that. Therefore, it
does not complicate things much more, if we implement the simulation mod-
ule such that it runs concurrently to the main loop of the interaction manager
itself. So we can think of the three loops communicating with each other as
depicted in Figure 4.42.

Parallelization does really gain something when collision detection is faster
than rendering. If the simulation would be part of the interaction manager
process, then the simulation could make only one transition per frame in the
state machine. This is not acceptable, considering that the simulation has to
make several steps in order to find a good approximation of the exact contact
point (see below).

In the simulation, there is a so-called collision object (short collobj) which is
invisible.19 It is used to check intermediate position for collisions. The visible

19 The geometry of the collision object is, of course, exactly the same as that of the visible object. If
the scene graph API allows for it, they can share their geometry.

167

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

∆ > εcoll.

∆ < ε
no
coll.

coll.

B E

H

I

J

K

C

no coll.

R := Rmin

T := Tmin

T/Rmin := T/R

T/R := 1
2 (T/Rmin + T/Rmax)

T/Rmax := T/R

G

∆T/R∗ = 1
2

coll.

#iter.

#iter.

move collobj

with collobj T/Rmin/max

L

coll.

R := 1
m ∆R + Rmin

T := 1
m ∆T + Tminto pos. of visobj

no coll.

move visobj follow hand

< max.

< max.

F

< max

#slide
steps

calc ∆T/R,

≥ max

≥ max.
#iter.

#iter.≥ max.

start

calc. new ∆T/R

start iteration
T/R := 1

m ∆T/R + T/Rmin

coll.

move visobj to T/Rmin

to pos. of collobj

T/R = contact pos.

D

#slide
steps

coll.
no

coll.
no

A

Figure 4.43: The main loop of the sliding simulation is a finite state machine.

object is the one users are really seeing. It is never placed at invalid (i.e., col-
liding) positions. So the user only sees a valid, i.e., collision-free path of the
object.

The algorithm works, simply put, as follows:

Sliding simulation

loop:
while no collision

move visible and coll. object
according to hand motion

{now the coll.-object is penetrating}
approximate exact contact point
classify contact
calculate new direction

The main loop of the simulation module is actually a finite state machine.
Figure 4.43 shows that in a little bit more detail. It is still omitting certain
(pathological) cases which can occur in practice, but for the sake of clarity I
will not go into too much detail here.

When approximating both T and R of the exact contact position simultane-
ously, sometimes there is no collision-free position closer than T/Rmin. But it
would be possible to find a position “closer” (at least in an intuitive sense) by
approximating only the rotation, for instance. That is why the state diagram
contains states F and G. State E finds out whether or not a simultaneous ap-
proximation is feasible.

I do the contact approximation by interval bisection and a number of static
collision checks. [ES99] propose a dynamic collision detection algorithm. How-
ever, it is not clear that this would really speed up the simulation in this case,

168

4.5 Interaction techniques

n
d

M

∆t

∆t′
∆t′′

n

n

M

∆t

∆t′

n

C

C

d

M’
∆t′′

M
∆t

ω

M

C

d’

∆t

d

C

Figure 4.44: With one contact point,
calculation of the direction of the
new translational velocity is the same
whether or not the contact normal
points to the “right” side.

Figure 4.45: We can estimate the new
rotational velocity based on the as-
sumption that C must be stationary
during the next step.

since the dynamic algorithm takes about 3–5 times longer and an exact contact
point is usually not needed here.

New directions

Let us assume that we have the exact contact position. Let us further assume
that we need to handle only practically relevant contact situations. Then we
will need to deal only with the following cases: 1 contact point, 2 contact points,
and ≥ 3 contact points, which I will discuss in the following.

In each case, we must be able to deal with “wrong” contact (or rather,
“wrong” surface) normals. In general, polygonal geometry imported from
CAD programs has “random” surface normals in the sense that the vertex or-
der is not consistent across adjacent polygons. But even if it were, we would
have to be able to deal with such a situation, because unclosed objects (like
sheet metal) does not have “inside” and “outside”. With such “sheet objects”
we might be colliding from either side.

My implementation of the sliding algorithm presented here allows for ar-
bitrarily pointing normals. They can even be “inconsistent” in the sense that
adjacent polygons’ normals can point on different side.

In the following, let ∆t be the current translational “velocity”, let n be the
contact normal, let M be the center of mass, let C be the contact point.

169

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

C

n

C’

d

n

m

∆tM n

M

d

n
C

∆t

rotation
expected

Figure 4.46: Taking the history of the
contact point into account is a more ro-
bust criterion for choosing the “right”
contact normal.

Figure 4.47: This counter example rules
out a simpler but unreliable criterion
for choosing the right sign of the con-
tact normal.

1-point contact. With 1 contact point, the new translational velocity ∆t′ =
n × (∆t × n) (see Figure 4.44 left). Here, we do not need to check whether or
not n points to the “right” side.

Experience has shown that it is much user-friendlier if we let the object slide
on kind of an air-cushion. That means that ∆t′ should be turned a little bit away
from the contact plane. So, we really use ∆t′′ = ∆t′R(±∆t × n, α). Because n
could point to the “wrong” side, we choose the sign of the rotation axis of R
such that ∆t′′ and ∆t enclose the larger angle.

Figure 4.44 shows on the right that sometimes it can happen that ∆t points
away from the contact surface and we still get a contact (because of rotation).
In that case, it is more appropriate to make the object move further away from
the contact surface, i.e., choose ∆t′′ parallel to n.

The rotation axis of a 1-point contact is simply R = d0 × n0 (see Figure 4.45).
This means that I ignore friction completely (see below for a discussion), so that
a sphere on an inclined plane would just skid and not rotate.

We can estimate the rotational speed as follows. During the next simulation
step, the object should rotate about R through C, i.e., C is stationary. This gives
an estimate for the rotational velocity ω (see Figure 4.45 right). As with trans-
lational velocity, we should allow for some looseness by increasing ω a little.

How do we find out the correct sign of the collision normal? Making the sign
of n such that dn < 0 does not always produce the correct result — see Fig-
ure 4.47. I have implemented a criterion based on the “history” of the contact
point C: let C′ be the last free position just before the first colliding one; then, I
choose the sign of the normal such that (C− C′)n < 0 (see Figure 4.46).

2-point contact. For 2 contact points, the new translational velocity is ∆t′ =
n1 × n2[(n1 × n2)0∆t] (note that [. . .] < 0 if n1 × n2 points in the “wrong” direc-
tion) and ∆t′′ = ∆t′R(±∆t× (n1 × n2), α) (see Figure 4.48).

The new rotation axis for a 2-point contact is R = ±(C1 − C2) (see Fig-
ure 4.48). We determine the sign of R so that M + ∆t is on the positive side

170

4.5 Interaction techniques

C2

n1 × n2C1

R∆t

n1 × n2

∆t′

∆t′′

M

C3

∆t

C2

∆t
C1

M
C2

C3

C1

Figure 4.48: New translational and rota-
tional velocity for a 2-point contact.

Figure 4.49: With 3-point contacts,
2 different situations must be distin-
guished: when looking along the old
translational velocity, M can be “in-
side” the convex polygon spanned by
C1, C2, C3 or “outside”.

of the plane given by [C1, R × (M − C1)]. The new rotational velocity can be
estimated as above (see Figure 4.45 right), except that we need to use the pro-
jection of M on R instead of C1 or C2.20

3-point contact. With 3-point contacts, there are two different situations (see
Figure 4.49): when looking along the (old) translational velocity, M can be “in-
side” the convex polygon spanned by C1, C2, C3 or “outside”. If it is “inside”,
then this is a stable configuration; so, there will be only a translation parallel to
C1, C2, C3. If M is “outside”, then we can treat this like a 2-point contact.

More than 3 contact points are similar to the 3-point situation.

Classifying the contact

In theory, we need to handle only two contact situations: vertex/face and
edge/edge. Given one pair of touching polygons (p, q), we can determine the
contact situation by the following simple procedure: let np be the number of
polygons adjacent to p and touching q; define nq analogously. If np = nq = 1,
then we have the edge/edge case. Otherwise, either np or nq must be > 1 (but
not both), and we have the vertex/face (or face/vertex) case.

The advantage of this way of classification is that the collision detection al-
gorithm can stop as soon as it has found one pair of intersecting polygons (pro-
vided there is only one contact per pair).

In practice, a few more cases can happen. Partly, this is due to the mere
approximation of the contact position, partly, it is due to non-closed geometry.21

If np = 0, for instance, then this polygon might be at the rim of the object.
In order to decide that, we need to check if any edge of p intersects q (see
Figure 4.50). If so, we have got the edge/edge situation. If not, then it is the
vertex/face situation. Note that both np = nq = 0 is possible.

20 Using the projection of M on R is still an approximation, because the projection of M + ∆t′ on R
does not necessarily coincide with the projection of M on R.

21 Non-closed geometry is fairly frequent in virtual prototyping: all sheet metal is non-closed. Now
imagine the possible contact situations when a pipe is to be fitted into a hole of sheet metal.

171

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

?

?

Figure 4.50: Contact classification can
be done by looking at adjacent poly-
gons and counting edge/face intersec-
tions.

Figure 4.51: Is this an edge-edge con-
tact, or a vertex-face contact? If dis-
cretization steps are large compared to
the size of objects/polygons, then the
objects’ history should be taken into
account.

It is not sufficient to just check edge/face intersections of the two intersecting
polygons (counter-example: two intersecting wedges).

However, sometimes it seems that the history (i.e., the path) of polygons must
be evaluated to decide the kind of contact (see Figure 4.51). Such an ambiguity
occurs always when the motion discretization is large compared to surface dis-
cretization. It is not clear to me yet whether or not this occurs often in practice.

When to stop

The sliding algorithm does not move the object as close as possible to the ghost
object. Instead it moves it about the same delta as the ghost has moved. There-
fore we need a criterion when to stop motion (see Figure 4.52).

The trivial stop criterion is, of course, # slide steps > max. This prevents
cycles.

For the following criteria, I define a distance measure between two posi-
tions P1, P2, P = (R, T): d(P1, P2) = (ω(R1R−1

2), |T1 − T2|). An alternative
would be d(P1, P2) = (|R1 − R2|F , |T1 − T2|) [Zik98].22 I define two “less-
than” comparisons on pairs: (d1, d2) <2 (d′1, d′2) :⇔ d1 < d′1 ∧ d2 < d′2 and
(d1, d2) <1 (d′1, d′2) :⇔ d1 < d′1 ∨ d2 < d′2.

With our distance measure, we can define more stop criteria:

1. d(Ot+1, Ot) <2 min
Basically, this checks whether the simulation has arrived at a dead end.

2. d(Ot+1, O′) >2 d(Ot, O′)
This checks whether the object is moving further away from the target
position.

3. d(Ot+1, O′) >1 d(Ot, O′) ∧ d(Ot+1, Ot) <1 min.
Both >1 and <1 check different components.

22 In both cases, unfortunately, the distance measure is not independent of the coordinate system in
which an object has been modeled (this is because the order of transformation is: first rotation, then
translation).

172

4.5 Interaction techniques

O′

Ot+1

Ot

Ot−1

Gt

Gt+1

5

4

3

2

1

0

T

T2

M2M1

T−1
C

R

T1
C

T1

*

*

Figure 4.52: Several criteria determine
when to stop moving the object with
the “incremental motion” metaphor.

Figure 4.53: The set-up of transforma-
tions for the sliding simulation. The
slots on the right marked with an ar-
row are the only ones that are set and
changed during the approximation.

This condition means that, for instance, the ghost object just translated,
but the simulation has only rotated the object.

Implementation

It is convenient to establish and maintain a set of transformations for the coll.-
object, so that during approximation of the contact position the simulation loop
only needs to overwrite the relevant transformations. After new velocities have
been calculated, a new set has to be set up (see Figure 4.53).

During contact position approximation, the algorithm moves the coll.-object
back and forth, which will sometimes collide, sometimes not. At least the max.
position at the beginning of the iteration is colliding. The algorithm has to
save the position of the coll.-object whenever it collides during that iteration,
because that one is needed for later classification of the contact position. More
precisely, the polygons intersecting each other at the last colliding position are
needed for the classification.

Sometimes, the algorithm finds 2 contact points very close to each other (rel-
ative to the distance from M). In that case, I currently unify those 2 points and
treat the contact as a 1-point contact, because otherwise the direction of the
rotation axis of the new rotational velocity is pretty random.

Timing

Experiments have shown that collision detection is still the bottleneck of the
simulation. The test scenario and the timing is shown in Table 4.3.23 Timing
was done on a 194 MHz R10000. The DOP-tree algorithm of Section 3.5.9 was
used for collision detection.

23 You can watch the gliding simulation with some real-world objects by downloading a movie from
http://www.igd.fhg.de/~zach/coldet/index.html#movies

173

http://www.igd.fhg.de/~zach/coldet/index.html#movies

4 INTERACTING WITH VIRTUAL ENVIRONMENTS

num.
obj.

num.
pgons

max. #
contacts

col.-det.
time

sim.
time

2 7800 1 2.2 0.27
4 11000 3 4.4 0.28

Table 4.3: Collision detection time is still by a factor 10 more time-consuming
than simulation calculations (in this case). The numbers have been obtained by
the scenario on the left. All times are in milliseconds, averaged over 3000 frames.

The bottom line is that collision detection still takes about 10 times as much
time as the simulation.

Future work

Given only an approximation of the exact contact position, it is not trivial to
classify the contact correctly under all circumstances. I would like to inves-
tigate further how this can be done. In particular, although face/face, ver-
tex/vertex, parallel edge/edge, and parallel edge/polygon are extremely un-
likely in practice (given the exact contact position), I believe they should be
classified correctly in order to improve the robustness of the simulation (with
unexact contact positions).

It might be necessary to consider the history (trajectory) of intersecting poly-
gons in order to disambiguate some situations.

In order to reduce the number of collision detection tests, the penetration
depth should be estimated. Unlike multibody dynamics [EJ97], it might be
sufficient to compute just a part of the intersection polygon instead of comput-
ing the intersection volume (in general, the intersection polygon will consist of
several disjoint parts, each of which is not necessarily simple nor closed).

Another problem are multiple contact points between the same pair of ob-
jects. In reality, several polygons intersect each other, all belonging to the same
“smeared” contact point. Such a contact region might even be non-contiguous,
I suspect. A pragmatic solution might be the following: consider all intersect-
ing pairs of polygons as a distinct contact point; unify all those contact points
“close” to each other (where “close” means just that the Euclidean distance is
below some threshold).

Multiple contact points between the same pair of objects can be found only if
the collision detection algorithm does not stop after the first pair of intersecting
polygons has been found. This might slow down simulation considerably.

Perhaps, the problem of multiple contacts is the reason for the difficult sit-
uation depicted in Figure 4.54. So far, the algorithm does not seem to allow
easy disassembly in situations where a worker in the real world would force
the object, and turn and yank it eventually out.

The less exact the contact position is being approximated, the more likely
it is that more than 2 contact points are found at that position. However, the

174

4.5 Interaction techniques

Figure 4.54: Situations where a real worker would “force” the part to come out,
are still somewhat tedious in VR.

current implementation cannot deal with such situations (it handles them by
falling back to the 2-point case). I would like to improve that, so that it can
handle an arbitrary number of contact points.

I would like to experiment with other interaction metaphors, such as the
“rubber band and spring” metaphor explained in the beginning of this section.
This would probably allow the user to make the object translate by exercis-
ing enough torque on it. However, I am not sure yet if there is a canonical
way how the user-specified delta and the simulation-specified delta should be
“blended”.

So far, I have ignored friction. As said before, I am concerned here only about
suitability for virtual assembly simulation. It is not clear yet, whether users
need friction in order to assemble more efficiently a part in crowded environ-
ments. At the time of this writing, the bottleneck of collision detection affects
the simulation much more, so this should be improved first.

It might be interesting to explore a contrary approach: how would users
like object behavior if friction was infitely large except in the pure transla-
tional case? Technically speaking, that would mean that during 1-point and
2-point contacts there would be only rotation (about the contact points). Dur-
ing 3-point contacts, there would be only translation (“sliding” parallel to the 3
contact points) or rotation (rotating about 2 out of 3 contact points).

175

Chapter 5
Applications

Technique always develops
from the primitive via the complicated
towards the simple.

ANTOINE DE SAINT EXUPÉRY

The Fraunhofer-IGD VR system “Virtual Design” incorporates all the concepts
and algorithms presented so far. Many applications have been implemented

with it, mainly for automotive companies [DFF+96], architecture, landscaping,
and historical projects.

Our VR system is being used by two types of customers: end-users customers
and application-building customers. Most of the applications are virtual pro-
totyping applications, but there are also some architectural and historical ap-
plications, and in the early years, several shows have been done with it. In the
following, I will define and discuss virtual prototyping in more detail. Then,
some of the applications will be described.

5.1 Virtual prototyping

Automotive industries seem to be among the leaders in applying virtual reality
for real-world, non-trivial problems. After all, this is only natural, since they
have been also among the first who applied computer graphics.

In the product development process, prototyping is an essential step. Proto-
types represent important features of a product, which are to be investigated,
evaluated, and improved. They are used to prove design alternatives, to do en-
gineering analysis, manufacturing planning, support management decisions,
and to get feedback on a new product from prospective customers (product
clinic).

Markets are becoming more and more dynamic and quick-paced. In order
to stay competitive, companies must deliver new products with higher quality
and/or less costs in a shorter time. Additionally, they must provide customers
with a broader variety of versions at minimum costs. Therefore, rapid proto-
typing and virtual prototyping (VP) are quickly becoming interesting tools for
product development.

While some automotive companies have already begun to routinely use VR
as a tool in styling and design reviews in the concept phase, it has not been
clear that VR can be an efficient tool in assembly/disassembly simulations and
maintenance verifications. Assembly simulations are much more difficult in
that they involve a lot of interaction and real-time simulation. However, [BD83]
revealed that the assembly process often drives the majority of the cost of a
product. [Pra95, Ull92] point out that up to 70% of the total life cycle costs of a
product are committed by decisions made in the early stages of design.

Although there are already several commercial 3D engineering tools for dig-
ital mock-up (and the number continues to grow), all of them lack one thing:

177

5 APPLICATIONS

todayphysical prototyping

virtual prototyping

start concept start production

physical tomorrow

virtual

Figure 5.1: The goal of virtual prototyping is to reduce significantly the amount
of hardware prototypes during conception, design, and evaluation of new prod-
ucts. The effect will be a reduction in time-to-market.

intuitive, direct manipulation of the digital mock-up by the human. Therefore,
they are inherently inferior to VR.

In general, there is (hopefully) a twofoldbenefit of virtual prototyping:

1. shorter time-to-market, because the design→evaluate→change cycles
are shorter1 (see Figure 5.1);

2. cheaper products, because costs can be evaluated much earlier when de-
signs are still in a rough stage.

Of course, crashing fewer real cars to meet federal safety regulations saves
some money, too. A milled data check model of a complete car body costs
about half a million DM [Dai98].

I am not sure if we will, one day, be able to do without any physical proto-
types at all. But, this is the vision and the goal.

5.1.1 From rapid prototyping to virtual prototyping

Before and concurrently to the development of VR, other methods have been
devised to speed up the design and prototyping of new products. One of these
methods is rapid prototyping (RP) which has been in use for about 10 years.
With RP real prototypes can be manufactured from CAD data.

As with VP, RP helps to increase quality, reduce costs, and reduce the time.
Time savings can be up to 70%. According to a poll in the US, the main ar-
eas utilizing RP are transportation, aerospace, electronics, automotive, and ma-
chine manufacturing companies. But there are other more exotic areas where
RP can make sense, such as surgery planning or archaeology.

There are several techniques for creating rapid prototypes, but all of them
have in common that they are made out of layers which are added one at a
time.2 The techniques can best be distinguished by the material which they

1 Building a physical prototype takes 3–13 weeks [Dai98].
2 Most other manufacturing techniques are subtracting or deforming material.

178

5.1 Virtual prototyping

use. Some use fluid base material, some use powder, some solid or molten
material.

Although RP has been a great improvement over manual prototyping, it is
still in some cases too limited with respect to the number of different variants,
the size of prototypes, or the functionality. It is still not possible to produce
some ten variants of the body of a car in 1:1 scale in one piece, because it is too
large and it would take too long.

The most important shortcoming of RP is that an interactive “what-if” ap-
proach to the design/evaluation iteration is just not possible. The designer
cannot interact with the rapid prototype and change some feature or property
“on-line”.

5.1.2 Definitions of virtual prototyping

There seem to be two different understandings of exactly what VP is: the “com-
puter graphics” and the “mechanical engineering” point of view.3

The computer graphics definition of virtual prototyping (VPCG) is the ap-
plication of virtual reality for prototyping physical mock-ups (PMUs). The
VR system simulates and renders all characteristics relevant to the particular
context as precise and realistic as possible in an immersive environment. The
criteria of a VR system must be met by such a VP system (see Chapter 1).

In the mechanical engineering definition of virtual prototyping (VPME), the
idea is to replace physical mock-ups by software prototypes. This also includes
all kinds of geometrical and functional simulations, whether or not involving
humans. For instance, simulation of assembly lines, FEM crash tests, CFD sim-
ulations of air flow in the interior, etc., are VPME activities, too.

Digital mock-up (DMU) is a realistic computer representation of a product
with the capability of performing all required functionalities from design/-
engineering, manufacturing, product service, up to maintenance and product
recycling [DR96]. In a sense, DMU can be viewed as the medium through
which stylists, designers, testers, manufacturers, marketing people, customer
supporters, etc., exchange information about a new product [ZPR+98].

So, immersive virtual prototyping is but one technique for implementing the
DMU strategy:

VPCG ⊂ VPME ⊂ DMU

5.1.3 The right display

Many applications of virtual prototyping in the automotive business are con-
cerned with human tasks, visualization, or just viewing, in a very local, spa-
tially restricted area (namely the car, or a part of it). For all of these applica-
tions, stereo viewing is essential because it enables the human brain to assess
depth in the range up to about 2–3 meters away from the eye. Within that
range, stereoscopic viewing is the second-most important depth cue. In fact,
it has been shown that human performance in assembly tasks is significantly
impaired by monoscopic viewing [Ros93]. However, another study has shown
that when using HMDs, users tend to underestimate distances and lengths con-
sistently [HF93]. Presumably, this is due to lens distortions (Booms probably

3 Actually, the term “virtual prototyping” is also used in other areas such as electronics and VLSI
chip design. In one example, HP has been able to cut the development time of PC motherboards
from 9 to 2 months [Sch98].

179

5 APPLICATIONS

have a similar shortcoming). It is particularly noticeable with wide field-of-
view HMDs. On the other hand, there is some evidence that for certain types
of applications immersion improves user performance by about 40% [PPW97].4

To my knowledge, there are no HMDs or Booms with a wide field-of-view
and negligible distortion. There are rendering techniques to remedy this,
namely multi-pass rendering with a “cushion”-like textured polygon so as to
compensate for the distortion. In my opinion, though, they are not acceptable
for virtual prototyping applications because all the graphics power available
must be spent on achieving high polygon numbers and other multi-pass ren-
dering effects such as real-time shadows.5

Other display devices like cave and projection screen have much less distor-
tion.6 For styling reviews they are probably the display device of choice, and
maybe even for scientific visualization tasks. But for tasks where users have to
move their view point (i.e., their head) a lot, I believe the HMD (or maybe a
Boom) must be used.

5.1.4 Other VP applications

Some of the applications mentioned here are in the VP area according to the
computer graphics definition, some are in the VP area according to the me-
chanical engineering definition, and some are even in the much broader DMU
area.

A lot of development for utilizing VR for VP is being realized by automotive
and aerospace companies. Many efforts, however, are still feasibility studies.

Practically all automotive companies investigate the use of VR for styling
reviews and other mere walk-through applications. Some of them already em-
ploy it for daily work. Usually, the model is rendered on a large-screen stereo
projection or in a cave. Variations can be compared on the fly with realistic
colors and illumination effects [FE97]. At Daimler-Benz, the body of a car can
be reviewed in an immersive virtual environment by the aid of zebra lighting
[Buc98].

Since VR provides an intuitive and immersive human-computer interface,
it is perfectly suited to do ergonomics studies. Consequently, many projects
capitalize on this advantage of VR. Ford employs virtual prototypes with sev-
eral proposed dashboard configurations to verify visibility and reachability of
instruments.

Researchers at Caterpillar Inc. use VR to improve the design process for
heavy equipment. Their system [LD97] allows them to quickly prototype wheel
loader and backhoe loader designs to perform visibility assessments of the new
design in a collaborate virtual environment. Further the engineers can simulate
the operation of the equipment and evaluate visual obstructions.

Volkswagen has incorporated some useful applications in the vehicle devel-
opment process. They have coupled a commercial human inverse kinematic
package with VR to investigate different ergonomic features. They also visu-
alize the results of FEA crash computations in VR interactively. The virtual

4 They also found that practising a task at the desktop can have a negative effect on user performance
when doing the same task in VR, while practising a task first in VR can have a positive effect on
desktop performance.

5 One has to keep in mind, that 2 million polygons must be spent at least on the car body and the car
interior before a stylist will look at it.

6 The beamer electronics compensates for the lens distortions.

180

5.1 Virtual prototyping

product clinic avoids faulty developments and helps assess customers’ wishes
[PRS+98].

Chrysler launched a project to study the process of virtual prototyping, to
investigate the steps required for the creation of a virtual representation from
CAD models, and for the subsequent use of the prototype in immersive VR
[FE97].

The Boeing 777 was the first plane to be designed entirely on computers.
Boeing claims they have not built a single physical prototype before assembling
the first plane. According to a key note speech at ASME’97, they have not saved
time, though, compared to conventional prototyping. However, by using VP
they claim to have designed a better product, i.e., a plane which needs less fuel
for instance.

A prototype virtual assembly system is described in [JCL97]. However, com-
pared to the application described in this section it is less powerful and mature.
In addition, they do not describe the process of authoring a virtual environ-
ment. It seems to me that they pursue the toolbox approach, i.e., the system
is a monolithic program on top of a set of libraries, while my approach is the
scripting approach.

Systems for designing in VR are presented by [CDG97, ZHH96]. My ap-
proach is to use VR only for investigation and simulation. No geometry can
be designed by our system, because I do not feel that this would take advan-
tage of the strengths of VR. A factory simulation for immersive investigation
has been presented by [KV98]. Although no direct manipulation with objects is
possible, problems can be identified earlier than through the aid of charts and
graphs produced by conventional simulations.

At Rutherford Appleton Laboratory, based on dVS, applications have been
implemented for immersive investigation of CFD data and assembly simula-
tion of parts of a particle collider [LB98]. Special about the CFD data visualiza-
tion is the possibility to “repair” the grid interactively while being immersed.

A system featuring functionality similar to ours has been developed by
[JJWT99]. It does not get quite clear as to how a virtual environment is ac-
tually being authored (see Section 2.2) in their system. They have performed
a user survey, too; unfortunately, it does not get quite clear what kind of tasks
these users perform during their daily work.

5.1.5 The virtual seating buck

In 1995 we developed a “Virtual Seating-Buck” for BMW. This project focused
on the challenge of using VR to create a tighter integration between design
and engineering analysis functions in the development process of automotive
interiors (Figure 5.2).

It was necessary to address graphic display quality as well as functionality,
and interaction techniques in order to provide the user with a convincing feel-
ing of immersion into the virtual environment. To further increase this effect, a
physical mock-up consisting of seat, steering wheel and foot pedals was built
(Figure 5.3). Other hardware components included a tracking system, data
glove and Boom.

One important aspect in order to intensify the user’s feeling of immersion
was the precise registration between real objects and virtual objects. This was
achieved by calibrating the virtual steering wheel with its physical counterpart
(held by the user) and implementing a virtual feedback, such that the virtual
steering wheel rotates simultaneously with the physical one. Correction of dy-

181

5 APPLICATIONS

Figure 5.2: The virtual
seating-buck scenario.
Data courtesy of BMW
AG.

Figure 5.3: The physical
equipment of the BMW
virtual seating-buck.

Figure 5.4: Visualization
of air flow in a car’s inte-
rior.

namic tracking errors was not done, because the Boom changed the distortion
when moved (see Section 4.3.2).

Another point of interest was the embedding of CAE simulation results into
the virtual environment. This was demonstrated by visualizing the air flow
in the passenger compartment caused by the air conditioner. Particles can be
traced interactively by the user. (see Figure 5.4). Finally we addressed the
use of VR for maintenance access verification and configuration studies. Using
real-time collision detection on a large scale, conditions such as system location,
space allocation and stay-out envelopes could be interactively evaluated taking
the air condition/heating unit as an example.

The system has been in prototypical use at BMW’s R&D facility since Novem-
ber 1995 running on an SGI RE2 computer with two independent graphics sub-
systems. The results as well as user responses are promising.

5.1.6 Exchanging an alternator

A vision of virtual prototyping was developed within the ESPRIT project AIT
(Advanced Information Technologies in Design and Manufacturing; Project
partners were many European automotive and aerospace companies, IT sup-
pliers, and academia) [DR96, DFF+96, DR86].

One of the key features was real-time collision detection for clash and clear-
ance checks. Others are volume tracing and constraints (to model the hood
of the car). Flexible objects (like a hose) were implemented by an application-
specific module.

This was one of the first attempts to simulate (among other things) a complete
service maintenance of a car’s alternator by a digital mock-up: the user wearing
a head-mounted display and data-glove interacts with a scene of about 40,000
polygons representing the front of the engine compartment, which is rendered
at about 20 frames/sec. He has to open the hood of the car first. Then he has to
accomplish the following steps in order:

1. remove the fan,
2. tilt the oil filter,
3. push the cooling hose to the side,
4. unscrew the fixing wheel of the V-belt,
5. grab the alternator and take it out.

Although this is still a rather simplified scenario of a real maintenance opera-
tion, the VR system has to provide quite a few functionalities for object manip-

182

5.2 Assembly simulation

Figure 5.5: During an interactive fitting simulation in a virtual environment, the
system highlights all objects colliding with the alternator (data courtesy AIT con-
sortium).

ulation and object behavior. Each step and each functionality including the car
hood involves collision detection.

Variants of parts can be tried and fitted interactively in place of the original
ones. Figure 5.5 shows an example: all objects colliding with the new part will
be highlighted on-line by switching their rendering to wireframe.

Volume tracing is needed in order to determine the space needed for a main-
tenance operation. The “sweep” action traces out the volume when the user
moves an object by replicating (simplified) copies of it. This was used to check
serviceability.

5.2 Assembly simulation

Assembly/disassembly verification has several goals. The final goal, of course,
is the assertion that a part or component can be assembled by a human worker,
and that it can be disassembled later-on for service and maintenance. However,
other questions need to be addressed, too: is it “difficult” or “easy” to assem-
ble/disassemble a part? How long does it take? How stressful is it in terms of
ergonomics? Is there enough room for tools? Could it be done by a lay person?

On behalf of BMW, I have developed an application for assembly/disas-
sembly simulation on top of the frameworks and algorithms presented so far
[Zac98a]. In this section, I will present two scenarios which have been chosen
as examples for the development of an assembly simulation application, then I
will describe the functionality needed for assembly investigations.

5.2.1 Scenarios

Together with our customers, we have chosen two scenarios in order to assess
a first set of functionalities needed for assembly tasks in VR; one of them is a
simple one, the other is one of the most difficult.

The tail-light

The first scenario is the disassembly of the tail-light of the BMW 5 series (Fig-
ure 5.6). First, the covering in the car trunk must be turned down, in order to

183

5 APPLICATIONS

Figure 5.6: Overview of the tail-light
scenario. The tail-light is to be re-
moved.

Figure 5.7: The door scenario. Two
hands and several tools are necessary
to perform the assembly.

get access to the fastening of the lights (Figure 5.12). To reach the screws fixing
the tail-light, the fastening needs to be pulled out.

Then the tail-light itself can be unscrewed by a standard tool. After all screws
are taken out, the tail-light cap can be disassembled by pulling it out from the
outside.

The door

This scenario is much more complex and more difficult in that both hands and
various tools must be utilized (Figure 5.7).

The first task is to put the lock in its place in the door. This is quite difficult in
the real world, because it is very cramped inside the door and the lock cannot
be seen very well during assembly. Screws have to be fastened while the lock
is held in its place (Figure 5.8).

Next, the window-regulator is to be installed (Figure 5.9). This task needs
both hands, because the window-regulator consists of two parts connected to
each other by flexible wires. After placing the bottom fixtures into slots, they
must be turned upright, then the regulator screws can be fixed.

Finally, several wires must be laid out on the inner metal sheet, clipped into
place, and connected to various parts. However, this part of the assembly was
not performed in VR.

5.2.2 Interaction Functionality

In this section, I will describe an array of techniques most of which have proven
to be helpful in verification of assembly simulations. They enable inexperi-
enced users to work with virtual prototypes in an immersive environment and
help them experiment efficiently with CAD data.

Multi-modal interaction. It is important to create an efficient human-com-
puter interface, because the tasks to be performed in virtual prototyping can be
quite complex. Many of the “classic” VR interaction techniques can be utilized,
such as (static) gesture recognition, 3D menus, selection by beam casting, etc.
Each technique must be implemented in a very robust and user-independent
manner, otherwise users will become irritated and disapproving of VR.

184

5.2 Assembly simulation

Figure 5.8: Tools snap
onto screws and are con-
strained. Also, they are
placed automatically at
an ergonomic position
within the hand by the
system.

Figure 5.9: The window
regulator has to be in-
stalled with two hands;
the “ghost” paradigm
signals collisions.

Figure 5.10: The object-
on-the-lead paradigm al-
lows to verify assembly.
The object is not linked
rigidly to the hand.

While grasping two objects with both hands, a user must still be able to give
commands to the computer. This can be achieved most intuitively by voice
recognition. Also, multi-sensory feedback (see below) plays an important role
in multi-modal interaction.

An on-line service manual. I believe that VR could eventually become an ef-
ficient means for training service personnel and creating an interactive service
manual. Service manuals could be disseminated in the form of VRML environ-
ments, which can be viewed and interacted with on a PC-based “fish-tank” VR
system. However, augmented reality-based systems might be necessary, espe-
cially in larger and more complex vehicles, such as aircrafts and submarines.

In our environments we have implemented an interactive service manual as
well as an interactive training session. First, a trainee learns by watching the
service manual; this is basically an animation of the assembly process. While
the animation is being played back, the trainee can move freely about the envi-
ronment and watch from any viewpoint.

When the trainee is ready to learn by doing, he will perform the task step
by step. After each step is completed the system will point him to the part or
tool he will need for the next step and tell him what to do with it. For instance,
after all screws for the door lock have been fastened, the system highlights
the window regulator (by blinking) and instructs him how to assemble it. The
instructions have been pre-recorded and are played back as sound files.

So far, the virtual service manual and the interactive training session are
hand-crafted via manual scripting. However, it should be straight-forward to
extract them from a PDM system, if the process data are there in a standardized
form.

Getting help from the system. When the number of functions becomes large
in the VR system, occasional users cannot remember some commands (in
our current system there are about 40 functions with a total of 170 speech
commands). Similar to 2D applications, we additionally provide hierarchical
menus. I have experimented with several forms of 3D menus, but 2D menus
seem to be best in terms of usability and legibility (see Section 4.5.1). In my ex-
perience, 3D menus are to be considered only as an auxiliary interaction tech-
nique, because it is more difficult to select menu entries in VR than it is in 2D.

185

5 APPLICATIONS

Figure 5.11: Adminis-
trative data stored in the
PDM about parts can be
displayed during the VR
session.

Figure 5.12: Inverse
kinematics is needed for
“door-like” behavior of
parts.

Figure 5.13: With the vir-
tual yard-stick distances
can be measured in the
VE.

Investigation tools. In order to make the correct decisions, it is important
that the user can get information about the parts involved in the virtual pro-
totype currently being investigated. Administrative information about parts
can be displayed in a heads-up fashion by pointing at objects with a ray (see
Figure 5.11). Of course, any other selection paradigm can be used as well.

A tool which has been requested by designers is the clipping plane. It can
help to inspect “problem areas” more closely. When activated, the user “wears”
a plane on his hand; all geometry in front of that plane will be clipped away
in real-time. Optionally, the part clipped away can be rendered transparently.
The plane can be released from the hand and grabbed again, so that the user can
move freely while the clipping plane remains motionless. Sometimes it can be
necessary to restrict the motion of the plane so that it is always perpendicular to
one of the world coordinate axes. By utilizing an OpenGL feature clipping can
be done at interactive frame rates with a geometry of about 60,000 polygons.

Another tool to inspect assembly situations and the mechanical design is the
user size. This parameter can be controlled by simple speech commands, which
in turn affect all parameters by which a virtual human is represented, in par-
ticular navigation speed and scale of position tracking. This way, a user can
comfortably “stick his head” inside some narrow space.

In order to measure distances we have implemented two options: A user can
select two objects, then the system will compute the minimal distance between
the two and display it in the heads-up display. Or, the user can grab a virtual
yard stick (see Figure 5.13). While grabbed, the yardstick adjusts its length in
both directions so that it just touches the closest geometry. Additionally, its
length is shown on the heads-up display. Another way would be to select two
points on the geometry and have the system display the length of that line.

Physically-based simulation. Many mechanical components have some ar-
ticulated parts. These could be simple “door-like” mechanisms (see Figure 5.12),
i.e., permanent joints with one rotational degree of freedom (DOF), such as
hoods, lids, etc. Other very simple ones are sliding mechanisms (one transla-
tional DOF), for example the seat of a car. Inverse kinematics of these and other
articulated chains can be simulated on-line.

For complicated kinematic simulations, such as the working conditions of
a complete chassis, we have pursued a different approach: the VR system
loads the results of an off-line simulation by a commercial package, such as
AdamsTM. The user can then interactively steer the visualization, for example
by turning the steering wheel or by speech commands.

186

5.2 Assembly simulation

Figure 5.14: During as-
sembly, the path of any
part can be recorded,
edited, and stored in the
PDM system.

Figure 5.15: Annotations
can be put into the scene
by voice commands.

Figure 5.16: Violations of
safety-distance are high-
lighted by yellow, colli-
sions are red.

A lot of the parts in a vehicle are flexible: wires, hoses, plastic tanks, etc. It is
still a major challenge to simulate all these different types of flexible parts with
reasonable precision and at interactive rates. In particular, simulation of the
interaction of flexible objects with the surrounding environment and the user’s
hands by a general framework is, to my knowledge, still unsolved.

We have implemented hoses and wires in our VR system; the wires or hoses
are attached at both ends to other, non-flexible parts, and they can be pushed
or pulled by a user’s hand.

Verification without force-feedback. In my experience (substantiated by a
user survey [Zac98a]), assembly tasks are more difficult in VR than in the real
world, because in VR there is no force and haptic feedback. Humans can even
perform quite complicated tasks without seeing their hands or tools merely
based on auditory, haptic and kinesthetic feedback. Therefore, I have provided
a lot of interaction aids trying to compensate for the missing force feedback.

In order to help the user place parts, I have developed two kinds of snapping
paradigms: the first one makes objects snap in place when they are released
by the user and when they are sufficiently close to their final position. The
second snapping paradigm makes tools snap onto screws when sufficiently
close and while they are being utilized (see Figure 5.8). The second paradigm
is implemented by a 1-DOF rotational constraint which can be triggered by
events.

The major problem is: how can we verify that a part can be assembled by a
human worker? A simple solution is to turn a part being grasped into what
I call a ghost when it collides with other parts: the solid part itself stays at
the last valid, i.e., collision-free, position while the object attached to the user’s
hand turns wireframe (see Figure 5.9).

However, invalid positions can be “tunneled”. Therefore, I have developed
the object-on-the-lead paradigm: the object is no longer attached rigidly to the
virtual hand; instead, it “follows” the hand as far as it can go without penetrat-
ing any other parts (see Figure 5.10). I have implemented a physically-based
simulation (see Section 4.5.4), so that the object can slide along other parts; in
my earlier implementation, there was no sliding, which caused the object-on-
the-lead to get stuck in congested environments. So, at any time it can assume
only valid positions. Of course, exact and fast collision detection is a prerequi-
site [Zac98b].

187

5 APPLICATIONS

Figure 5.17: Immersive CFD investigation: color-coded particles indicate the flow
and pressure around a VW Polo. Data courtesy of Volkswagen AG.

This is only a first step. A completely reliable verification will check the vir-
tual hand for collisions as well. Also, the hand and/or part should slide along
smooth rigid objects to make assembly easier for the user.

Feedback to the user. Any VR system should be as responsive as possible,
especially for occasional, non-expert users. The users targeted for immersive
VP will probably not use VR every day. Therefore, multi-sensory feedback is
important to make them feel comfortable and in control.

Therefore, the system acknowledges all commands, in particular those in-
voked via voice recognition. Currently, this is done by pre-recorded audio or
speech. Eventually, we will utilize speech synthesis.

During the assembly simulation, a variety of feedbacks can be combined
which will be given if the user tries to move an object at an invalid position:
acoustic feedback, tactile feedback by a CybertouchTM glove, and visual feed-
back. Visual feedback comes in several flavors: whole parts can be highlighted
(see Figure 5.16), or the polygons which would have intersected at the invalid
position can be highlighted.

Documentation. If a certain assembly task cannot be done, then the result
of the verification session should be a precise as well as intuitive understand-
ing why that is. A number of techniques have been implemented in order to
investigate and document a possible failure of assembly.

During assembly/disassembly the path of any part can be recorded and
edited in VR (see Figure 5.14). Saved paths can then be stored in the PDM
system.

While parts are being moved, the sweeping envelope can be traced out. It
does not matter whether the part is moved interactively by the user or on an
assembly path.

Problems can be annotated by placing 3D markers (we have chosen 3D ar-
rows). Then, verbal annotations can be recorded and displayed textually next
to the marker (see Figure 5.15). Note that all interaction is done by the user via
speech recognition, except for placing the marker. Eventually, the markers and
annotations can be exported and stored with the parts in the PDM system.

188

5.3 Immersive Investigation of CFD Data

5.3 Immersive Investigation of CFD Data

I have helped integrate a flow-visualization module with our VR system
[DFF+96]. The interactive analysis of the flow around a Volkswagen Polo was
demonstrated at the Hannover Messe ’95 (see Figure 5.17). A different and
more advanced visualization was shown at IAA ’95 (see below).

Our particle tracing module allows the release of particles at sources which
are either coupled to the user’s hand or which can be positioned freely in the
3D scene by the user. The latter alternative allows to position a fixed particle
source and walk around in the scene to watch the traces from different points
of view. The system can produce consecutive particles, streamlines, and streak-
lines. All forms can be color-coded according to a scalar.

5.4 Shows

An early application of our integrated VR system was shown at the “Industry
Exhibition Hannover” in Spring 1995 (see above). At the show, we tried to
point out some possible applications of VR in the automotive industry.

For Volkswagen, we built the inside of a diesel engine as a virtual environ-
ment, which was shown at the IAA auto show in Frankfurt, Germany, in Au-
gust 1995, and at the Detroit Auto Show in 1996.

A user could fly inside the combustion chamber and watch several combus-
tion cycles while interacting with the air flow field. One of the key features
there was the visualization of time-variant flow-fields in the swirl port and in
the combustion chamber. We animate the piston as well as the valves during
the flow visualization. The movement of diesel particles is visualized, too. Iso-
surfaces of the temperature serve as an indicator of the momentary location of
the flames when the air/diesel mixture is burning.

All data, geometry, animations, and flow fields have been imported from
simulation packages. This is an application where the importance of a concept
of time becomes evident: all animations (such as piston head, valves, tempera-
ture color, and diesel particles positions) must coincide with the visualization,
even though most of them are not specified on the complete cycle. Further-
more, global simulation time must be set sometimes to a certain value, or the
“speed” of simulation time must be slowed down or stopped altogether.

189

Chapter 6
Epilogue

The Road goes ever on and on
Out from the door where it began.

Now far ahead the Road has gone,
let others follow it who can!

TOLKIEN, The Lord of the Rings,
p. 1024

In this chapter I will summarize the main contributions of this thesis and I will
venture to describe avenues for future work in the area of virtual assembly

simulation and virtual reality in general.

6.1 Summary

In 1995, only a few VR systems were commercially available and a few more
in the academic domain. None of these was mature at the time, nor had any of
them been deployed in the field for everyday work. Some commercial and
most academic systems were not so much a self-contained VR system, but
rather a set of libraries which application programmers could build upon.

In particular, VR was not ready for use for industry application. Problems
persisted in the following areas (among others): electro-magnetic tracking,
high-level specification of virtual environments, efficient interaction metaphors
and frameworks, and real-time collision detection and response.

This thesis has made contributions, to all of these areas. Almost all of the
algorithms, applications, and frameworks presented in this thesis have been
integrated into the VR system Virtual Design II, which has been developed by
the department I am with, and which is now commercially available through
the spin-off VRCom1.

Framework for authoring virtual environments

Creating virtual environments involves two steps: first, it has to be described,
then it must be simulated. The former is known as authoring, while the latter
basically means that the description is executed by a VR system.

After a discussion of frameworks for computer-human interaction in related
areas (see Section 2.1), such as user-interface management systems, Smalltalk,
and programming languages, Section 2.2 proposes a framework for authoring
virtual environments. This framework is the basis of our VR system Virtual
Design II.

The main premise for the proposed framework is that it should be easy for
non-computer scientists (like architects or mechanical engineers) to author vir-
tual environments. This excluded full-fledged programming languages or state

1 www.vrcom.de

191

file:www.vrcom.de

6 EPILOGUE

machines. Therefore, this thesis introduces the concept of actions, events, in-
puts, and objects (AEIO). These entities can be combined to virtual environ-
ments by the event-based approach; the behavior-based approach was deemed
inappropriate for application to virtual prototyping.

In each class of entities, a set of entities has been identified such that a sig-
nificant part of an application can be implemented using these. Each set has
been chosen such that its expressive power is maximized while its number of
entities is minimized.

Application-specific capabilities can be plugged in at run-time, thereby aug-
menting the set of actions and inputs. In order to facilitate short turn-around
times during development of a plug-in, the following development cycle is
supported: the system can delete all actions and/or inputs instantiated from a
plug-in; the programmer changes the implementation of the plug-in; the sys-
tem re-loads that plug-in and re-instantiates all former instances.

Based on the AEIO framework, a scripting language has been designed such
that its concepts can be easily grasped by non-programmers. It is orthogonal
in the sense that any input can trigger any action. In addition, a many-to-many
mapping between inputs and actions can be established; actions can be com-
bined to more complex actions; similarly, inputs can be combined by logical
operators. Simple constructs allow the VE author to combine actions or inputs
into more complex features. The above mentioned events are basically filters
which can detect transitions in inputs (or other events).

Besides the conventional scene graph several alternative object graphs can
be maintained. Due to the dynamic nature of a VR scene graph, references
in that graph are symbolic, allowing for dynamic changes “behind the scene”.
Alternative scene graphs are also used to map semantic attributes not present
in the conventional scene graph.

Three layers of creating virtual environments can be identified (see Sec-
tion 2.4.2). The scene graph is on the lower level, while the AEIO framework is
on the middle level. On the top level are specialized authoring tools for specific
application domains (such as assembly simulation), which are better described
as configuration tools. On that level, the author merely specifies “roles” of ob-
jects, such as “tool”. Using high-level authoring tools, creation of VEs (in that
specific application domain) is a matter of minutes.

Collision detection

Collision detection is one of the enabling “technologies” for all kinds of physi-
cally-based simulation in VR and other applications. The algorithms presented
in this section assume a polygonal object representation.

After a brief discussion of the requirements of collision detection algorithms
(see Section 3.1.2, one of the basic operations of collision detection is analyzed
(see Section 3.2). The comparison of several algorithms yielded a simple rule
for choosing the optimal algorithm. A collision detection algorithm wishing
to maximize performance should implement at least two algorithms for that
basic operation and choose either of them on a case-to-case basis according to
this rule.

Based on that, I developed an algorithm for checking any type of object, even
deforming ones (see Section 3.3). The basic idea is a pipeline of bounding box
checks in carefully chosen coordinate frames combined with sorting of bound-
ing boxes. By sorting, one can find quickly a range of polygons within a certain
region. The sorted list of polygons can be updated quickly between successive

192

6.1 Summary

frames, because usually deformation between frames is small. This algorithm
can check two spheres with 10,000 polygons each within about 4.5 milliseconds
on average and two door locks with 12,000 polygons each within about 15 mil-
liseconds.

Convex objects present themselves for incremental collision detection. Based
on the concept of linear separability and simulated annealing, I developed a
very fast algorithm which depends linearly on polygon count and rotational
velocity with very small hidden constants (see Section 3.4.3). The algorithm
gains additional efficiency by hill-climbing on the convex hull and by main-
taining the separating plane in two different coordinate frames simultaneously.
Collision detection time is of the order of microseconds when objects do not in-
tersect. A comparison with the renowned Lin-Canny algorithm showed that
the algorithm presented in this thesis is about 2 times faster. In addition, it
seems to be more robust numerically.

Actually, the current implementation of this algorithm is a probabilistic
Monte-Carlo algorithm. Although convex objects are not encountered in our
scenarios and applications, such algorithms can still be valuable earlier in the
collision detection pipeline (see Section 3.9).

Said Lin-Canny algorithm is based on a closest-feature criterion and makes
use of Voronoi regions. I have given a much simpler criterion which does not
need Voronoi regions (see Section 3.4.4). So, objects could even deform, pro-
vided they stay convex. This algorithm has been implemented on Cosmo/Op-
timizer. However, it is, as of this writing, not clear yet how it compares to the
original one.

Another class are hierarchical algorithms, which are well-suited for non-
deformable objects with large polygon counts. In this class, three algorithms
have been presented.

The first one is based on clipping and bisecting non-axis-aligned boxes (I
have called the associated data structure a box-tree). The algorithm takes ad-
vantage of the special geometry of boxes and certain assertions about the ar-
rangement of boxes within a box-tree. In addition, recursion makes use of all
the calculations done on the previous level.

The second algorithm uses a data structure very similar to the first one. It
efficiently encloses non-aligned boxes by axis-aligned ones (see Section 3.5.6).
Again, recursion makes complete use of the calculations on the previous level.
This algorithm is much faster than the first one.

A “good” bounding volume hierarchy is crucial for efficient hierarchical col-
lision detection (see Section 3.5.7). Yet, the construction of such a hierarchy
should be fast enough so that it can be done at load time. The algorithm
for constructing box-trees developed in this thesis is, under certain assump-
tions, in O(n) time, which has been supported by experiments. By evaluating
many different criteria guiding the construction process, the optimal criterion
(in the sense of fast collision detection) among them was determined (see Sec-
tion 3.5.7).

The third algorithm for hierarchical collision detection makes use of discrete
oriented polytopes (DOPs) (see Section 3.5.8). For this type of bounding vol-
ume, I have found an elegant way to enclose non-axis-aligned DOPs by axis-
aligned ones which is in O(k) while the previously proposed method is in O(k2)
(k being the number of orientations). The optimal number of orientations (in
the sense of fast collision detection) seems to be 24; it has been determined by
extensive experiments (see Section 3.5.9). This algorithm can check a pair of

193

6 EPILOGUE

door locks, 50,000 polygons each, within 4 milliseconds; two car bodies, each
60,000 polygons, can be checked within 1

2 millisecond.
The collision detection algorithm based on DOP-trees can be generalized to

allow different numbers of orientations and even different sets of orientations.
As for the box-tree, an efficient algorithm for constructing DOP-trees was de-
veloped. It works with any number of orientations.

The box-tree and the DOP-tree algorithms were compared with implemen-
tations of two other hierarchical algorithms, namely Rapid and Quick_CD (see
Section 3.5.10). Experiments have shown that the DOP-tree algorithm is about
as fast as Rapid (in certain cases slower while faster in other), which is, to my
knowledge, the fastest hierarchical algorithm to date.

Because incremental algorithms perform so well for convex objects, incre-
mental hierarchical collision detection is discussed. An algorithm based on
DOP-trees has been implemented (see Section 3.5.11), and its performance is
evaluated in detail.

In the class of flexible objects two algorithms were implemented (see Sec-
tions 3.7.1 and 3.7.2). The first one is a hierarchical algorithm, based on the as-
sumption that deformation is small between successive frames. During traver-
sal, the algorithm takes the maximum “drift” of polygons into account. The
second one is based on maintaining a sorted list of polygons. Overlapping
polygon bounding boxes are found by three sweeps, each along one axis. Un-
fortunately, both of them perform worse than the bounding box pipeline algo-
rithm in all practical cases (see Section 3.3).

So far, all collision detection algorithms dealt with the polygon level. If a
virtual environment consists of many moving objects, then the n2-problem is
encountered at the object level, too.

At the object level (see Section 3.8), octrees (Section 3.8.4) and grids (Sec-
tion 3.8.5) were discussed. Both have been implemented such that only those
cells are being visited which actually need to be updated. According to ex-
periments involving various complexities, grids are better suited for highly
dynamic environments (see Section 3.8.6), which is in contrast to more static
applications, such as ray-tracing. My experiments suggest that for more than
30–40 objects both a grid and the separating planes algorithm should be used
for neighbor-finding, because grids are in O(n), while convex hulls are tight
bounding volumes. For environments with less than 30 objects, the separating
planes algorithm should be used. However, these numbers seem to depend
also on the number of polygons, to a some extent.

Finally, I have proposed and implemented a collision detection pipeline (see
Section 3.9). This pipeline consists of several stages, each of which can be con-
sidered a certain type of filter. The pipeline has been integrated as a module in
the VR-System Virtual Design II.

Collision detection lends itself well to parallelization. The collision detection
module features concurrency, coarse-grain, and fine-grain parallelization (see
Section 3.10). Experiments demonstrate the efficiency of the implementation.

Interaction

Interaction in virtual environments comprises many different aspects: device
handling, processing input data, navigation, interaction paradigms, and phys-
ically-based object behavior.

Navigation is the most basic interaction in virtual environments. A gen-
eral framework has been proposed allowing for a broad range of navigation

194

6.1 Summary

paradigms and input devices (see Section 4.4). Other basic tasks include menus
(Section 4.5.1), which are needed to organize the multitude of functions, pos-
ture recognition (Section 4.2.1), which is needed to invoke frequently used func-
tions, and utterance recognition (Section 4.2.2). All of these have been inte-
grated in the VR system.

Electro-magnetic tracking poses at least two problems: noise and distortion.
In real-world sites, electro-magnetic noise is produced by all kinds of electrical
devices, and distortion is caused by ferro-magnetic material in floors, ceiling,
speakers, etc. Both noise and distortion can render a VR system useless, espe-
cially for virtual assembly simulation, because they would compromise precise
positioning. In addition, distortion can lead to artifacts when the environment
is rendered on a cave or powerwall.

The problem of noise is addressed by a filtering pipeline, designed to meet
the special requirements of VR (see Section 4.3.1). Tracker distortion is greatly
reduced by an algorithm developed in Section 4.3.2. Extensive tests verify its
quality and performance. The algorithm has been integrated in several device
servers of Virtual Design II.

Another basic interaction task is grasping. In fact, with virtual assembly sim-
ulation the user’s hand is the most important tool. Traditionally, grasping has
been implemented rather unnatural through posture recognition. One of the
reasons is that there is (as of yet) no force feedback to the user’s real hand. I
have developed an algorithm for natural grasping, which presses the virtual
hand’s fingers to an object and grasps it based on the analysis of the contact
(see Section 4.5.3).

When trying to assemble an object, it should not penetrate other parts. In-
stead it should behave similar to objects in the real world and somehow “slide”
along the surface. This kind of behavior has been implemented by a physically-
based algorithm presented in Section 4.5.4. It does not try to be physically
correct, but to be as fast as possible while still providing intuitive and plau-
sible behavior. Experiments have shown that my algorithm needs about 300
microseconds per contact point (not counting collision detection time).

Applications

The frameworks, concepts, and algorithms described above have been imple-
mented as several modules within our VR system Virtual Design II. The system
has been used for many applications. A lot of them were and are being devel-
oped for customers from automotive industries (virtual prototyping). Other
application domains include edutainment, cultural heritage, and immersive
scientific visualization.

In this thesis, virtual prototyping is being defined as the application of vir-
tual reality instead of physical mock-ups. This definition is stronger than the
one prevailing throughout manufacturing industries. Their weaker definition
usually means the application of software in general instead of physical mock-
ups.

Virtual assembly simulation is one of the applications I have developed on
top of our VR system. In Chapter 5, virtual prototyping is discussed in general,
while the virtual assembly simulation application is described in Section 5.2
in more detail. It is now being introduced in the product process of a large
automobile manufacturer.

195

6 EPILOGUE

6.2 Future directions

I believe that virtual assembly simulation is one of the most challenging appli-
cations of virtual reality. Although it has matured in that it can be used in the
product process, there are still a lot of things to be improved.2

Probably the most important missing feature is force-feedback. Especially in
virtual assembly and maintenance simulations, acoustic and visual feedback
turned out to be not sufficient to meet the demands of the users. Mechan-
ics “see” with their hands, particularly in narrow and complex environments
or when they cannot see their hands and/or tools. Therefore, force feedback
would add significantly to the degree of immersion and usability, and it would
give a natural and expected cue how to resolve collisions. Furthermore, it
would prevent a deviation of the (real) hand and the virtual one.

While this poses non-trivial problems by itself, it also poses additional prob-
lems in areas dealt with in this thesis, namely collision detection and interaction
techniques. A haptic device for virtual assembly simulation must be integrated
into the system so that the user will be able to use it intuitively (like a familiar
tool) and safely. Requirements on collision detection are very demanding: un-
der all circumstances, query times must be less than 2 milliseconds for checking
at least one object against all the environment.

Another important feature is the simulation of flexible parts. I feel that con-
siderable research is still required in order to be able to interact with hoses,
wires, bundles, plastic tanks, etc., in real time.

Collision detection. Since collision detection is an enabling technology not
only for virtual assembly simulation, I am positive that this area will be scien-
tifically active for many years to come. My timing experiments with the slid-
ing simulation have shown that collision detection is still by a factor of about
10 more time consuming than the simulation algorithm itself. There are al-
gorithms and object representations allowing faster collision detection queries
[MPT99] than the algorithms presented in this thesis. However, they have other
drawbacks, such as limited accuracy. So, there is still a need for much faster al-
gorithms checking a pair of objects in close proximity.

In particular, three main directions will get greater attention: collision de-
tection of flexible parts, incremental collision detection for polygon soups, and
application-specific algorithms, such as collision detection for force-feedback.
Algorithm developers will need to keep in mind cache coherency and memory
access patterns. Otherwise, in my experience, an algorithm superior in theory
might lose in practice.

I believe that collision detection algorithms are suitable for implementation
in hardware. However, I am not sure that the approach taken by [BWS99,
MOK95, SF91] is the right one. It has several disadvantages: it can handle
only convex objects (and similarly “simple” objects), it is not exact, and obtain-
ing a witness might not be straight-forward.3 The reason for these problems
is that rendering architectures are being “misused” to do something they were
not designed for.

2 In the article “What’s Real about Virtual Reality?” in the November/December ’99 issue of IEEE
CG&A, Fred Brooks remarked ironically: “VR that used to almost work now barely works”
[Bro99].

3 Currently, reading the stencil or frame buffer is a bottleneck, but that could be overcome by a true
implementation in hardware (by a “stencil buffer OR” operation).

196

6.2 Future directions

To my knowledge, it still remains an open problem if there is a global char-
acterization for the quality (in the sense of fast collision detection) of bounding
volume hierarchies which can be computed using only the geometry of the tree
itself and without prior construction of the tree. If there is such a global charac-
terization, the next question would be, whether it can be “localized”, so that it
involves only a bounding volume and its father and child bounding volumes.
Such a local characterization would lead to an optimal BV tree construction
algorithm.

Interaction. In the area of interaction techniques, natural manipulation of ob-
jects still needs considerable research. In particular, the three types of precision
grasps of objects by the user’s virtual hand in a robust and stable manner is,
to my knowledge, unsolved as of this writing. Challenging examples include
some common and (seemingly) simple operations: juggling two balls in one
hand, turning a screw between index finger and thumb, or wiggling a pencil
between index finger and middle finger.

Virtual reality in general always needs some form of tracking. As of yet,
the user is almost always tethered by some device, either the head-mounted
display, an electro-magnetic sensor, or the data glove. However, virtual real-
ity eventually must become “untethered”. While the technology is available
already to solve this problem, it is either not commercially available or too ex-
pensive.

Future directions for virtual prototyping. The result of a user survey, per-
formed with the application described in Section 5.2, indicates that the use of
VR for virtual prototyping will play an important role in the near future in au-
tomotive (and probably other manufacturing) industries [Zac99]. In particular,
the response of the surveyed users has been very encouraging and optimistic
that VR does have the potential to reduce the number of physical mock-ups
and improve overall product quality, especially in those steps of the business
process chain where humans play an important role.

VR is the best tool (today) to obtain quick answers in an intuitive way in the
concept phase of the business process of a product, because in that phase data
change often and are available only in a “rough” and preliminary preparation.
However, a formal cost/benefit analysis at this time has, to my knowledge, not
yet been performed, which might be due to the fact that virtual prototyping
has been integrated in the daily productive work environment only for a very
limited period and only in very few development processes.

However, VR will not become a wide-spread tool in manufacturing indus-
tries before it is seamlessly and completely integrated into the existing CA and
IT infrastructure.4 This is not only a question of conversion and preparation
tools: a lot of the data needed for a complete digital mock-up are just not there
yet, such as process information, semantical (non-geometric) properties, visual
properties of material, etc. This can be solved only in a shift in the design pro-
cess: design guidelines have to be established with virtual prototyping in mind.
All automotive and aerospace companies have realized that and are working
on implementing solutions. However, this does not only involve technical as-
pects of the design process but also a tremendous shift in corporate culture.

4 For instance, in order to create a complete VE for immersive assembly simulation 70% of the time
is needed to find and prepare the CAD data and only 30% for authoring the VE.

197

Bibliography

[ACCL79] K. N. An, E. Y. Chao, W. P. Cooney, and R. L. Linscheid. Normative
model of human hand for biomechanical analysis. J. Biomechanics,
12:775–788, 1979. 122

[ACHS94] Magnus Andersson, Christer Carlsson, Olof Hagsand, and Olov
Ståhl. DIVE — The Distributed Interactive Virtual Environment.
Swedish Institute of Computer Science, 164 28 Kista, Sweden, 1994.
17

[ADF+95] Peter Astheimer, Fan Dai, Wolfgang Felger, Martin Göbel, Helmut
Haase, Stefan Müller, and Rolf Ziegler. Virtual Design II – an ad-
vanced VR system for industrial applications. In Proc. Virtual Re-
ality World ’95, pages 337–363. Stuttgart, Germany, February 1995.
15

[AES94] S. S. Abi-Ezzi, and S. Subramaniam. Fast dynamic tessellation of
trimmed NURBS surfaces. Computer Graphics Forum, 13(3):107–126,
1994. Eurographics ’94 Conference issue. 38

[AF92] D. Avis, and K. Fukuda. A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra. Discrete
Comput. Geom., 8:295–313, 1992. 44

[AF95] P. Astheimer, and W. Felger. An interactive virtual world experi-
ence – the sbg cyberspace roadshow. In Second Eurographics Work-
shop on Virtual Environments ’95, M. Göbel, Ed., pages 199–210.
Springer-Verlag, Wien, February 1995. 8

[AFM93] Peter Astheimer, Wolfgang Felger, and Stefan Müller. Virtual de-
sign: A generic VR system for industrial applications. Computers
& Graphics, 17(6):671–677, 1993. 15, 131

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 42

[AJ88] Kurt Akeley, and Tom Jermoluk. High-performance polygon ren-
dering. In Computer Graphics (SIGGRAPH ’88 Proceedings), John
Dill, Ed., vol. 22, pages 239–246, August 1988. 105

[AJE96] Bernard D. Adelstein, Eric R. Johnston, and Stephen R. Ellis. Dy-
namic response of electromagnetic spatial displacement trackers.
Presence: Teleoperators and Virtual Environments, 5(3):302–318, 1996.
126

[Bar94] David Baraff. Fast contact force computation for nonpenetrating
rigid bodies. In Proceedings of SIGGRAPH ’94 (Orlando, Florida, July

199

BIBLIOGRAPHY

24–29, 1994), Andrew Glassner, Ed., Computer Graphics Proceed-
ings, Annual Conference Series, pages 23–34. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0. 35, 167

[Bar97] Anthony C. Barkans. High-quality rendering using the talisman
architecture. In 1997 SIGGRAPH / Eurographics Workshop on Graph-
ics Hardware, Steven Molnar and Bengt-Olaf Schneider, Eds., pages
79–88. ACM SIGGRAPH / Eurographics, ACM Press, New York
City, NY, August 1997. ISBN 0-89791-961-0. 105

[Bat82] Klaus-Jürgen Bathe. Finite Element Procedures in Engineering Analy-
sis. Prentice-Hall, 1982. 138

[BBDM98] Mark Billinghurst, J. Bowskill, N. Dyer, and J. Morphett. An eval-
uation of wearable information spaces. In Proc. of IEEE Virtual Re-
ality Annual International Symposium; VRAIS ’98. Atlanta, Georgia,
March 1998. 159

[BCG+96] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas, Joseph S. B.
Mitchell, and Ayellet Tal. BOXTREE: A hierarchical representation
for surfaces in 3D. Computer Graphics Forum, 15(3):387–396, August
1996. Proceedings of Eurographics ’96. ISSN 1067-7055. 57, 58, 97

[BD83] G. Boothroyd, and P. Dewhurst. Design for assembly – a designer’s
handbook. Tech. rep., Department of Mechanical Engineering,
University of Massachusetts at Amherst, 1983. 177

[BDH93] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algo-
rithm for convex hull. Technical Report GCG53, Geometry Center,
Univ. of Minnesota, July 1993. 44

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Trans. Math. Softw., 22
(4):469–483, December 1996. 44

[Ben90] J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th
Annu. ACM Sympos. Comput. Geom., pages 187–197, 1990. 90

[BF79a] J. L. Bentley, and J. H. Friedman. Data structures for range search-
ing. ACM Computing Surveys, 11(4):397–409, December 1979. 96

[BF79b] J. L. Bentley, and J. H. Friedman. Data structures for range search-
ing. ACM Comput. Surv., 11:397–409, 1979. 98

[BG95] Bruce M. Blumberg, and Tinsley A. Galyean. Multi-level direc-
tion of autonomous creatures for real-time virtual environments.
In Siggraph 1995 Conference Proc., Robert Cook, Ed., pages 47–54,
August 1995. 14

[BH95] Bradford Barber, and Hannu Huhdanpaa. Qhull manual. The Ge-
ometry Center, formerly with the Universiy of Minnesota, 1995.
URL http://www.geom.umn.edu/software/qhulll/qh-man.htm.
53

[BH97] Bradford Barber, and Hannu Huhdanpaa. Qhull version
2.4, April 1997. URL http://www.geom.umn.edu/software/
download/qhull.html. Software. 44

200

http://www.geom.umn.edu/software/qhulll/qh-man.htm
http://www.geom.umn.edu/software/download/qhull.html
http://www.geom.umn.edu/software/download/qhull.html

BIBLIOGRAPHY

[Bim99] Oliver Bimber. Continuous 6-DOF gesture recognition: a fuzzy
logic approach. In 7th International Conference in Central Europe
on Computer Graphics, Visualization and Interactive Digital Media
(WSCG ’99), Vaclav Skala, Ed. University of West Bohemia, Plzen,
Czech Republic, February8–12 1999. 122

[Bir85] Ken Birman. Replication and fault-tolerance in the isis system.
Proc. of the 12th ACM Symposium on Operating Systems, pages 79–
86, 1985. 16

[BKH98] D. A. Bowman, D. Koller, and L. F. Hodges. A methodology for
the evaluation of travel techniques for immersive virtual environ-
ments. Virtual Reality, 3:120–131, 1998. 152

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-
tree: An efficient and robust access method for points and rectan-
gles. In Proc. ACM SIGMOD Conf. on Management of Data, pages
322–331, 1990. 58, 93

[Boe81] Barry W. Boehm. Software Engineering Economics. Englewood Cliffs,
New Jersey: Prentice Hall, 1981. 13

[Bol80] R. A. Bolt. Put-that-there: Voice and gesture at the graphics inter-
face. Computer Graphics, 14(3):262–270, July 1980. 1

[Bro86] Frederick P. Brooks, Jr. Walkthrough — A dynamic graphics sys-
tem for simulating virtual buildings. In Proceedings of 1986 Work-
shop on Interactive 3D Graphics, Frank Crow and Stephen M. Pizer,
Eds., pages 9–21, October 1986. 1

[Bro99] Frederick P. Brooks, Jr. What’s real about virtual reality? IEEE
Computer Graphics & Applications, 19(6):16–27, November, Decem-
ber 1999. 196

[BRT96] Ronan Boulic, Serge Rezzonico, and Daniel Thalmann. Multi-
finger manipulation of virtual objects. In Proc. of the ACM Sym-
posium on Virtual Reality Software and Technology (VRST ’96), pages
67–74. Hong Kong, July1-4 1996. 163

[Bry92] Steve Bryson. Measurement and calibration of static distortion of
position data from 3D trackers. In Siggraph ’92, 19th International
Conference On Computer Graphics and Interaction Techniques, Course
Notes 9, pages 8.1–8.12, 1992. 135, 136

[BS90] I. Beichl, and F. Sullivan. A robust parallel triangulation and
shelling algorithm. In Proc. 2nd Canad. Conf. Comput. Geom., pages
107–111, 1990. 53

[BS98] Matthias Buck, and Elmar Schömer. Interactive rigid body menip-
ulation with obstacle contacts. The Journal of Visuazlization and Com-
puter Animation, 9:243–257, 1998. 167

[Buc98] Matthias Buck. Immersive user interaction within industrial vir-
tual environments. In Virtual Reality for Industrial Applications, Fan
Dai, Ed., Computer Graphics: Systems and Applications, chap-
ter 2, pages 39–59. Springer, Berlin, Heidelberg, 1998. 180

201

BIBLIOGRAPHY

[Bun07] Pieter G. Buning. Numerical algorithms in CFD post-processing.
van Karman Institute for Fluid Dynamics, Lecture Series:1–20, 1989-
07. 138

[BV91] W. Bouma, and G. Vanecek, Jr. Collision detection and analysis in a
physical based simulation. In Eurographics Workshop on Animation
and Simulation, pages 191–203, 1991. 35

[BWS99] George Baciu, Wingo Sai-Keung Wong, and Hanqiu Sun. Recode:
an image-based collision detection algorithm. The Journal of Visual-
ization and Computer Animation, 10(4):181–192, October - December
1999. ISSN 1049-8907. 196

[Can86] John Canny. Collision detection for moving polyhedra. IEEE Trans-
actions an Pattern Analysis and Machine Intelligence, PAMI-8(2):200–
209, March 1986. 37

[Car98] N. Carriero. An implementation of Linda for a NUMA Machine.
Parallel Computing, 24(7):1005–1021, 1998. 108

[CAS92] Gregory M. Herb Clifford A. Shaffer. A real-time robot arm colli-
sion avoidance system. IEEE Transactions on Robotics and Automa-
tion, 8(2), April 1992. 37, 99

[CCT89] Niels Vejrup Carlsen, Niels Jorgen Christensen, and Hugh A.
Tucker. An event language for building user interface frameworks.
In Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technology, User Interface Structures II, pages 133–140,
1989. 11

[CCV85] I. Carlbom, I. Chakravarty, and D. Vanderschel. A hierarchical data
structure for representing the spatial decomposition of 3-D objects.
IEEE Computer Graphics and Applications, 5(4):24–31, April 1985. 37,
90, 98

[CD87] Bernard Chazelle, and D. P. Dobkin. Intersection of convex objects
in two and three dimensions. J. ACM, 34(1):1–27, January 1987. 45

[CDG97] Chi-Cheng P. Chu, Tushar H. Dani, and Rajit Gadh. Multi-sensory
user interface for a virtual-reality-based computer-aided design
system. Computer-Aided Design, 29(10):709–725, 1997. 181

[CF91] R. E. Carlson, and Th. A. Foley. The parameter r2 in multiquadric
interpolation. Computers & Mathematics with Applications, 21:29–42,
1991. 142, 143

[CH93] Christer Carlsson, and Olof Hagsand. DIVE — A platform for
multi-user virtual environments. Computers and Graphics, 17(6):
663–669, November–December 1993. CODEN COGRD2. ISSN
0097-8493. 16

[Cha93] Bernard Chazelle. An optimal convex hull algorithm in any fixed
dimension. Discrete Comput. Geom., 10:377–409, 1993. 44

[Chu96] Kelvin Chung. Quick collision detection of polytopes in virtual
environments. In Proc. of the ACM Symposium on Virtual Reality
Software and Technology (VRST’96), Mark Green, Ed., pages 125–
131, 1996. 46

202

BIBLIOGRAPHY

[CJKL93] C. Codella, R. Jalili, L. Koved, and B. Lewis. A toolkit for devel-
oping multi-user, distributed virtual environments. Proceedings of
VRAIS’93, pages 401–407, 1993. 17

[CK70] D. R. Chand, and S. S. Kapur. An algorithm for convex polytopes.
J. ACM, 17(1):78–86, January 1970. 44

[CLM+] John Cohen, Ming C. Lin, Dinesh Manocha, Brian Mirtich, M. K.
Ponamgi, and John Canny. I_COLLIDE. URL http://www.cs.
unc.edu/~geom/I_COLLIDE.html. Software. 50, 53

[CLMP95] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-
COLLIDE: An interactive and exact collision detection system for
large-scale environments. In 1995 Symposium on Interactive 3D
Graphics, Pat Hanrahan and Jim Winget, Eds., pages 189–196. ACM
SIGGRAPH, April 1995. ISBN 0-89791-736-7. 46, 51, 96

[CM87] Yong C. Chen, and Catherine M. Murphy. H-P model — A hierar-
chical space decomposition in a polar coordinate system. In Com-
puter Graphics 1987 (Proceedings of CG International ’87), Tsiyasu L.
Kunii, Ed., pages 443–459. Springer-Verlag, 1987. 38

[CM91] Edwin W. Cook, and Gregory A. Miller. Digital filtering: Back-
ground and tutorial for psychophysiologists. Technical report
uiuc-bi-cns-91-03, The Beckman Institute, University of Illinois,
Urbana, IL, 61801, 1991. 127

[CN97] Carolina Cruz-Neira. Introduction to virtual reality. In Applied
Virtual Reality, Carolina Cruz-Neira, Ed., Siggraph 1997, Course 15
Notes, part 2, pages 2–1 – 2–15. Los Angeles, August 1997. 116

[CS88] K. L. Clarkson, and P. W. Shor. Algorithms for diametral pairs and
convex hulls that are optimal, randomized, and incremental. In
Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 12–17, 1988.
44

[CSD93] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti.
Surround-screen projection-based virtual reality: The design and
implementation of the CAVE. In Computer Graphics (SIGGRAPH
’93 Proceedings), James T. Kajiya, Ed., vol. 27, pages 135–142, Au-
gust 1993. 116

[CW92] Dale Chapman, and Colin Ware. Manipulating the future: Pre-
dictor based feedback for velocity control in virtual environment
navigation. In Computer Graphics (1992 Symposium on Interactive
3D Graphics), David Zeltzer, Ed., vol. 25, pages 63–66, March 1992.
152

[Dai98] Fan Dai. Virtual prototyping — principles, problems, solutions.
In Tutorial Notes of IEEE Virtual Reality Annual International Sympo-
sium; VRAIS ’98. Atlanta, Georgia, March 1998. 178

[Dee92] Michael F. Deering. High resolution virtual reality. In Com-
puter Graphics (SIGGRAPH ’92 Proceedings), Edwin E. Catmull, Ed.,
vol. 26, pages 195–202, July 1992. 116

203

http://www.cs.unc.edu/~geom/I_COLLIDE.html
http://www.cs.unc.edu/~geom/I_COLLIDE.html

BIBLIOGRAPHY

[DEG+97] Dr. Ping Dai, Dr. Gerhard Eckel, Dr. Martin Göbel, Frank Hasen-
brink, Dr. Vali Lalioti, Uli Lechner, Johannes Strassner, Henrik
Tramberend, and Gerold Weschke. Virtual sapces – vr porjection
system technologies and applications. In Eurographics ’97 Tutorial.
Blackwell Publishers, August 1997. 16, 17

[Dev89] Olivier Devillers. The macro-regions: an efficient space subdivi-
sion structure for ray tracing. In Eurographics ’89, W. Hansmann,
F. R. A. Hopgood, and W. Strasser, Eds., pages 27–38. Elsevier /
North-Holland, September 1989. 99

[DFF+96] Fan Dai, Wolfgang Felger, Thomas Frühauf, Martin Göbel, Dirk
Reiners, and Gabriel Zachmann. Virtual prototyping examples
for automotive industries. In Proc. Virtual Reality World. Stuttgart,
February 1996. 1, 8, 131, 177, 182, 189

[Dit97] Mary Lynne Dittmar. Psychological and physiological effect of im-
mersive environments. In Applied Virtual Reality, Carolina Cruz-
Neira, Ed., Siggraph 1997, Course 15 Notes, part 6, pages 6–1 –
6–11. Los Angeles, August 1997. 119

[DK83] D. P. Dobkin, and D. G. Kirkpatrick. Fast detection of polyhedral
intersection. Theoret. Comput. Sci., 27(3):241–253, December 1983.
45

[DK85] D. P. Dobkin, and D. G. Kirkpatrick. A linear algorithm for deter-
mining the separation of convex polyhedra. J. Algorithms, 6:381–
392, 1985. 45

[DR86] Fan Dai, and P. Reindl. Enabling digital mock-up with virtual re-
ality techniques - vision, concept, demonstrator. In ASME Design
for Manufacturing Conferences. Irvine, CA, August 1986. 1, 182

[DR96] Fan Dai, and Peter Reindl. Enabling digital mock up with virtual
reality techniques – vision, concept, demonstrator. In Proceedings of
1996 ASME Design Engineering Technical Conference and Computers
in Engineering. ASME, Irvine, California, August 1996. 179, 182

[DS77] T.A. DeFanti, and D.J. Sandin. Final report to the national endow-
ment of the arts. Tech. Rep. US NEA R60-34-163, University of
Illinois at Chicago Circle, Chicago, Illinois, 1977. 1, 122

[DS97] George Drettakis, and François Sillion. Interactive update of global
illumination using A line-space hierarchy. In SIGGRAPH 97 Con-
ference Proceedings, Turner Whitted, Ed., Annual Conference Series,
pages 57–64. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN 0-89791-896-7. 83

[duP95] Pierre duPont. Building complex virtual worlds without program-
ming. In Eurographics ’95 State of the Art Reports, Remo C. Veltkamp,
Ed., pages 61–70. Maastricht, August 1995. 16

[Dye82] C. R. Dyer. The space efficiency of quadtrees. Computer Graphics
and Image Processing, 19:335–348, August 1982. 37

204

BIBLIOGRAPHY

[Dyn87] N. Dyn. Interpolation of scattered data by radial functions. In Top-
ics in Multivariate Approximation, F. I. Uteras C. K. Chul, L. L. Schu-
maker, Ed., pages 47–61. Academic Press, 1987. 142

[EDd+96] J.L. Encarnação, F. Dai, A. del Pino, H. Haase, U. Jakob,
M. Unbescheiden, and G. Zachmann. Grenzen der Virtualisierung.
Talk at Münchner-Kreis KongreßM"unchen, November 1996. 2

[EH72] J. Elzinga, and D. Hearn. The minimum covering sphere problem.
Manage. Sci., 19:96–104, 1972. 97

[EJ97] Peter Eberhard, and Shoushan Jian. Collision detection for
contact problems in mechanics with a boundary search algo-
rithm. Mathematical Modelling of Systems, 3(4):265–281, 1997.
URL http://www.mechb.uni-stuttgart.de/Leute/Eberhard/
eberhard_publikationen.html. 174

[EK89] M. Eppinger, and E. Kreuzer. Systematischer Vergleich von Ver-
fahren zur Rückwärtstransformation bei Industrierobotern. Robot-
ersysteme, 5:219–228, 1989. 27

[ES88] José L. Encarnação, and Wolfgang Straßer. Computer Graphics. Old-
enbourg Verlag, 3 ed., 1988. 125

[ES99] Jens Eckstein, and Elmar Schömer. Dynamic collision detection in
virtual reality applications. In Proc. The 7-th International Conference
in Central Europe on Computer Graphics, Visualization, and Interactive
Digital Media ’99 (WSCG’99), pages 71–78. University of West Bo-
hemia, Plzen, Czech Republic, February 1999. 37, 168

[EWQ99] S. S. Everett, K. Wauchope, and M. A. Péez Quiñones. Creating
natural language interfaces to VR systems. Virtual Reality, 4(2):
103–113, 1999. 123

[FA85] W. R. Franklin, and V. Akman. Building an octree from a set of
parallelepipeds. IEEE Computer Graphics and Applications, 5(10):58–
64, October 1985. 37

[Far90] Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-
sign. Academic Press, 1990. 464 pp. 137

[FB90a] Steven Feiner, and Clifford Beshers. Visualizing n-dimensional vir-
tual worlds with n-vision. In Computer Graphics (1990 Symposium
on Interactive 3D Graphics), Rich Riesenfeld and Carlo Sequin, Eds.,
vol. 24, pages 37–38, March 1990. 8

[FB90b] A. U. Frank, and R. Barrera. The fieldtree: A data structure for
geographic information systems. In Proceedings of the 1st Sympo-
sium SSD on Design and Implementation af Large Spatial Databases,
A. Buchmann, O. Günther, T. R. Smith, and Y.-F. Wang, Eds.,
vol. 409 of LNCS, pages 29–44. Springer, Berlin, July 1990. ISBN
3-540-52208-5. 99

[FE97] William P. Flanagan, and Rae Earnshaw. Applications: Meeting the
future at the University of Michigan Media Union. IEEE Computer
Graphics and Applications, 17(3):15–19, May/June 1997. CODEN
ICGADZ. ISSN 0272-1716. 180, 181

205

http://www.mechb.uni-stuttgart.de/Leute/Eberhard/eberhard_publikationen.html
http://www.mechb.uni-stuttgart.de/Leute/Eberhard/eberhard_publikationen.html

BIBLIOGRAPHY

[Fel95] Wolfgang Felger. Innovative Interaktionstechniken in der Visual-
isierung. Springer, 1995. Reprint of the dissertation. 105, 117,
118

[Fis95] Paul A. Fishwick. A taxonomy for simulation modeling based on
programming language principles. IIE Transactions on IE Research,
1995. URL http://www.cis.ufl.edu/~fishwick/tr/tr95-019.
html. 16

[Fis96] Paul A. Fishwick. Computer simulation: The art and science of
digital world construction. IEEE Potentials, pages 24–27, Febru-
ary/March 1996. URL http://www.cis.ufl.edu/~fishwick/
introsim/paper.html. 7

[FK85] Kikuo Fujimura, and Tosiyasu L. Kunii. A hierarchical space in-
dexing method. In Computer Graphics Visual Technology and Art
(Proceedings of Computer Graphics Tokyo ’85), Tsiyasu L. Kunii, Ed.,
pages 21–33. Springer-Verlag, 1985. 37, 98

[FKN80] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface gener-
ation by a priori tree structures. In Computer Graphics (SIGGRAPH
’80 Proceedings), vol. 14, pages 124–133, July 1980. 98

[FMHR86] S. S. Fisher, M. McGreevy, J. Humphries, and W. Robinett. Virtual
environment display system. In Proceedings of 1986 Workshop on
Interactive 3D Graphics, Frank Crow and Stephen M. Pizer, Eds.,
pages 77–87, October 1986. 1

[FN94] Thomas A. Foley, and Gregory M. Nielson. Modeling of scattered
multivariate data. Eurographics State of the Art Reports, pages 39–59,
1994. 141

[Fra82] R. Franke. Scattered data interpolation: test of some methods.
Math Computation, 38:181–200, 1982. 141, 142, 143

[Frü97] Thomas Frühauf. Graphisch-Interaktive Strömungsvisualisierung.
Beiträge zur graphischen Datenverarbeitung. Springer-Verlag,
Berlin Heidelberg New York, 1997. 138

[FS93] Thomas A. Funkhouser, and Carlo H. Séquin. Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. In Computer Graphics (SIGGRAPH ’93
Proceedings), James T. Kajiya, Ed., vol. 27, pages 247–254, August
1993. 119

[FSP92] M. Friedmann, T. Starner, and A. Pentland. Device synchronisation
using an optimal linear filter. SIGGRAPH Symposium on Interactive
3D Graphics, pages 57–62, 1992. 126, 127

[FSZ94] Wolfgang Felger, Reiner Schäfer, and Gabriel Zachmann.
Interaktions-toolkit. Tech. Rep. FIGD-94i002, Fraunhofer Institute
for Computer Graphics, Darmstadt, January 1994. 8, 117

[FT96] D. N. Fogel, and L. Tinney. Image registration using multiquadric
functions. Tech. Rep. 96-01, National Center for Geographic In-
formation and Analysis, University of California, Santa Barbara,
1996. 142

206

http://www.cis.ufl.edu/~fishwick/tr/tr95-019.html
http://www.cis.ufl.edu/~fishwick/tr/tr95-019.html
http://www.cis.ufl.edu/~fishwick/introsim/paper.html
http://www.cis.ufl.edu/~fishwick/introsim/paper.html

BIBLIOGRAPHY

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics, Principles and Practice, Second Edition.
Addison-Wesley, Reading, Massachusetts, 1990. Overview of re-
search to date. 115

[GA93] I. Gargantini, and H. H. Atkinson. Ray tracing an octree: Numeri-
cal evaluation of the first intersection. Computer Graphics forum, 12
(4):199–210, 1993. 90, 98

[Gas93] Marie-Paule Gascuel. An implicit formulation for precise con-
tact modeling between flexible solids. In Computer Graphics (SIG-
GRAPH ’93 Proceedings), James T. Kajiya, Ed., vol. 27, pages 313–
320, August 1993. 90

[GAS+95] Morteza Ghazisaedy, David Adamczyk, Daniel J. Sandin, Robert V.
Kenyon, and Thomas A. DeFanti. Ultrasonic calibration of a mag-
netic tracker in a virtual reality space. In Proceedings of the IEEE
Virtual Reality Annual International Symposium (VRAIS ’95), pages
179–188, March 1995. 134, 135, 136

[Ghe95] Steve Ghee. dVS – a distributed VR systems infrastructure.
In Course Notes: Programming Virtual Worlds, SIGGRAPH ’95,
Anselmo Lastra and Henry Fuchs, Eds., pages 6–1 – 6–30, 1995.
17

[GHT98] B. Grant, A. Helser, and R. Taylor. Adding force display to a stereo-
scopic head-tracked projection display. In Proceedings of the IEEE
Virtual Reality Annual International Symposium (VRAIS ’98). Atlanta,
Georgia, March 1998. 7

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects. Internat. J. Robot.
Autom., 4(2):193–203, 1988. 46

[Gla90] Andrew S. Glassner, Ed. Graphics Gems. Academic Press, San
Diego, CA, 1990. 41, 97

[GLM96] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree:
A hierarchical structure for rapid interference detection. In SIG-
GRAPH 96 Conference Proceedings, Holly Rushmeier, Ed., Annual
Conference Series, pages 171–180. ACM SIGGRAPH, Addison
Wesley, August 1996. held in New Orleans, Louisiana, 04-09 Au-
gust 1996. 58, 68, 69, 81

[GMPP95] Stephen Ghee, Mark Mine, Randy Pausch, and Kenneth Pimentel.
Course Notes: Programming Virtual Worlds, SIGGRAPH ’95. 1995.
152

[Göb95] M. Göbel, Ed. Virtual Environments ’95, Eurographics. Springer-
Verlag Wien New York, 1995. Proc’s Eurographics Workshop,
Barcelona, Spain, 1993, and Monte Carlo, Monaco, 1995. 210, 215

[Got97] Stefan Gottschalk. Rapid library, 1997. URL http://www.cs.unc.
edu/~geom/OBB/OBBT.html. Vers. 2.01. 79, 81

[GR85] Adele Goldberg, and David Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, Reading, 1985. 8

207

http://www.cs.unc.edu/~geom/OBB/OBBT.html
http://www.cs.unc.edu/~geom/OBB/OBBT.html

BIBLIOGRAPHY

[Gre84] M. Green. Report on dialogue specification tools. Computer Graph-
ics Forum, 3(4):305–314, December 1984. 8

[Gre86] Mark Green. A survey of three dialogue models. ACM Transactions
on Graphics, 5(3):244–275, 1986. 12

[GS87] Jeffrey Goldsmith, and John Salmon. Automatic creation of object
hierarchies for ray tracing. IEEE Computer Graphics and Applica-
tions, 7(5):14–20, May 1987. 58

[Gv89] G. H. Golub, and C. F. van Loan. Matrix Computations. John Hop-
kins University Press, Baltimore, 2nd ed., 1989. 137

[GVP91] Marie-Paule Gascuel, Anne Verroust, and Claude Puech. Anima-
tion and collisions between complex deformable bodies. In Pro-
ceedings of Graphics Interface ’91, pages 263–270, June 1991. 167

[Hah88a] James K. Hahn. Realistic animation of rigid bodies. Computers &
Graphics, 22(4):299–308, August 1988. 35

[Hah88b] James K. Hahn. Realistic animation of rigid bodies. In Computer
Graphics (SIGGRAPH ’88 Proceedings), John Dill, Ed., vol. 22, pages
299–308, August 1988. 167

[Han97] Chris Hand. A survey of 3D interaction techniques. Computer
Graphics Forum, 16(5):269–281, 1997. ISSN 1067-7055. 152

[Hd89] Wolfgang Hübner, and Manuel de Lancastre. Towards an object-
oriented interaction model for graphics user interfaces. Computer
Graphics Forum, 8(3):207–217, September 1989. 12

[HD93] Larry F. Hodges, and Elizabeth Thorpe Davis. Geometric consider-
ations for stereoscopic virtual environments. Presence, 2(1):34–43,
winter 1993. 132

[HD00] Elke Hergenröther, and Patrick Dähne. Real-time virtual cables
based on kinematic simulation. In Proc. WSCG ’2000, The 8-th In-
ternational Conference in Central Europe on Computer Graphics, Visual-
ization and Interactive Digital Media 2000, pages 402–409. University
of West Bohemia, Plzen, Czech Republic, February 2000. 44

[Hel97] Martin Held. ERIT: A collection of efficient and reliable intersec-
tion tests. Journal of Graphics Tools, 2(4):25–44, 1997. 39

[HF93] Daniel Henry, and Tom Furness. Spatial perception in virtual en-
vironments: Evaluating an architectural application. In IEEE Vir-
tual Reality Annual International Symposium, pages 33–40, Septem-
ber 18–22 1993. 179

[HG94] Sean Halliday, and Mark Green. A geometric modeling and an-
imation system for virtual reality. In Virtual Reality Software and
Technology (VRST 94), Gurminder Singh, Steven Feiner, and Daniel
Thalmann, Eds., pages 71–84, August 1994. 16, 17

[HK97] Taosong He, and Arie Kaufman. Collision detection for volumetric
models. In IEEE Visualization 9́7, Roni Yagel and Hans Hagen, Eds.,
pages 27–34. IEEE, November 1997. 69

208

BIBLIOGRAPHY

[HKM96] Martin Held, James T. Klosowski, and Joseph S.B. Mitchell. Real-
time collision detection for motion simulation within complex en-
vironments. In Siggraph 1996 Technical Sketches, Visual Proceedings,
page 151. New Orleans, August 1996. 70, 71

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to
the Theory of Neural Computing. Addison-Wesley, 1991. 46, 47

[HL92] Josef Hoschek, and Dieter Lasser. Grundlagen der geometrischen
Datenverarbeitung. B.G. Teubner, Stuttgart, 2 ed., 1992. 137

[HL93] Joseph Hoschek, and Dieter Lasser. Fundamentals of Computer Aided
Geometric Design. A K Peters, 1993. ISBN 1-56881-007-5. 141, 143

[HLS97] Olof Hagsand, Rodger Lea, and Märten Stenius. Using spatial
techniques to decrease message passing in a distributed VR sys-
tem. In VRML 97: Second Symposium on the Virtual Reality Modeling
Language, Rikk Carey and Paul Strauss, Eds. ACM SIGGRAPH /
ACM SIGCOMM, ACM Press, New York City, NY, February 1997.
ISBN 0-89791-886-x. 16

[Hol97] Richard L. Holloway. Registration error analysis for augmented
reality. Presence, 6(4):413–432, August 1997. 125, 126

[HT92] Ping-Kang Hsiung, and Robert H. Thibadeau. Accelerating ARTS.
The Visual Computer, 8(3):181–190, March 1992. 98

[Hüb90] Wolfgang Hübner. Entwurf Graphischer Benutzerschnittstellen. Ein
objektorientiertes Interaktionsmodell zur Spezifikation graphischer Di-
aloge. Springer Verlag, 1990. 12

[Hub93] Philip M. Hubbard. Interactive collision detection. In IEEE Sym-
posium on Research Frontiers in VR, San José, California, pages 24–31,
October 25–26 1993. 37

[Hub95] P. M. Hubbard. Collision detection for interactive graphics appli-
cations. IEEE Transactions on Visualization and Computer Graphics, 1
(3):218–230, September 1995. ISSN 1077-2626. 57

[Jay98] Sankar Jayaram. Creating and managing virtual menus in immer-
sive environments. In Proc. of the 1998 ASME Design Engineering
Technical Conferences. Atlanta, Georgia, September 1998. paper no.
DETC98/CIE-5534. 23, 160

[JBD+90] Bob Jacobson, John Barlow, Esther Dyson, Timothy Leary, William
Bricken, Warren Robinett, and Jaron Lanier. Hip, hype and hope —
the three faces of virtual worlds. In Computer Graphics (SIGGRAPH
’90 Panel Proceedings), Alyce Kaprow, Ed., vol. 24, pages 10.1–10.29,
August 1990. 2

[JCL97] Sankar Jayaram, Hugh I. Connacher, and Kevin W. Lyons. Virtual
assembly using virtual reality techniques. Computer-aided Design,
29(8):575–584, 1997. 181

[JFH92] Dylan M. Jones, Clive R. Frankish, and Kevin Hapeshi. Automatic
speech recognition in practice. Behaviour and Information Technol-
ogy, 11(2):109–122, 1992. 124

209

BIBLIOGRAPHY

[JJWT99] Sankar Jayaram, Uma Jayaram, Yong Wang, and Hrishikesh Tiru-
mal. VADE: A virtual assembly design environment. IEEE Com-
puter Graphics & Applications, 19(6):44–50, November, December
1999. 166, 181

[Jon97] Lynette Jones. Dextrous hands: Human, prosthetic, and robotic.
Presence, 6(1):29–56, February 1997. 162

[Kal84] M. Kallay. The complexity of incremental convex hull algorithms
in Rd. Inform. Process. Lett., 19:197, 1984. 44

[KGL+98] S. Krishnan, M. Gopi, M. Lin, Dinesh Manocha, and A. Pattekar.
Rapid and accurate contact determination between spline models
using shelltrees. In Computer Graphics Forum, Proc. of Eurographics
’98, N. Ferreira and M. Göbel, Eds., vol. 17, pages 315–326. Black-
well Publishers, 1998. ISSN 1067-7055. 97

[KH95] R. Kijima, and M. Hirose. Fine object manipulation in virtual en-
vironments. In Göbel [Göb95], pages 42–58. Proc’s Eurograph-
ics Workshop, Barcelona, Spain, 1993, and Monte Carlo, Monaco,
1995. 163

[KHM+98] James T. Klosowski, Martin Held, Jospeh S.B. Mitchell, Henry
Sowrizal, and Karel Zikan. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on Vi-
sualization and Computer Graphics, 4(1):21–36, January 1998. 73, 81

[KHM99] Jim Klosowski, Martin Held, and Joe Mitchell. QuickCD, soft-
ware library for efficient collision detection, 1999. URL http:
//www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html. Vers.
1.00. 81

[Kin99] Volodymyr Kindratenko. Calibration of electromagnetic tracking
devices. Virtual Reality, pages 139–150, 1999. 136, 151

[KK86] Timothy L. Kay, and James T. Kajiya. Ray tracing complex scenes.
In Computer Graphics (SIGGRAPH ’86 Proceedings), David C. Evans
and Russell J. Athay, Eds., vol. 20, pages 269–278, August 1986.
70, 96, 97

[KML95] Subodh Kumar, Dinesh Manocha, and Anselmo Lastra. Interac-
tive display of large-scale NURBS models. In 1995 Symposium on
Interactive 3D Graphics, Pat Hanrahan and Jim Winget, Eds., pages
51–58. ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7. 38

[Kol97] Ivana Kolingerová. Convex polyhedron-line intersection detection
using dual representation. The Visual Computer, 13(1):42–49, 1997.
ISSN 0178-2789. 45

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shells:
A higher order bounding volume for fast proximity queries. In
Proc. 3rd Workshop Algorithmic Found. Robot., page to appear, 1998.
URL http://www.cs.unc.edu/~dm/collision.html. 97

[Kru83] M. W. Krueger. Artificial Reality. Addison-Wesley, 1983. 312 pp. 1

210

http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html
http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html
http://www.cs.unc.edu/~dm/collision.html

BIBLIOGRAPHY

[KS97] Kryzsztof S. Klimansezewski, and Thomas W. Sederberg. Faster
ray tracing using adaptive grids. IEEE Computer Graphics & Appli-
cations, 17(1):42–51, January-February 1997. ISSN 0272-1716. 99

[Kur93] Gordon Paul Kurtenbach. The Design and Evaluation of Marking
Menus. PhD dissertation, University of Toronto, Graduate Depart-
ment of Computer Science, 1993. URL http://reality.sgi.com/
gordo_tor/papers/PhdThesis/PhDthesis.html. 160

[KV98] Jason J. Kelsick, and Judy M. Vance. The VR factory: discrete event
simulation implemented in a virtual environment. In Proc. of 1998
ASME Design Engineering Technical Conferences / Design for Manu-
facturing. Atlanta, Georgia, September 1998. 181

[Lau60] Detlef Laugwitz. Differentialgeometrie. B. G. Teubner, Stuttgart,
1960. 149

[LB84] Y.-D. Liang, and B. A. Barsky. A new concept and method for line
clipping. ACM Trans. Graphics (USA), 3:1–22, January 1984. 59

[LB98] L. Lakshmi, and D. R. S. Boyd. Virtual environments for engineer-
ing applications. Virtual Reality, 3(4):235–244, 1998. 181

[LC92] Ming C. Lin, and John F. Canny. Efficient collision detection for
animation, September 1992. 46, 51, 52

[LC98] Tsai-Yen Li, and Jin-Shin Chen. Incremental 3d collision detection
with hierarchical data structures. In Proc. VRST ’98, pages 139–144.
ACM, Taipei, Taiwan, November 1998. 83, 88

[LD97] Valerie D. Lehner, and Thomas A. DeFanti. Projects in VR: Dis-
tributed virtual reality: Supporting remote collaboration in vehi-
cle design. IEEE Computer Graphics and Applications, 17(2):13–17,
March/April 1997. CODEN ICGADZ. ISSN 0272-1716. 180

[LO96] Rung-Heui Liang, and Ming Ouhyoung. A sign language recog-
nition system using hidden markov model and context sensitive
search. In Proc. of the ACM Symposium on Virtual Reality Software
and Technology (VRST ’96). Hong Kong, July1-4 1996. 122

[Lof95] R. Bowen Loftin. Virtual reality links astronaut training. Real Time
Graphics, 4(4):4–5, October/November 1995. 8

[Lou93] Kenneth C. Louden. Programming Languages – Principles and Prac-
tice. PWS-Kent, Boston, Massachusetts, 1993. 16

[LR82] Y. T. Lee, and A. A. G. Requicha. Algorithms for computing the
volume and other integral properties of solids. I. Known methods
and open issues. Commun. ACM, 25:635–641, 1982. 38

[LS97] Mark A. Livingston, and Andrei State. Magnetic tracker calibra-
tion for improved augmented reality registration. Presence, 6(5):
532–546, October 1997. 136, 150

[LSG91] J. Liang, C. Shaw, and M. Green. On temporal-spatial realism in the
virtual reality environment. Proceedings ACM UIST’91 4th Annual
ACM Symposium on User Interface Software and Technology, pages
19–25, 1991. 126, 127

211

http://reality.sgi.com/gordo_tor/papers/PhdThesis/PhDthesis.html
http://reality.sgi.com/gordo_tor/papers/PhdThesis/PhDthesis.html

BIBLIOGRAPHY

[LT99] Peter Lindstrom, and Greg Turk. Evaluation of memoryless simpli-
fication. IEEE Transactions on Visualization and Computer Graphics, 5
(2):98–115, April - June 1999. ISSN 1077-2626. 20, 119

[LW98] Marc E. Latoschik, and Ipke Wachsmuth. Exploiting distant point-
ing gestures for object selection in a virtual environment. In Gesture
and Sign Language in Human-Computer Interaction, Ipke Wachsmuth
and Martin Fröhlich, Eds., Lecture Notes in Artificial Intelligence,
pages 185–196. Springer Verlag, vol. 1371 1998. 161

[MAK88] Robert N. Moll, Michael A. Arbib, and A. J. Kfoury. An Introduc-
tion to Formal Language Theory. Springer, Berlin, 1988. ISBN 0-387-
96698-6. 12

[MBS97] Mark R. Mine, Frederick P. Brooks, Jr., and Carlo H. Séquin.
Moving objects in space: Exploiting proprioception in virtual-
environment interaction. In SIGGRAPH 97 Conference Proceedings,
Turner Whitted, Ed., Annual Conference Series, pages 19–26. ACM
SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.
159

[MCR90] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. Rapid
controlled movement through a virtual 3D workspace. In Computer
Graphics (SIGGRAPH ’90 Proceedings), Forest Baskett, Ed., vol. 24,
pages 171–176, August 1990. 152, 153

[Meg83] N. Megiddo. Linear-time algorithms for linear programming in R3

and related problems. SIAM J. Comput., 12:759–776, 1983. 97

[MEP92] S. Molnar, J. Eyles, and J. Poulton. Pixelflow: High-speed ren-
dering using image composition. Proc. SIGGRAPH ‘92 Computer
Graphics, 26(2):231–240, July 1992. 105

[MMZ94] Jai Menon, Richard J. Marisa, and Jovan Zagajac. More powerful
solid modeling through ray representations. IEEE Computer Graph-
ics and Applications, pages 22–35, May 1994. 38

[MOK95] Karol Myszkowski, Oleg G. Okunev, and Tosiyasu L. Kunii.
Fast collision detection between complex solids using rasterizing
graphics hardware. The Visual Computer, 11(9):497–512, 1995. ISSN
0178-2789. 196

[Möl97] Tomas Möller. A fast triangle-triangle intersection test. Journal of
Graphics Tools, 2(2):25–30, 1997. 39, 40

[MP78] D. E. Muller, and F. P. Preparata. Finding the intersection of two
convex polyhedra. Theoret. Comput. Sci., 7:217–236, 1978. 40, 45

[MP90] Roberto Maiocchi, and Barbara Pernici. Directing an animated
scene with autonomous actors. The Visual Computer, 6(6):359–371,
December 1990. 18

[MPT99] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Six
degrees-of-freedom haptic rendering using voxel sampling. Pro-
ceedings of SIGGRAPH 99, pages 401–408, August 1999. ISBN 0-
20148-560-5. Held in Los Angeles, California. 89, 196

212

BIBLIOGRAPHY

[MS85] K. Mehlhorn, and K. Simon. Intersecting two polyhedra one of
which is convex. In Proc. Found. Comput. Theory, L. Budach, Ed.,
vol. 199 of Lecture Notes Comput. Sci., pages 534–542. Springer-
Verlag, 1985. 45

[MSH+92] M. D. J. McNeill, B. C. Shah, M.-P. Hébert, P. F. Lister, and R. L.
Grimsdale. Performance of space subdivision techniques in ray
tracing. Computer Graphics forum, 11(4):213–220, 1992. 98, 104

[MT] Martin Mellado, and Josep Tornero. On the spherical splines for
robot modeling. 38

[MW88] Matthew Moore, and Jane Wilhelms. Collision detection and re-
sponse for computer animation. In Computer Graphics (SIGGRAPH
’88 Proceedings), John Dill, Ed., vol. 22, pages 289–298, August
1988. 35, 90

[MZBS95] Wolfgang Müller, Rolf Ziegler, André Bauer, and Edgar Soldner.
Virtual reality in surgical arthroscopic training. Journal of Image
Guided Surgery, 1(5):288–294, 1995. 8

[NAB86] I. Navazo, D. Ayala, and P. Brunet. A geometric modeler based
on the exact octree representation of polyhedra. Computer Graphics
Forum, 5(2):91–104, June 1986. 37, 98

[NAT90a] B. Naylor, J. A. Amanatides, and W. Thibault. Merging BSP trees
yields polyhedral set operations. Comput. Graph., 24(4):115–124,
August 1990. Proc. SIGGRAPH ’90. 56, 98

[NAT90b] Bruce Naylor, John Amanatides, and William Thibault. Merging
BSP trees yields polyhedral set operations. In Computer Graphics
(SIGGRAPH ’90 Proceedings), Forest Baskett, Ed., vol. 24, pages
115–124, August 1990. 37

[NF89] G. Nielson, and T. Foley. An affinely invariant metric and its applica-
tions. Academic Press, 1989. 136

[NT94] Gregory M. Nielson, and John Tvedt. Comparing methods of in-
terpolation for scattered volumetric data. Siggraph ’94, Course Notes
4, pages 99–123, 1994. 142

[NW96] Yanghee Nam, and Kwang Yun Wohn. Recognition of space-time
hand-gestures using hidden Markov models. In Proc. of the ACM
Symposium on Virtual Reality Software and Technology (VRST ’96).
Hong Kong, July1-4 1996. 122

[OB79] J. O’Rourke, and N. I. Badler. Decomposition of three-dimensional
objects into spheres. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1:
295–305, 1979. 38

[OCW94] S. L. Oviatt, P. R. Cohen, and M. Wang. Toward interface design for
human language technology: Modality and structure as determi-
nants of linguistic complexity. Speech Communication, 15:283–300,
December 1994. 124

213

BIBLIOGRAPHY

[OD99] Carol O’Sullivan, and John Dingliana. Real-time collision detec-
tion and response using sphere-trees. In 15th Spring Conference on
Computer Graphics, pages 83–92. Budmerice, Slovakia, April 1999.
ISBN 80-223-1357-2. 57

[ODK97] Sharon Oviatt, Antonella DeAngeli, and Karen Kuhn. Integration
and synchronization of input modes during multimodal human-
computer interaction. In Proceedings of ACM CHI 97 Conference on
Human Factors in Computing Systems, vol. 1 of PAPERS: Speech,
Haptic, & Multimodal Input, pages 415–422, 1997. URL http://
www.acm.org/sigchi/chi97/proceedings/paper/slo.htm. 124,
161

[Ols84] Dan R. Olsen, Jr. Pushdown automata for user interface manage-
ment. ACM Transactions on Graphics, 3(3):177–203, July 1984. 13

[O’R85] Joseph O’Rourke. Finding minimal enclosing boxes. Internat. J.
Comput. Inform. Sci, 14:183–199, June 1985. 69

[Ous98] John K. Ousterhout. Scripting: Higher level program-
ming for the 21st century. IEEE Computer, 31(3):23–30,
March 1998. URL http://www.scriptics.com/people/john.
ousterhout/scripting.ps. 13

[Ove88a] M. H. Overmars. Efficient data structures for range searching on a
grid. J. Algorithms, 9:254–275, 1988. 98

[Ove88b] M. H. Overmars. Geometric data structures for computer graphics:
an overview. In Theoretical Foundations of Computer Graphics and
CAD, R. A. Earnshaw, Ed., vol. 40 of NATO ASI Series F, pages
21–49. Springer-Verlag, 1988. 93

[Ove88c] Mark H. Overmars. Computational geometry on a grid: An
overview. In Theoretical Foundations of Computer Graphics and CAD,
R. A. Earnshaw, Ed., vol. F40 of NATO ASI, pages 167–184.
Springer-Verlag, 1988. 98

[OY96] Takashi Oishi, and Susumu Yachi. Methods to calibrate pro-
jection transformation parameters for see-through head-mounted
displays. Presence, pages 122–135, winter 1996. 132

[Pan98] Pantograph. In Britannica Online, Encyclopædia Britannica, Ed. En-
cyclopædia Britannica, Inc., 1998. URL http://search.eb.com/
bol/topic?eu=59755&sctn=1. 1

[PBBW95] Randy Pausch, Tommy Burnette, Dan Brockway, and Michael E.
Weiblen. Navigation and locomotion in virtual worlds via flight
into Hand-Held miniatures. In SIGGRAPH 95 Conference Proceed-
ings, Robert Cook, Ed., Annual Conference Series, pages 399–400.
ACM SIGGRAPH, Addison Wesley, August 1995. held in Los An-
geles, California, 06-11 August 1995. 154, 159

[Pet94] John W. Peterson. Tessellation of NURB surfaces. In Graphics Gems
IV, Paul Heckbert, Ed., pages 286–320. Academic Press, Boston,
1994. 38

214

http://www.acm.org/sigchi/chi97/proceedings/paper/slo.htm
http://www.acm.org/sigchi/chi97/proceedings/paper/slo.htm
http://www.scriptics.com/people/john.ousterhout/scripting.ps
http://www.scriptics.com/people/john.ousterhout/scripting.ps
http://search.eb.com/bol/topic?eu=59755&sctn=1
http://search.eb.com/bol/topic?eu=59755&sctn=1

BIBLIOGRAPHY

[Pfa85] G. E. Pfaff, Ed. User Interface Management Systems. Academic Press,
Springer, 1985. 8

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge Univer-
sity Press, 1988. 127, 141

[PH77] F. P. Preparata, and S. J. Hong. Convex hulls of finite sets of points
in two and three dimensions. Commun. ACM, 20:87–93, 1977. 44

[PML97] Madhav K. Ponamgi, Dinesh Manocha, and Ming C. Lin. Incre-
mental algorithms for collision detection between polygonal mod-
els. IEEE Transactions on Visualization and Computer Graphics, 3(1):
51–64, January – March 1997. ISSN 1077-2626. 83

[PNW98] I. Poupyrev, T. Numada, and S. Weghorst. Virtual notepad: hand-
writing in immersive vr. In Proc. of IEEE Virtual Reality Annual In-
ternational Symposium; VRAIS ’98, pages 126–132. Atlanta, Georgia,
March 1998. 159

[PPW97] Randy Pausch, Dennis Proffitt, and George Williams. Quantifying
immersion in virtual reality. In SIGGRAPH 97 Conference Proceed-
ings, Turner Whitted, Ed., Annual Conference Series, pages 13–18.
ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-
896-7. 180

[Pra95] M. J. Pratt. Virtual prototypes and product models in mechanical
engineering. In Virtual Prototyping – Virtual environments and the
product design process, Joachim Rix, Stefan Haas, and José Teixeira,
Eds., chapter 10, pages 113–128. Chapman & Hall, 1995. 177

[PRS+98] F. Purschke, R. Rabätje, M. Schulze, A. Starke, M. Symietz, and
P. Zimmermann. Virtual reality — new methods for improving
and accelerating vehicle development. In Virtual Reality for Indus-
trial Applications, Fan Dai, Ed., Computer Graphics: Systems and
Applications, chapter 6, pages 103–122. Springer, Berlin, Heidel-
berg, 1998. 15, 181

[PS85] F. P. Preparata, and M. I. Shamos. Computational Geometry: An In-
troduction. Springer-Verlag, New York, NY, 1985. 90

[PS90] F. P. Preparata, and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 3rd ed., October 1990. ISBN 3-540-96131-
3. 96

[PY90] M. S. Paterson, and F. F. Yao. Efficient binary space partitions
for hidden-surface removal and solid modeling. Discrete Comput.
Geom., 5:485–503, 1990. 37, 98

[RBH+95] S. Rezzonico, R. Boulic, Z. Huang, N. M. Thalmann, and D. Thal-
mann. Consistent grasping in virtual environments based on the
interactive grasping automata. In Göbel [Göb95], pages 107–118.
Proc’s Eurographics Workshop, Barcelona, Spain, 1993, and Monte
Carlo, Monaco, 1995. 163

215

BIBLIOGRAPHY

[Red96] M. Reddy. SCROOGE: Perceptually-driven polygon reduction.
Computer Graphics Forum, 15(4):191–203, 1996. ISSN 0167-7055. 20,
119

[Rei88] M. Reichling. On the detection of a common intersection of k
convex polyhedra. In Computational Geometry and its Applications,
vol. 333 of Lecture Notes Comput. Sci., pages 180–186. Springer-
Verlag, 1988. 45

[Rei94] Dirk Reiners. High-quality realtime rendering for virtual environ-
ments. Master’s thesis, TU Darmstadt, 1994. 4, 8

[RG91] Hans Rijpkema, and Michael Girard. Computer animation of
knowledge-based human grasping. In Computer Graphics (SIG-
GRAPH ’91 Proceedings), Thomas W. Sederberg, Ed., vol. 25, pages
339–348, July 1991. 163

[RH92] Warren Robinett, and Richard Holloway. Implementation of fly-
ing, scaling, and grabbing in virtual worlds. In Computer Graph-
ics (1992 Symposium on Interactive 3D Graphics), David Zeltzer, Ed.,
vol. 25, pages 189–192, March 1992. 26, 152, 162

[RH94] John Rohlf, and James Helman. IRIS performer: A high perfor-
mance multiprocessing toolkit for real–Time 3D graphics. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), An-
drew Glassner, Ed., Computer Graphics Proceedings, Annual Con-
ference Series, pages 381–395. ACM SIGGRAPH, ACM Press, July
1994. ISBN 0-89791-667-0. 8

[Rit90] Jack Ritter. An efficient bounding sphere. In Graphics Gems, An-
drew S. Glassner, Ed., chapter V, pages 301–303. Academic Press,
San Diego, CA, 1990. 97

[Ros93] Louis B. Rosenberg. The effect of interocular distance upon op-
erator performance using steeoscopic displays to perform virtual
depth tasks. In IEEE Virtual Reality Annual International Symposium,
pages 27–32, September 18–22 1993. 179

[Ros97] Lawrence J. Rosenblum. Projects in VR: Applications of the Re-
sponsive Workbench. IEEE Computer Graphics and Applications, 17
(4):10, July/August 1997. CODEN ICGADZ. ISSN 0272-1716. 116

[SAK+95] Smith, Andrew, Kitamura, Yoshifumi, Takemura, Haruo, Kishino,
and Fumio. A simple and efficient method for accurate collision
among deformable polyhedral objects in arbitrary motion. In Vir-
tual Reality Annual International Symposium, pages 36–145. North
Carolina, USA, 1995. 91

[Sam90a] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990.
ISBN 0-201-50300-X. 98

[Sam90b] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990. ISBN 0-201-50255-0. 98

[Sam90c] Hanan Samet. Applications of Spatial Data Structures. Addison-
Wesley, Reading, Massachusetts, 1990. 90

216

BIBLIOGRAPHY

[Sch96] Reiner Schäfer. Kopplung virtueller Umgebungen mit wissens-
basierten Systemen. Diplomarbeit, Technische Hochschule Darm-
stadt, Fachbereich Informatik, June 1996. 161

[Sch98] Artur P. Schmidt. Physische Modelle aus dem Computer. Neue
Zürcher Zeitung, 19. 8. 1998. 179

[Sei86] R. Seidel. Output-size sensitive algorithms for constructive problems in
computational geometry. Ph.D. thesis, Dept. Comput. Sci., Cornell
Univ., Ithaca, NY, 1986. Technical Report TR 86-784. 44

[Sei97] R. Seidel. Convex hull computations. In Handbook of Discrete and
Computational Geometry, Jacob E. Goodman and Joseph O’Rourke,
Eds., chapter 19, pages 361–376. CRC Press LLC, Boca Raton, FL,
1997. 44

[SF91] M. Shinya, and M.-C. Forgue. Interference detection through ras-
terization. The Journal of Visualization and Computer Animation, 2(4):
132–134, October–December 1991. CODEN JVCAEO. ISSN 1049-
8907. 196

[SGS97] Xiao Yan Su, Leslie M. Goldschlager, and Bala Srinivasan. Inte-
grating gestures into the user-interface management system. The
Visual Computer, 13(1):168–183, 1997. ISSN 0178-2789. 122

[Sil92] SiliconGraphics. Iris Inventor Programming Guide, 1992. 8

[Slo98] N. J. A. Sloane. The sphere packing problem. In DOCU-
MENTA MATHEMATICA III, Proceedings International Congress
Math., pages 387–396. Berlin, 1998. URL http://www.research.
att.com/~njas/packings/. 76

[SN93] Deyang Song, and Michael Norman. Nonlinear interactive motion
control techniques for virtual space navigation. In IEEE Virtual
Reality Annual International Symposium, pages 111–117, September
18–22 1993. 156, 161

[Sny95] John M. Snyder. An interactive tool for placing curved surfaces
without interpenetration. In SIGGRAPH 95 Conference Proceedings,
Robert Cook, Ed., Annual Conference Series, pages 209–218. ACM
SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles,
California, 06-11 August 1995. 90

[SS98] Jörg Sauer, and Elmar Schömer. A constraint-based approach to
rigid body dynamics for virtual reality applications. In Proc. VRST
’98, pages 153–161. ACM, Taipei, Taiwan, November 1998. 167

[ST94] R. M. Sanso, and D. Thalmann. A hand control and automatic
grasping system for synthetic actors. Computer Graphics Forum, 13
(3):167–177, 1994. 163

[Str64] Karl Strubecker. Differentialgeometrie I + II. Walter de Gryuter &
Co., Berlin, 1964. 149

[Sun91] Kelvin Sung. A DDA octree traversal algorithm for ray tracing.
In Eurographics ’91, Werner Purgathofer, Ed., pages 73–85. North-
Holland, September 1991. 98

217

http://www.research.att.com/~njas/packings/
http://www.research.att.com/~njas/packings/

BIBLIOGRAPHY

[Sut65] I. E. Sutherland. The ultimate display. In Proceedings of IFIPS
Congress, vol. 2, pages 506–508. New York City, NY, May 1965.
115

[Sut68] I. E. Sutherland. A head-mounted three-dimensional display. In
AFIPS Conference Proceedings, vol. 33, pages 757–764, 1968. 1, 115

[SW82] H.-W. Six, and D. Wood. Counting and reporting intersections of
D-ranges. IEEE Trans. Comput., C-31:181–187, 1982. 93

[SZ94] David J. Sturman, and David Zeltzer. A survey of glove-based in-
put. IEEE Computer Graphics and Applications, 14(1):30–39, January
1994. CODEN ICGADZ. ISSN 0272-1716. 1, 122

[Tho91] Spencer W. Thomas. Decomposing a matrix into simple trans-
formations. In Graphics Gems II, James Arvo, Ed., pages 320–
323. Academic Press, 1991. ISBN 0-12-064480-0. URL ftp://
ftp-graphics.stanford.edu/pub/Graphics/GraphicsGems/. 25

[TKM84] M. Tamminen, O. Karonen, and M. Mantyla. Ray-casting and block
model conversion using a spatial index. Computer Aided Design, 16:
203–208, July 1984. 37, 38, 98

[TN87a] W. C. Thibault, and B. F. Naylor. Set operations on polyhedra us-
ing binary space partitioning trees. Comput. Graph., 21(4):153–162,
1987. Proc. SIGGRAPH ’87. 98

[TN87b] William C. Thibault, and Bruce F. Naylor. Set operations on poly-
hedra using binary space partitioning trees. In Computer Graphics
(SIGGRAPH ’87 Proceedings), Maureen C. Stone, Ed., vol. 21, pages
153–162, July 1987. 37

[Tor90] Enric Torres. Optimization of the binary space partition algorithm
(BSP) for the visualization of dynamic scenes. In Eurographics
’90, C. E. Vandoni and D. A. Duce, Eds., pages 507–518. North-
Holland, September 1990. 37, 98

[Tou88] G. T. Toussaint. Some collision avoidance problems in the plane.
In Theoretical Foundations of Computer Graphics and CAD, R. A. Earn-
shaw, Ed., vol. F40 of NATO ASI, pages 639–672. Springer-Verlag,
Berlin, West Germany, 1988. 36

[TRC+93] Russell M. Taylor, II, Warren Robinett, Vernon L. Chi, Frederick P.
Brooks, Jr., William V. Wright, R. Stanley Williams, and Eric J. Sny-
der. The Nanomanipulator: A virtual reality interface for a scan-
ning tunnelling microscope. In Computer Graphics (SIGGRAPH ’93
Proceedings), James T. Kajiya, Ed., vol. 27, pages 127–134, August
1993. 7

[TS84] Markku Tamminen, and Hanan Samet. Efficient octree conversion
by connectivity labeling. In Computer Graphics (SIGGRAPH ’84 Pro-
ceedings), Hank Christiansen, Ed., vol. 18, pages 43–51, July 1984.
37

[TS91] Seth J. Teller, and Carlo H. Séquin. Visibility preprocessing for
interactive walkthroughs. In Computer Graphics (SIGGRAPH ’91

218

ftp://ftp-graphics.stanford.edu/pub/Graphics/GraphicsGems/
ftp://ftp-graphics.stanford.edu/pub/Graphics/GraphicsGems/

BIBLIOGRAPHY

Proceedings), Thomas W. Sederberg, Ed., vol. 25, pages 61–69, July
1991. 23

[TS98] E. K. H. Tsang, and H. Sun. An efficient posture recognition
method using fuzzy logic. Virtual Reality, 3:112–119, 1998. 122

[Tur89] Greg Turk. Interactive collision detection for molecular graphics.
Master’s thesis, University of North Carolina at Chapel Hill, 1989.
99

[Tur92] Greg Turk. Re-tiling polygonal surfaces. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), Edwin E. Catmull, Ed., vol. 26, pages 55–
64, July 1992. 20, 90, 119

[Ull92] D. G. Ullman. The Mechanical Design Process. McGraw-Hill, 1992.
177

[Van91] G. Vanecek, Jr. Brep-index: a multidimensional space partitioning
tree. Internat. J. Comput. Geom. Appl., 1(3):243–261, 1991. 37

[VB92] Kaisa Väänänen, and Klaus Böhm. Gesture driven interaction as
a human factor in virtual environments. In Proc. Virtual Reality
Systems. University of London, May 1992. 122

[vdB99] Gino Johannes Apolonia van den Bergen. Collision Detection in In-
teractive 3D Computer Animation. PhD dissertation, Eindhoven Uni-
versity of Technology, 1999. 46, 90, 91

[VT94] Pascal Volino, and Nadia Magnenat Thalmann. Efficient self-
collision detection on smoothly discretized surface animations us-
ing geometrical shape regularity. Computer Graphics Forum, 13(3):
155–166, 1994. Eurographics ’94 Conference issue. 90

[Wel91] Emo Welzl. Smallest enclosing disks, balls and ellipsoids. Report
B 91-09, Fachbereich Mathematik, Freie Universität Berlin, Berlin,
Germany, 1991. 97

[WFB87] Andrew Witkin, Kurt Fleischer, and Alan Barr. Topics in Physically-
Based Modelling, chapter Energy Constraints On Parameterized
Models. ACM SIGGRAPH, 1987. 27

[WGS95] Qunjie Wang, Mark Green, and Chris Shaw. EM – an environment
manager for building networked virtual environments. In Proc.
IEEE Virtual Reality Annual International Symposium, 1995. 16

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Im-
proved computational methods for ray tracing. ACM Transactions
on Graphics, 3(1):52–69, January 1984. 97

[WLML99] A. Wilson, E. Larsen, Dinesh Manocha, and Ming C. Lin. Partition-
ing and handling massive models for interactive collision detec-
tion. In Computer Graphics Forum, Eurographics’99, vol. 18, pages
319–330. Blackwell Publishers, September 1999. ISSN 1067-7055.
106

[WMB98] G. Williams, I. E. McDowell, and M. T. Bolas. Human scale interac-
tion for virtual model displays: A clear case for real tools. In Proc.
of The Engineering Reality of Virtual Reality. SPIE, January 1998. 159

219

BIBLIOGRAPHY

[WO90] Colin Ware, and Steven Osborne. Exploration and virtual camera
control in virtual three dimensional environments. In Computer
Graphics (1990 Symposium on Interactive 3D Graphics), Rich Riesen-
feld and Carlo Sequin, Eds., vol. 24, pages 175–183, March 1990.
152

[WO94] J.-R. Wu, and M. Ouhyoung. Reducing the latency in head-
mounted displays by a novel prediction method using grey system
theory. Computer Graphics Forum, 13(3):503–512, 1994. Eurograph-
ics ’94 Conference issue. 126, 127

[Woo70] W. A. Woods. Transition network grammars for natural language
analysis. Communications of the ACM, 13(10):591–606, October 1970.
CODEN CACMA2. ISSN 0001-0782. 10

[WS94] John A. Waterworth, and Luis Serra. Vr management tools: Be-
yond spatial presence. In Conference Companion CHI ’94, pages 319–
320. Boston, Ma, April 1994. 160

[WS99] Jhn Weissmann, and Ralkf Salomon. Gestre recognition for vir-
tual reality applications using data glves and neural networks.
In Proc. of the 1999 International Joint Conference on Neural Net-
works. Washington, DC, July 1999. URL http://www.virtex.com/
applications/zurich_paper.pdf. 122

[WSC+95] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim, W. S. Cho, C. M.
Park, and I. Y. Song. Octree-R: An adaptible octree for efficient ray
tracing. IEEE Trans. Visual. and Comp. Graphics, 1:343–349, 1995. 90

[Wu92] X. Wu. A linear time simple bounding volume algorithm. In Graph-
ics Gems III, David Kirk, Ed., chapter VI, pages 301–306. Academic
Press, San Diego, CA, 1992. 97

[YKFT84] K. Yamaguchi, T. L. Kunii, K. Fujimura, and H. Toriya. Octree-
related data structures and algorithms. IEEE Computer Graphics
and Applications, 3:53–59, January 1984. 37

[YW93] Ji-Hoon Youn, and K. Wohn. Realtime collision detection for vir-
tual reality applications. In IEEE Virtual Reality Annual International
Symposium, pages 415–421, September 18–22 1993. 96

[Zac94a] Peter Astheimer, Fan Dai, Martin Göbel, Rolf Kruse, Stefan Müller,
and Gabriel Zachmann. Realism in virtual reality. In Artificial Life
and Virtual Reality, Nadia Magnenat-Thalmann and Daniel Thal-
mann, Eds., pages 189–210. Wiley & Sons, 1994. 7, 120, 131

[Zac94b] Gabriel Zachmann. Precise and high-speed collision detection
in interactive real-time visualization systems. Master thesis,
Darmstadt University of Technology, Germany, Department of
Computer Science, 1994. URL ftp://ftp.igd.fhg.de/pub/doc/
techreports/zach/colldet-thesis.ps.gz. 39, 41, 47, 97

[Zac95] Gabriel Zachmann. The BoxTree: Enabling real-time and exact col-
lision detection of arbitrary polyhedra. In Informal Proc. First Work-
shop on Simulation and Interaction in Virtual Environments, SIVE 95,
pages 104–112. University of Iowa, Iowa City, July 1995. 23, 59, 60

220

http://www.virtex.com/applications/zurich_paper.pdf
http://www.virtex.com/applications/zurich_paper.pdf
ftp://ftp.igd.fhg.de/pub/doc/techreports/zach/colldet-thesis.ps.gz
ftp://ftp.igd.fhg.de/pub/doc/techreports/zach/colldet-thesis.ps.gz

BIBLIOGRAPHY

[Zac96] Gabriel Zachmann. A language for describing behavior of and
interaction with virtual worlds. In Proc. ACM Conf. VRST ’96.
Hongkong, July 1996. 14

[Zac97a] Gabriel Zachmann. Distortion correction of magnetic fields for po-
sition tracking. In Proc. Computer Graphics International (CGI ’97).
IEEE Computer Society Press, Hasselt/Diepenbeek, Belgium, June
1997. 132

[Zac97b] Gabriel Zachmann. Real-time and exact collision detection for in-
teractive virtual prototyping. In Proc. of the 1997 ASME Design En-
gineering Technical Conferences. Sacramento, California, September
1997. Paper no. CIE-4306. 59

[Zac98a] Antonino Gomes de Sá, and Gabriel Zachmann. Integrating vir-
tual reality for virtual prototyping. In Proc. of the 1998 ASME De-
sign Engineering Technical Conferences. Atlanta, Georgia, September
1998. paper no. DETC98/CIE-5536. 15, 183, 187

[Zac98b] Gabriel Zachmann. Rapid collision detection by dynamically
aligned DOP-trees. In Proc. of IEEE Virtual Reality Annual Inter-
national Symposium; VRAIS ’98. Atlanta, Georgia, March 1998. 23,
70, 187

[Zac98c] Gabriel Zachmann. VR techniques for industrial applications. In
Virtual Reality for Industrial Applications, Fan Dai, Ed., chapter 1,
pages 13–38. Springer, 1998. 86

[Zac99] Antonino Gomes de Sá, and Gabriel Zachmann. Virtual reality
as a tool for verification of assembly and maintenance processes.
Computers & Graphics, 23(3):389 –403, 1999. 197

[ZB94] Jianmin Zhao, and Norman I. Badler. Inverse kinematics position-
ing using nonlinear programming for highly articulated figures.
ACM Transactions on Graphics, 13(4):315–336, 1994. 27

[ZHH96] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
SKETCH: An interface for sketching 3D scenes. In SIGGRAPH 96
Conference Proceedings, Holly Rushmeier, Ed., Annual Conference
Series, pages 163–170. ACM SIGGRAPH, Addison Wesley, August
1996. held in New Orleans, Louisiana, 04-09 August 1996. 181

[Zie98] Rolf Ziegler. System zum integrierten Einsatz von haptischen Displays
in virtuellen Umgebungen. Shaker-Verlag, 1998. Dissertation. 105

[Zik98] Karel Zikan. Communication by email, April 1998. 172

[ZLB+87] Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve
Bryson, and Young Harvill. A hand gesture interface device. In
Proceedings of Human Factors in Computing Systems and Graphics In-
terface ’87, J. M. Carroll and P. P. Tanner, Eds., pages 189–192, April
1987. 1, 122

[ZOMP93] Micheal J. Zyda, William D. Osborne, James G. Monahan, and
David R. Pratt. Npsnet: Real-time vehicle collisions, explosions
and terrain modifications. The Journal of Visualization and Computer
Animation, 4(1):13–24, 1993. 98

221

BIBLIOGRAPHY

[ZPR+98] P. Zimmermann, F Purschke, R. Rabätje, M. Schulze, M. Symietz,
and O. Tegel. Virtual reality — Forschung and Anwendung bei
Volkswagen, 1998. 179

222

This book was set in Palatino for the body text, Pazo Math for mathematics,
and Optima Medium for the captions.
Typesetting was done with LaTeX/dvipdfm/dvips. One LaTeX/dvips run
took 37 / 50 sec (user / real time) on an Onyx R10000 195 MHz (not counting
the time needed to create the custom format file, with all files on a remote file
server).
Programs used were LaTeX, vim, xfig, and gnuplot;
the latter two with patches from the author.
Drawings and graphs were included from LaTeX using the EEPIC package
(which issues TPIC macros).

A Postscript version of this thesis optimized for printing (with b/w plots and
hires images) is available at http://www.gab.cx, or
http://www.geocities.com/gabriel_zachmann/.

The author can be reached (hopefully) at Gabriel.Zachmann@gmx.net.

http://www.tug.org
http://www.vim.org
http://www.xfig.org
http://www.gnuplot.org
http://www.gab.cx
http://www.geocities.com/gabriel_zachmann/
mailto:Gabriel.Zachmann@gmx.net

	Introduction
	Architecture of VR systems
	Overview

	Simulation of Virtual Environments
	Describing human-computer interaction
	User-interface management systems
	Transition networks
	Context-free grammars
	Event languages
	Interaction trees
	Expressive power of the notations
	Scripting languages

	Authoring virtual environments
	Design premises
	Other VR systems
	The AEIO paradigm
	Semantic attributes, object lists, and object groups
	Grammar
	Time
	Inputs and events
	A collection of inputs
	Actions
	A Collection of Actions

	Examples
	Implementation
	Distributing the system
	The three layers of authoring

	Collision Detection
	The setting
	The simulation loop
	Requirements and characterization
	Object Representations
	Definitions

	The basic operation
	Bounding-box pipelining
	Good and bad cases

	Convex polytopes
	Static algorithms
	Incremental convex algorithms
	Separating Planes
	A simplified Lin-Canny algorithm

	Hierarchical collision detection
	Outline of hierarchical algorithms
	Optimal BV hierarchies
	The cost of hierarchies
	The BoxTree
	BoxTree traversal by clipping
	BoxTree traversal by re-alignment
	Constructing the BoxTree
	Oriented boxes
	Discretely oriented polytopes
	Comparison of four hierarchical algorithms
	Incremental hierarchical algorithms

	Non-hierarchical algorithms
	Points and Voxels

	Flexible Objects
	The ``grow-shrink'' algorithm
	Sorting

	The object level
	Other approaches
	Bounding Volumes
	Space-indexing data structures
	Octrees
	Grids
	Comparison of grid and octree
	Comparison of grid and separating planes
	Combining grid and separating planes

	The collision detection pipeline
	Parallelization
	Coarse-grain parallelization
	Fine-grain parallelization

	Implementation issues
	Requirements
	Time-stamping
	The CPU cache
	Concurrent collision detection

	Interacting with Virtual Environments
	VR devices
	Input device abstraction
	The data pipeline
	Dealing with lag

	Processing input data
	Posture recognition
	Voice input

	Tracking
	Filtering
	Correction of magnetic tracking errors
	Scattered data interpolation
	Hardy's Multiquadric

	Navigation
	Controlling the cart and camera
	Human factors
	Constraints
	A model of the head
	Implementation

	Interaction techniques
	Virtual buttons and menus
	Selection
	Grasping
	Sliding

	Applications
	Virtual prototyping
	From rapid prototyping to virtual prototyping
	Definitions of virtual prototyping
	The right display
	Other VP applications
	The virtual seating buck
	Exchanging an alternator

	Assembly simulation
	Scenarios
	Interaction Functionality

	Immersive Investigation of CFD Data
	Shows

	Epilogue
	Summary
	Future directions

	Bibliography
	About ...

