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Figure 1: Our approach: Sequential point cloud input (a), computing GMM and divergence to previous frame (on level 1)(b),
constructing GMM hierarchy re-using levels based on divergence (c), adaptive, progressive streaming (d), sampling LODs for
reconstruction (e)(components depicted by colors). Each level significantly increases the fidelity and L4 is already quite accurate.

Abstract
Efficient processing and accurate representation of point clouds

are crucial for many tasks, such as real-time 3D scene and avatar

reconstruction. Especially for web/cloud-based streaming and telep-

resence, minimizing time, size, and bandwidth becomes paramount.

We propose a novel approach for compact point cloud represen-

tation and efficient real-time streaming using a generative model

consisting of a hierarchy of overlapping Gaussian Mixture Models

(GMMs). Our level-wise construction scheme allows for dynamic

construction and rendering of LODs, progressive transmission, and

bandwidth- and computing power-adaptive transmission. Utilizing

temporal coherence in sequential input, we reduce construction

time significantly. Together with our highly optimized and paral-

lelized CUDA implementation, we achieve real-time speeds with

high-fidelity reconstructions. Moreover, we achieve significantly

higher compression factors, up to 59 %, than previous work with

only slightly lower accuracy.
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1 Introduction and Related Work
Point clouds play an important role in robotics [Kim et al. 2018],

autonomous driving [Chen et al. 2021], and telepresence applica-

tions [Yu et al. 2021][Gamelin et al. 2021] with typical tasks such as

SLAM and 3D scene/avatar reconstruction. However, noisy sensor

data, huge data loads, and inhomogeneous densities make efficient

processing and accurate representation challenging. This is espe-

cially true for real-time and streaming-based applications, which

are heavily time- and size-constrained. With the growing popular-

ity of (collaborative) web- and cloud-based streaming, this issue

gets increasingly relevant.

Spatial data structures speed up the processing and reduce the

size of 3D data, i.e., voxelization and occupancy-based methods

effectively discretize space and are popular for point cloud repre-

sentation. However, they suffer from artifacts and high memory

consumption. The latter can be reduced using truncated signed dis-

tance functions [Oleynikova et al. 2017]. Octrees and kd-trees also

effectively compress point clouds [Garcia et al. 2020][Mekuria et al.

2017]. However, additional overhead leads to higher construction

times, and the requirement to initially specify the leaf size might

impact the fidelity. The Normal Distributions Transform (NDT)

[Saarinen et al. 2013] combines voxel grids with Gaussian distribu-

tions inside the voxels but still requires an initial voxelization.

Generative probabilistic models avoid these issues by providing

a continuous parametric representation of the data. They can model

complex distributions while efficiently handling uncertainty in the

data. GMMs have been shown to allow for compact representations
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as well as high reconstruction fidelity and have been used for tasks

such as occupancy modelling [O’Meadhra et al. 2019], (point cloud)

registration [Chen et al. 2023][Mei et al. 2023], segmentation [Garcia

et al. 2010], collision avoidance [Dhawale et al. 2018], incremental

mapping [Goel and Tabib 2023] and compression. For instance,

[Song et al. 2021] and [Sun et al. 2023] proposed GMM-based point

cloud compression methods, and [Navarrete et al. 2018] developed a

3D compression method based on point clustering and replacement

that allows using the compressed data for registration. Clustering

is done using the fast GMM variant by [Greggio et al. 2011] and

the Expectation-Maximization (EM) algorithm.

Hierarchical forms of GMMs can reduce the computational cost

while retaining accurate representations. For instance, [Eckart

et al. 2016] proposed a hierarchy of GMMs and a parallel EM algo-

rithm for point cloud representation and processing. They reported

favourable performance compared to octrees and NDTs. However,

their construction scheme doesn’t allow progressive rendering and

they don’t consider sequential data or data transmission. Later, they

adopted this method for fast point cloud registration [Eckart et al.

2018]. In contrast, [Srivastava andMichael 2018] proposed a bottom-

up hierarchy of GMMs to generate a multi-fidelity environment

representation, [Garcia et al. 2010] employed hierarchical GMMs

for image segmentation, and [Goldberger and Roweis 2004] itera-

tively merges similar clusters of a big GMM into smaller ones using

divergence metrics and an EM-like algorithm. GMMs have also

been extensively used for SLAM, i.e., [Dong et al. 2022] proposed a

GMM-based communication-efficient multi-robot mapping system

with dynamic component counts, [Gao and Dong 2023] presented a

hierarchical, GMM-based approach for accurate real-time compres-

sion of map information using a combination of K-means and the

EM algorithm, and [Goel and Tabib 2023] employed self-organizing

GMMs for incremental surface mapping and reconstruction.

Few works employ GMMs and consider sequential input but

[Bouchachia and Vanaret 2011] presented an incremental GMM

that is dynamically updated over time using growing and shrink-

ing operations for online data classification. Similarly, [Dai and

Zhao 2020] proposed using incremental Gaussian Mixture Models

for time-varying process monitoring. Their approach allows recur-

sively updating model parameters, adaptively adding new Gaussian

components, and discarding irrelevant ones. In contrast, we pro-

pose a novel temporal hierarchical GMM-based approach that is

specifically designed for real-time point cloud streaming.

2 Our Approach
We use a hierarchy of GMMs to represent the point cloud as a

number of 𝑀 overlapping probabilistic 3D mixtures N(𝑥 |𝜇, Σ) =
1

(2𝜋 )3/2
1

|Σ |1/2 𝑒
(− 1

2
(𝑥−𝜇 )𝑇 Σ−1 (𝑥−𝜇 ))

with the mean 𝜇 being a 3D vector

and the covariance Σ being an 3×3 matrix. A GMM is formed by

𝐽 components 𝜃 𝑗 =
{
𝜋 𝑗 , 𝜇 𝑗 , Σ 𝑗

}
: 𝑝 (𝑥) = ∑𝐽

𝑗=1
𝜋 𝑗N(𝑥 |𝜇 𝑗 , Σ 𝑗 ) with

𝜋 𝑗 being mixing coefficients that sum to 1. If the color should be

encoded, too, the Gaussians’ dimensionality increases (i.e., 4D for

hue encoding). Each successive level subdivides the parent GMM

into sets of smaller ones, increasing the overall fidelity. See Fig. 1 for

an overview. We employ a tree structure with dynamic subdivision

and pruning for size reduction. We solve the EM algorithm for each

GMM in the hierarchy, resulting in an overall complexity of 𝑂 (𝑁

log 𝑀) with 𝑁 points and 𝑀 mixtures. We ensure a valid global

GMM by propagating the mixing weights down the hierarchy.

In contrast to [Eckart et al. 2016], we construct the hierarchy

level-wise, which enables us to progressively stream and render

the computed levels/LODs 𝐿 while the next finer one is being com-

puted, see Fig. 1 (d,e). The hierarchy also allows us to do bandwidth-

adaptive transmission and visualization. A key feature is that we

exploit temporal coherence in sequential point clouds, e.g., live-

captured sensor data, (Fig. 1(a)) to maximize efficiency and perfor-

mance. Specifically, we utilize the level-wise hierarchy construction

and compare the GMM at level 1 with the corresponding one from

the previous input. Depending on a divergence metric 𝐷 , we skip

the computation of a proportional number of levels, see Fig. 1 (b,c).

Subsequently, only more detailed levels have to be computed. For

this, we reuse the parent GMMs and corresponding partitionings of

the previous input and recompute the Gaussians with the current

coordinates. For unstructured point clouds, an alternative would be

to transform the detail-level Gaussians based on the differences in

the upper levels. To reconstruct the point cloud, we sample the en-

coded distribution using ancestral sampling. To achieve even better

visualization, the Gaussian splatting rendering technique [Wu et al.

2024] can easily be applied, thanks to the GMM representation. To

achieve real-time performance, we parallelized our method using

the GPU and highly optimized our implementation. Our source code

is available at: www.cgvr.cs.uni-bremen.de/research/pointclouds/.

2.1 Adapted EM Algorithm and GMM Hierarchy
We adapted the EM algorithm for our requirements (i.e., perfor-

mance). The computation of one GMM (𝐽=8 components) using

the EM algorithm is shown in Fig. 2 (top). First, (without prior

information) we normalize all points of the (root) GMM into a

unit cube and initialize the components in its corners (𝜋= 1

8
) in

form of axis-aligned ellipsoids. We only sum over all components∑𝐽

𝑗=1
𝜋 𝑗N(𝑥 |𝜇 𝑗 , Σ 𝑗 ) once in the E-step and reuse it for the max-

imum likelihood estimation. Hence, the M-step is executed af-

ter the log-likelihood evaluation. We also calculate the moments

M {0,1,2}
𝐽

def

=
{∑𝑁

𝑖=1 𝛾𝑖, 𝑗 ,
∑𝑁
𝑖=1 𝛾𝑖, 𝑗𝑧𝑖 ,

∑𝑁
𝑖=1 𝛾𝑖, 𝑗𝑧𝑖𝑧

𝑇
𝑖

}
already in the E-step

when looping over all points 𝑁 . Thus, the M-step iterates over the

components 𝐽 with their moments M {0,1,2}
𝐽

as input instead of the

complete expectation matrix 𝛾 . As the covariance matrix Σ is sym-

metrical, we only have to represent 6 of the 9 values. To speed

up the convergence, we employ Tikhonov regularization in the

M-step, resulting in Σ𝑛𝑒𝑤
𝑗

= M2

𝑗/M0

𝑗
− 𝜇𝑛𝑒𝑤

𝑗
𝜇𝑛𝑒𝑤

𝑇

𝑗
+ R (R being the

regularization matrix). Lastly, the GMM gets denormalized.

Using this adapted EM algorithm, we then construct the GMM

hierarchy by partitioning the points of a parent GMM (level 𝐿) into 𝐽

partitionsP𝑗 =
{
𝑧𝑖 |𝑧𝑖 ∈Z∧(𝛾𝑖, 𝑗 >𝜆𝑐 )∧(0≤ 𝑗 < 𝐽 )∧(0≤𝑖 <𝑁 )

}
. Each

one contains all points 𝑧𝑖 for which the expectation of the j-th com-

ponent lies above a threshold 𝜆𝑐 . Thus, we allow overlapping GMM

components. This should only occur rarely but help with robustness

against noise or outliers. Each partition P𝑗 , and the corresponding

partition assignmentA 𝑗 , is used as an input for a new GMM on the

next level 𝐿+1, see Fig. 2 (bottom). In contrast to the root GMM, the

covariance matrices Σ get initialized with the corresponding ones

from the parent GMM for faster convergence. The resulting weights

𝜋 are multiplied with their associated ones from the parent GMM

www.cgvr.cs.uni-bremen.de/research/pointclouds/
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Figure 2: Top: Our adapted EM algorithm. Bottom: Our whole
streaming approach (blue boxes represent adapted EM algo.).

to ensure they sum up to 1 on the level. Using this scheme, the

GMM hierarchy gets further expanded in a breadth-first way until

a desired maximal (detail) level 𝐿𝑚𝑎𝑥 is reached or another stopping

criterion is met. Theoretically, the combined component count 𝐽𝐿
grows exponentially with the hierarchy depth: 𝐽𝐿=8

𝐿
. To minimize

the eventual size, we prune the tree by discarding components that

represent too few points and prevent further subdivision for these

components. Specifically, a component is discarded when the sum

of the expectations 𝛾𝑖, 𝑗 (given by the zeroth moment 𝑀0𝑗 ) across

all 𝑁 points is below the product of the threshold parameter 𝜆𝑑 .

2.2 Utilizing Temporal Coherence
We first store all components 𝐽 ′, the partitions P′

(by reference to

recognize coordinates differences), and the partition assignments

A′
of all levels of the previous frame. When computing the level 1

GMM, we initialize it by re-using the parameters from the last frame.

Then, we measure the divergence/similarity 𝐷 to the last frame.

Monte Carlo sampling would be accurate but more efficient is to

use the Kullback-Leibler divergence metric 𝐷𝐾𝐿 and compare the

similarity of the two probability distributions. As there is no closed-

form solution, we use the variational approximation by [Hershey

and Olsen 2007] 𝐷𝑣𝑎𝑟 (𝐽 | |𝐾) =
∑
𝑗 𝜋 𝑗 log

Σ 𝑗 ′𝜋 𝑗 ′𝑒
−𝐷𝐾𝐿 ({Σ 𝑗 ,𝜇𝑗 }| |{Σ 𝑗 ′ ,𝜇 𝑗 ′ })

Σ𝑘𝜔𝑘𝑒
−𝐷𝐾𝐿 ({Σ 𝑗 ,𝜇𝑗 }| |{Σ𝑘 ,𝜇𝑘 })

because it is the most accurate, while also being efficient when

applied after level 1 (only 8 components). Other advantages are that

it considers the divergence between all component pairs of both

GMMs in both directions, and handles the weights appropriately.

If the divergence is small, we skip 𝑥 levels and only construct the

more detailed ones, see Fig. 2 (bottom). We use the components

𝐽 ′, partitioning P′
, and partition assignment A′

from the previous

frame to compute the Gaussians of the first of these levels with the

current points. After that, the hierarchy is constructed as usual. The

number of skipped levels 𝑥 depends on the divergence thresholds

𝜖𝐾𝐿 (vector of length 𝐿𝑚𝑎𝑥 -1). If all levels can be skipped (i.e., prac-

tically equal frames), the construction stops and the most detailed

level 𝐽 ′
𝐿𝑚𝑎𝑥

from the last frame (or nothing) is transmitted.

2.3 Transmission and Sampling
After construction, we serialize the parameters of all components

𝐽𝐿 for transmission to the client side, see Fig. 2 (bottom). Naturally,

the data could be compressed using any (lossless) compression

algorithm such as LZ4, ZStandard or the GPU-friendly, clipped

Huffman encoding by [Goel et al. 2024] for further size reduction.

With our level-wise construction, we can do progressive and

computing power- or bandwidth-adaptive transmission. When us-

ing the former, instead of only sending each frame’s max level

representation 𝐽𝐿𝑚𝑎𝑥 , each hierarchy level 𝐽𝐿 is transmitted and

sampled on the client, replacing the previous level 𝐿-1, while the

next, finer one is computed on the server. In our implementation

the sampling is faster than the construction, thus, each received

level can be reconstructed in time and correct order. For adaptive

transmission, a max time budget and max size can be set and dy-

namically changed up to which the hierarchy is allowed to be built

for each frame. If any of these limits are reached, the construction

stops and the last fully constructed level is transmitted.

Once all components 𝐽𝐿 of the desired level have been trans-

ferred and de-serialized, the point clouds can be reconstructed

using only the component’s parameters. We do this by ancestral

sampling using Bernoulli distributions. The number of samples 𝑁 𝑗
for each component is given by the weight 𝜋 𝑗 and the total number

of points. For evaluation purposes, we chose the same sample count

as the original input.We implemented the sampling algorithm using

CUDA and parallelized over the total number of samples 𝑁𝑠 .

3 Implementation Details on Parallization
To maximize performance, we parallelized individual steps of the

EM algorithm using CUDA and utilized the shared memory to a

maximum extent. Most importantly, for the E-step, we parallelized

over all input points and components.With 8 components per GMM,

we can compute up to T=128 points per component in parallel. As

the computation of the moments requires the whole point set, we

use another kernel that sums up all partial moments from all thread

blocks B. For fast summations, we use parallel prefix sums. The log-

likelihood is computed efficiently using the atomicAdd() function.

The maximum likelihood estimation and the M-step then greatly

benefit from the described pre-computations in the E-step.

We compute all GMMs on the same level in parallel, too, by using

dynamic parallelism (nested kernels). See supplementary material

for pseudo code. Thus, the parallel computation of a single GMM

can stay intact while another (outer) kernel handles the level-wise

parallelization. This includes normalization of the partition’s points

and components initialization. The former requires finding the min

and max points per dimension. We implemented this again using

parallel prefix sums, the shared memory, and an extra summation

kernel, similar to the moments’ summation. To ensure that all

threads from the inner E-step kernel have finished before the outer

EM algorithm proceeds, we implemented a custom synchronization

method using a global counter variable with an atomic state across

all thread blocks. Eventually, the complexity of computing the

hierarchy increases roughly linearly with the depth 𝐿.

4 Results
We measured the construction time, size required to represent the

model, and the accuracy using the well-known point-to-point-

based PSNR quality metric that is based on the Hausdorff dis-

tance [Cignoni et al. 1998][Tian et al. 2017]. We used an RTX4090

GPU and 𝐿𝑚𝑎𝑥=4, 𝜆𝑐=0.2, 𝜆𝑑=0.0001, 𝜖𝐾𝐿={0.01, 0.005, 0.0001} on 2
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Figure 3: Our temporal approach greatly accelerates the con-
struction (left) without significantly compromising accuracy
(right). Eckart et al. has slightly higher PSNR values, though.

Table 1: Our algorithm with temporal coherence (TC) com-
pared to no TC (Full), and Eckart et al. on PSNR, accum. con-
struction times (AT) and compression (scene 1).

L PSNR AT (ms) Compression Factor

Full TC Eckart Full TC Full TC Eckart

1 43.641 43.641 NA 8.8 8.8 1348 1348 NA

2 46.140 46.114 45.7 16.0 15.1 183.4 184.2 170

3 48.115 48.072 48.7 28.2 25.9 26.27 26.713 21

4 49.647 49.542 50.7 40.1 32.2 3.833 4.126 2.6

test scenes: First, for comparability, the Stanford Bunny with ∼36k
points. We continuously transform it (30 frames) to get a dynamic

scene with some geometric similarity between subsequent frames.

The second one is a recording done with an Azure Kinect depth

sensor (50 frames, up to 368,640 points/frame). It depicts a motion-

less room, see Fig. 5 (left), in which a person enters and waves his

hand. To calculate the compression factor, we assume 4 Bytes per

point coordinate, thus, 431,340 Bytes for scene 1 when transferred

unprocessed/uncompressed.

Figure 1 (e) shows test scene 1 reconstructed from hierarchy

level 1 to 4 (8 to 2297 components). As can be seen, the fidelity

and visual quality increase significantly with each level, and with

only 4 levels, the reconstructions are very accurate. Figure 3 depicts

the accumulated construction time (left) and accuracy (right), both

without and with utilizing temporal coherence (TC). The results

show that our method is fast and accurate, and, with our temporal

approach, we save a lot of time at higher levels, without a noticeable

loss in accuracy. Compared to [Eckart et al. 2016], our method has a

slightly lower PSNR on levels 3/4 and a slightly higher one at level

2. However, the balance between speed and accuracy can be tuned

by adjusting the parameters (i.e., divergence thresholds). As they

used a different GPU and no source code is available, we refrain

from making a speed comparison. Figure. 4 (left) shows that our

method achieves significantly higher compression than Eckart et

al. (up to 58.7% higher on level 4) and our method with exploiting

TC (42% frames) achieves the best compression factors: 4.1 for level

4 and 26.7 for level 3. The full data can be seen in Table 1.

Figure 5 shows test scene 2 and selected frames reconstructed

with max level 4. The reconstructed scene looks quite convincing

(black borders are sensor padding). Utilizing TC, the accumulated

construction time decreases significantly again: 103.0 ms with and

Figure 4: Left: Relative to Eckart et al., we achieve signifi-
cantly higher compression factors. Right: The frame timings
(scene 2) show that our temporal approach is very effective.

Figure 5: Frames reconstructed with max level 4 (scene 2;
colors depict the components): quite good fidelity/clustering.

150.8 ms without TC. The individual frame timings, see Fig. 4 (right),

show that the temporal approach works quite well. For instance,

for all the first 20 frames (no movement in the scene), exploiting

temporal coherency leads to roughly half the construction time.

After that, roughly one-third of the frames were similar enough

to temporally reuse information (62 % frames in total). Naturally,

this depends heavily on the scene and the divergence thresholds.

In this scene, however, the PSNR (42.794/47.548) and compression

factors (6.419/6.996) were lower when utilizing TC, too. Compared

to scene 1, the construction times are a lot higher, mainly due to

the 10 times higher point count. Also, the achieved compression

factors are a lot higher. However, interestingly, using TC performs

significantly worse in this scene in terms of PSNR and achieved

compression. We suspect artifacts (superfluous points seemingly in

regions without valid data) to be the likely cause.

5 Conclusions and Future Work
We presented a novel approach for compact point cloud repre-

sentation and real-time (web-based) streaming using a temporal

hierarchical GMM-based generative model. Our level-based con-

struction scheme successively partitions the input point cloud into

a hierarchy of overlapping GMMs and allows to dynamically adjust

the maximum LOD and progressively transmit and render more

detailed levels. We minimize the construction cost by exploiting

the temporal coherence between consecutive frames. Combined

with our adapted EM algorithm and highly parallelized and opti-

mized CUDA implementation, we achieve real-time speeds with

high-fidelity reconstructions. Our results show that we achieve

significantly higher compression factors, up to 59 %, than previous

work with only slightly lower accuracy. Moreover, our temporal

approach is highly effective and, on higher LODs, saves 20-32 %

construction time in our test scenes. In the future, we plan on also

encoding the color, integrating Gaussian splatting, and generalizing

our approach to unstructured point clouds.
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Further Details and Evaluations
Further details of our temporal construction approach and how

we skip levels can be found in Algorithm 1. Similarly, Algorithm 2

provides additional information about our hierarchical EM algo-

rithm. Here, EML denotes the outer kernel that handles the parallel

computation of all GMMs at one level.

Algorithm 1 Using Temporal Coherence by Level Skipping

procedure Frame
𝐿 = 1

𝐽1 = EMRoot(Z)

𝐿 = 2

A2,P2 = Partition(Z𝐽1 )
𝐷𝑣𝑎𝑟 =Divergence(𝐽1 | |𝐽 ′1 )
for 𝑖 = 𝐿 to 𝐿𝑚𝑎𝑥 do

if (𝐷𝑣𝑎𝑟 < 𝜖𝐾𝐿𝑖 ) then
𝐿 = 𝑖 + 1

𝐽𝑖 = 𝐽
′
𝑖

A𝑖 ,P𝑖 =A′
𝑖 ,P′

𝑖

break
while (𝐿 ≤ 𝐿𝑚𝑎𝑥 ) do
𝐽𝐿 = EML(𝐽𝐿−1,A𝐿,P𝐿)
𝐿 = 𝐿 + 1

A𝐿,P𝐿 = Partition(Z𝐽𝐿−1 )

Algorithm 2 Hierarchical EM Algorithm

procedureMain(Z𝐽𝐿−1 , 𝐽𝐿−1)
P𝐽𝐿 ,A 𝐽𝐿 = Partition(Z𝐽𝐿−1 )

𝐽𝐿 = EML≪𝐽𝐿−1, 64≫(𝐽𝐿−1,P𝐽𝐿 ,A 𝐽𝐿 )

procedure EML(𝜃𝐿−1,P𝑗 ,A 𝑗 ) in parallel
B = P𝑗/T
U = B/T
maxB,minB = Bounds≪B,T≫(P𝑗 )
max,min = Sums≪U,T≫(maxB,minB )
P𝑗 ;norm =Norm≪B,T≫(max, min, P𝑗 )
𝜃𝐿 = Init(𝜃𝐿−1)
while do

M {0,1,2}
𝐽

= EStep’(A 𝑗 ,P𝑗 ;norm, 𝜃𝐿)
if (HasConverged()) then
𝜃𝐿 =Denorm≪B,T≫(max, min, 𝜃𝐿)

break
𝜃𝐿 =MStep(M {0,1,2}

𝐽
)

We also evaluated the effectiveness of the dynamic pruning (de-

fault configuration) compared to building the complete hierarchy

with all components. As can be seen in Fig. 6 (left) and Tab. 2, the

compression factor (CF) is significantly worse without dynamic

pruning while the PSNR increases only slightly. The pruning per-

forms especially well on higher levels (i.e., 1.78 times higher com-

pression vs 0.5 % PSNR loss on level 4).

Lastly, we investigated the impact of different parallelization

configurations on the performance. Specifically, we examinedwhich

Figure 6: Left: Dynamic pruning vs. full hierarchy regarding
accuracy and compression factor. Data pairs (left to right)
depict levels 1 to 4. Right: Construction times per level with
32 and 64 threads/thread block (outer kernel). The 32 threads
configuration is generally faster.

Table 2: Dynamic pruning vs. full
GMM hierarchy regarding compo-
nent count (𝐽𝐿) per level, accuracy,
and compression factor (CF).

L Dyn. Pruning Full

𝐽𝐿 PSNR CF 𝐽𝐿 PSNR CF

1 8 41.20 1348 8 41.20 1348

2 55 44.11 196 64 44.32 169

3 357 46.42 30.2 512 46.88 21.1

4 2299 48.28 4.69 4096 48.53 2.63

Table 3: Construction
times (ms)(AT: accumu-
lated) using 32 and 64
threads/thread block.

L Time AT

32t 64t 32t 64t

1 8.4 7.7 8.4 7.7
2 6.5 7.5 14.9 15.2

3 9.6 17.8 24.5 33.0

4 10.0 14.2 34.5 47.2

ratio of thread blocks T (outer kernel) and threads per thread block

performs the best (on scene 1, no TC). Looking at Fig. 6 (right) and

Tab. 3, we can see that the performance, overall, increases when the

number of threads per thread block is reduced from 64 to 32 and

the number of thread blocks is increased, respectively. While the

difference is small on the lower levels, the 32 threads configuration

is significantly faster on the higher hierarchy levels.

Note: This paper is an extended version of a previous SIGGRAPH

poster.
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