

Improved Lossless Depth Image Compression

- Roland Fischer, Philipp Dittmann, Christoph Schröder, Gabriel Zachmann
 - University of Bremen, Germany
 - rfischer@cs.uni-bremen.de

WSCG, 19-21 May 2020

• Small, affordable, RGB-D cameras getting popular

Resolution increases

Microsoft's Azure Kinect RGB-D camera

Color image

Depth image

- Small, affordable, RGB-D cameras getting popular
 - Resolution increases
- Many applications:
 - Robotics
 - Computer vision
 - Telepresence
 - VR/AR

Details

Results

Conclusion

1

- Small, affordable, RGB-D cameras getting popular
 - Resolution increases
- Many applications:
 - Robotics
 - Computer vision
 - Telepresence
 - VR/AR

Remote robot with RGB-D camera [Nenci14]

Mapped environment [Labbé14]

Details

Results

- Small, affordable, RGB-D cameras getting popular
 - Resolution increases
- Many applications:
 - Robotics
 - Computer vision
 - Telepresence
 - VR/AR

Introduction

Previous Work

Overview

Autonomous lamps [Teuber17]

Details

Results

- Small, affordable, RGB-D cameras getting popular
 - Resolution increases
- Many applications:
 - Robotics
 - Computer vision
 - Telepresence
 - VR/AR

Introduction

Previous Work

Overview

Virtual conference room [Wilson17]

Details

Results

- Small, affordable, RGB-D cameras getting popular
 - Resolution increases
- Many applications:
 - Robotics
 - Computer vision
 - Telepresence
 - VR/AR

Introduction

Previous Work

Overview

Virtual operation room [VIVATOP]

Details

Results

- Efficient compression for real-time transmission
 - Limited bandwidth (1 Gbit/s ethernet)
 - One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)

- Efficient compression for real-time transmission
 - Limited bandwidth (1 Gbit/s ethernet)
 - One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)
- Standard image/video compression algorithms for color

- Efficient compression for real-time transmission
 - Limited bandwidth (1 Gbit/s ethernet)
 - One Kinect V2 RGB-D frame: 6.6 MB (1.6 Gbit/s @30 Hz)
- Standard image/video compression algorithms for color
- Depth has unique characteristics rightarrow custom algorithms
 - Homogeneous regions with abrupt depth-discontinuities
 - Distributed regions of invalid (zero) pixels

Related Work

[Bannò12, Mekuria13] not real-time capable

• Point cloud based [Thanou16, Mekuria17] and mesh based methods

Details

Results

Related Work

- [Bannò12, Mekuria13] not real-time capable
- Liu15, Zhang15, Hamout19]

• Point cloud based [Thanou16, Mekuria17] and mesh based methods

Methods based on adapted image and video codecs mostly lossy [Pece11,

Details

Results

Related Work

- Point cloud based [Thanou16, Mekuria17] and mesh based methods [Bannò12, Mekuria13] not real-time capable
- Methods based on adapted image and video codecs mostly lossy [Pece11, Liu15, Zhang15, Hamout19]
- Few real-time lossless solutions, e.g. [Mehrotra11]
 - The RVL algorithm [Wilson17] is the most promising one

RVL Recap

- Fast, efficient, lossless depth-image compression
- Accounts for unique depth image characteristics
 - Run-length coding of zero pixels
 - Variable-bit-length coding of non-zero pixels
 - Depth-adapted intra-image prediction
- Only moderately high compression ratio

Details

Results

Our Contributions

- Novel real-time lossless depth-image compression algorithm
 - Inspired by RVL, aimed at stronger compression
 - Inter-frame delta computation
 - Span-based adaptive prediction
 - Bit reduction
 - Multi-threading

Our Contributions

- Novel real-time lossless depth-image compression algorithm
 - Inspired by RVL, aimed at stronger compression
 - Inter-frame delta computation
 - Span-based adaptive prediction
 - Bit reduction
 - Multi-threading
- Empirical evaluation:
 - Several lossless compression algorithms
 - Multiple static and dynamic scenes with different cameras

Details

Results

Compression Pipeline

Frame Delta

Span-Based Adaptive Prediction

Introduction

Previous Work

Overview

- Pipeline is lossless
- Individual steps are multi-threaded
- Analogous decompression

Details

Results

Conclusion

6

Inter-Frame Delta

- Pixel-wise differences of consecutive images
 - Uses temporal coherence

Results

Inter-Frame Delta

- Pixel-wise differences of consecutive images
 - Uses temporal coherence
- Optional: temporal filtering
 - Skips update of pixels if continually $\Delta < \epsilon$
 - Counters noisy depth readings
 - Not lossless anymore

Results

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual *r* for pixel *p* at position *x*

	С	В		
	А	Х		

Grey indicates invalid (zero) pixels

Details

Results

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual r for pixel *p* at position *x*
- We use 4 simple but effective predictors:
 - Previous valid: $\operatorname{Pred}_0(p) = p_X - p_A$

	С	В		
	Α	Х		

Grey indicates invalid (zero) pixels

Grey indicates depth

Details

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual r for pixel *p* at position *x*
- We use 4 simple but effective predictors:
 - Previous valid: $\operatorname{Pred}_0(p) = p_X - p_A$

	С	В		
Α		Х		

Grey indicates invalid (zero) pixels

Grey indicates depth

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual r for pixel *p* at position *x*
- We use 4 simple but effective predictors:
 - $\operatorname{Pred}_0(p) = p_X p_A$ • Previous valid:
 - $\operatorname{Pred}_1(p) = p_X p_B$ • *Up*:

	С	В		
	Α	Х		

Grey indicates invalid (zero) pixels

Grey indicates depth

Details

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual r for pixel *p* at position *x*
- We use 4 simple but effective predictors:
 - *Previous valid*: $\operatorname{Pred}_0(p) = p_X - p_A$
 - $\operatorname{Pred}_1(p) = p_X p_B$ • *Up*:
 - Average:

	С	В		
	Α	Х		

 $\operatorname{Pred}_2(p) = p_X - \frac{p_A + p_B}{2}$

Grey indicates invalid (zero) pixels

Grey indicates depth

Details

- Adaptively switch between multiple predictors
 - Use predictor with lowest residual r for pixel *p* at position *x*
- We use 4 simple but effective predictors:
 - *Previous valid*: $\operatorname{Pred}_0(p) = p_X - p_A$
 - $\operatorname{Pred}_1(p) = p_X p_B$ • *Up*:
 - Average:
 - *MED-like*:
- Pixel-wise switching leads to high bit-overhead

	С	В		
	А	Х		

Grey indicates invalid (zero) pixels

 $\operatorname{Pred}_2(p) = p_X - \frac{p_A + p_B}{2}$ $Pred_3(p) = p_X - (p_A + p_B - p_C)$

Grey indicates depth

Span-Based Adaptive Prediction

- Dynamically segment image into spans (1D blocks) of *n* valid pixels
 - Best suited regarding current memory layout

ls norv lavout

Grey indicates invalid (zero) pixels

Span-Based Adaptive Prediction

- Dynamically segment image into spans (1D blocks) of *n* valid pixels
 - Best suited regarding current memory layout
- Adaptively switch predictor per span
 - Evaluate all predictors for each pixel in span
 - Choose and encode best predictor k per span S, $k = \underset{i \in [0,3]}{\operatorname{argmin}} \left\{ \sum_{p \in \operatorname{valid}(S)} |\operatorname{Pred}_i(p)| \right\}$

Grey indicates invalid (zero) pixels

Span-Based Adaptive Prediction

- Dynamically segment image into spans (1D blocks) of *n* valid pixels
 - Best suited regarding current memory layout
- Adaptively switch predictor per span
 - Evaluate all predictors for each pixel in span
 - Choose and encode best predictor k per span S, $k = \underset{i \in [0,3]}{\operatorname{argmin}} \left\{ \sum_{p \in \operatorname{valid}(S)} |\operatorname{Pred}_i(p)| \right\}$
 - Encode final residuals r_p using k
 - Results in 2 bits for predictor ID per span

Grey indicates invalid (zero) pixels

$$r_p = \operatorname{Pred}_k(p)$$

Bit Reduction

• RVL has lower limit of 4 bits per valid pixel

Details

Results

Bit Reduction

- RVL has lower limit of 4 bits per valid pixel
- We additionally use Zstandard for further compression
 - Zstandard combines dynamic dictionary-based and ANS-based entropy compression

Parallelization

- Partition image in equal blocks
 - Simultaneous processing by threads t_i

t 1	
t2	
t3	
t4	

Image

Details

Results

Parallelization

- Partition image in equal blocks
 - Simultaneous processing by threads t_i
- Concatenation of results r_i and relevant variables

Image

Compressed data

Details

Results

Parallelization

- Partition image in equal blocks
 - Simultaneous processing by threads *t*,
- Concatenation of results r_i and relevant variables

Applied on prediction, (cut-down) RVL, and Zstandard

Details

Results

Details

Results

Predictor	Usage in %
1	24.4
2	26.6
3	21.2
4	27.7

Our PredZ:

- Has best compression
- Still reasonably fast

Bremen Ũ

Result: Frame Delta and Filtering

Configuration

None

Frame Delta

Temporal Filter

Both

Bremen Ũ

Result: Frame Delta and Filtering

Configuration

None

Frame Delta

Both

Bremen Result: Speed Breakdown

Conclusion

- Novel real-time lossless depth-image compression algorithm
 - Effective temporal delta computation
 - Adaptive span-based prediction
 - Bit reduction
 - Multi-threaded implementation

Details

Results

Conclusion

- Novel real-time lossless depth-image compression algorithm
 - Effective temporal delta computation
 - Adaptive span-based prediction
 - Bit reduction
 - Multi-threaded implementation
- Significantly higher compression ratio than existing algorithms
 - Factor 1.73x higher than original RVL, 1.3x higher than Zstandard
- Real-time capable

Details

Results

Future Work

- General performance optimization
- SIMD
- Zigzag encoding
- 2D block prediction
- Last image's neighbor values for intra-image prediction

Details

Results

Conclusion

16

Thank you!

rfischer@cs.uni-bremen.de

