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High precision labelling vs. imperfect

Do markers in training data affect pose estimation? labelling

Introduction

* We manually label synthetic data with
known ground truth to estimate
labeling errors
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L)

WESTMINS TELR @@=

» 6D pose estimation requires labelled
training data which is usually task
specific
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2. When is high-precision marker
labelling superior to imperfect
manual labeling?
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Figure 1: Images of the same scene in our four training sets for the

teabox dataset
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3. We can automate labelling 6D
poses with high precision

4. This results in better pose
estimation compared to imprecise
manual labelling

Marker | t on Real Dat
arker impact on heal Uata 5. With our method, training data

can be labelled easily and even
from objects in motion
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Table 3: The pose estimator was trained on real and synthetic images. Evaluation was
done on real images.
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