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Abstract

We present a benchmarking suite for rigid object collision detec-
tion and collision response schemes. The proposed benchmarking
suite can evaluate both the performance as well as the quality of the
collision response. The former is achieved by densely sampling the
configuration space of a large number of highly detailed objects; the
latter is achieved by a novel methodology that comprises a number
of models for certain collision scenarios. With these models, we
compare the force and torque signals both in direction and magni-
tude.

Our device-independent approach allows objective predictions for
physically-based simulations as well as 6-DOF haptic rendering
scenarios. In the results, we show a comprehensive example appli-
cation of our benchmarks comparing two quite different algorithms
utilizing our proposed benchmarking suite. This proves empirically
that our methodology can become a standard evaluation framework.
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1 Introduction

In order to make games or virtual environments realistic, one of
the fundamental technologies is collision handling. It detects colli-
sions among virtual objects, computes a collision response (such as
penetration depth, contact points, and contact normals), and finally
feeds these into a physically-based simulation or force-feedback al-
gorithm.

Especially with forces, human perception is very sensitive to unex-
pected discontinuities both in magnitude and direction [Kim et al.
2002]. This effect is aggravated particularly, when both visual and
haptic feedback is provided to the user: it is known that visual and
tactical sensations are treated together in a single attentional mech-
anism, and wrong attention uses can affect the suspension of disbe-
lief [C. Spence and Driver 2000]. Consequently, collision detection
algorithms should provide stable and continuous forces and torques,
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even in extreme situations like high impact velocities or large con-
tact areas. Moreover, they should provide these forces at interactive
rates. For this reason, a standardized benchmark would help users
to classify collision handling systems with respect to their special
requirements in advance.

In many applications, an additional requirement is that the collision
detection must be very fast. In particular, force-feedback requires a
constant update rate of 1000Hz. Additionally, penalty-based phys-
ical simulations often perform a number of iterations for a single
rendering frame, requiring collision detection at n� 30Hz, if the
scene is rendered at 30Hz.

Overall, a benchmarking suite for collision detection should not
only assess its performance, but also the quality of its collision re-
sponse.

The benchmarking suite we propose in this paper achieves both of
these goals. Proposed tests are very simple and can be downloaded
from our website1. Thus, it should be very easy for developers to
select the algorithm best suited to their needs; in addition, it should
be possible for researchers to assess not only the performance but
also the quality of new collision detection algorithms.

1.1 Our Approach

Like most collision handling systems, our benchmark is divided
into two separate parts: The kinematic problem of collision detec-
tion is primarily investigated with respect to performance, whereas
the dynamic problem of collision response corresponds to the qual-
ity of the forces and torques.

In order to test the performance, our collision detection bench-
mark covers a wide variety of different, highly detailed objects in
a vast number of different configurations, including situations of
close proximity without contact as well as situations reaching from
light to heavy interpenetrations. Configurations with penetrations
are important because most simulations are penalty-based and thus,
computed forces are related to the intersection (amount).

In order to determine the collision response quality of an algorithm,
we pursue a different approach, because computing realistic forces
and torques from detailed objects in complex contact scenarios is
highly non-trivial.

Because of that, we propose to use fairly simple scenarios and ge-
ometry tests to measure the quality of the collision response. We
believe that this approach is even more warranted because different
collision handling systems use different measures for the force and
torque computations. For instance, penalty-based methods usually
use a translational penetration depth or the penetration volume, im-
pulse based collision response schemes often need the first time of
impact.

Another advantage of simple scenarios is that we can model them,
which allows us to calculate the theoretically expected forces and
torques analytically for different collision response schemes. The
comparison of this analytically derived ground truth data with the

1 http://cg.in.tu-clausthal.de/research/colldet benchmark/index.shtml
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data gathered from the benchmarked algorithms allows us to define
several measures, such as deviations and discontinuities of forces
and torques, or the measurement of noise.

Our benchmarking suite contains several artificial scenes that sup-
port different challenges for collision handling schemes, including
scenarios with thin sheets and large contact areas.

Summarizing, our benchmarking suite proposed in this work con-
tributes with:

� a performance benchmark for collision detection algorithms;

� an evaluation method for force and torque quality that analyzes
both magnitude and direction values with respect to contact
models;

� a validation of our proposed benchmark;

� and a thorough evaluation of two rather different collision de-
tection algorithms.

This last point empirically proves that our methodology can be-
come a standard evaluation framework. The combination of both
performance and quality benchmarks allows for the identification
of specific strengths and weaknesses and, thus, a realistic rating of
each benchmarked algorithm. Moreover, our benchmark helps to
identify specific scenarios where an algorithm’s collision response
diverges from the expected results.

2 Previous Work

A first approach to a comprehensive and objective benchmarking
suite was given by [Zachmann 1998]. The code for that benchmark
is freely available. However, it cannot produce configurations with
a predefined distance or penetration. This is problematic because in
many simulations, objects slide along each other or penetrate only
slightly.

Many collision detection researchers design their own benchmarks.
For example, [Cohen et al. 1995] measured the performance of their
collision detection algorithm by using a multi-body simulation as a
benchmark. Van den Bergen [Van Den Bergen 2005] used three
static benchmarks where a pair of models — a torus, teapot, and an
X-wing — were placed randomly in a bounded space and tested for
intersection. The probability that the two objects would collide was
set to approximately 60%. Govindaraju [Govindaraju et al. 2005]
created a benchmark for deformable bodies. Other researchers have
focused on benchmarking of physics engines, in which collision de-
tection play an essential role. The Physics Abstract Layer (PAL)
[Boeing and Bräunl 2007] provides with a unified and solid inter-
face to physics engines. Using PAL, a set of benchmarks has been
constructed. The collision detection benchmark simulates sixty-
four spheres falling into an inverted square pyramid. The downside
of this benchmark is that it is a very special scenario. Caselli et
al [Caselli et al. 2002] evaluate several recent collision detection
libraries within the context of motion planning for rigid and articu-
lated robots in 3D workspaces. But this benchmark is not of general
utility and is restricted to a fixed set of scenarios.

Cao presents a framework for benchmarking haptic systems [Cao
2006]. This framework emulates a 3-DOF point-based haptic de-
vice, to which benchmarks can be attached. Another problem is
that it is unsuitable for benchmarking non-haptic algorithm behav-
ior. [Ruffaldi et al. 2006] presents a series of ground truth data sets
for haptic rendering. These data can be used to assess the accuracy
of a particular haptic rendering system, but this benchmark only
approximates a single point of contact.

3 Description of the Benchmarks

Our benchmarking suite consists of a Performance Benchmark and
a Force and Torque Quality Benchmark. Thanks to them we can
compare the collision detection time and the computed force and
torque.

3.1 Performance Benchmark

The Performance Benchmark has two scenarios. Scenario I simu-
lates situations where objects are in close proximity, but not touch-
ing, while Scenario II simulates situations where two objects in-
tersect. The relative position of both objects is given by a configu-
ration. A configuration consists of 6 parameters shown in Figure 1:
the transformation of object B in the coordinate system of object A,
given by d, ϕA, θA and the rotation of object B, given by ϕB, θB,
ψB.

Most collision detection libraries for static collision detection be-
tween rigid objects are based on bounding volume hierarchies
(BVHs). The worst case for these BVH-based algorithms is any
situation in which bounding leaves collide even in deep levels in
the hierarchy, but actually no polygon collision occurs.

For a pair of objects with a given shape, the most relevant parame-
ters that determine collision detection time are the relative position,
orientation, distance, and, to a lesser amount, their complexity: for
BVH-based approaches. Since we cannot foresee the application of
a given collision detection algorithm, the relative position and ori-
entation are more or less random, from a statistical point of view.
Therefore, it seems reasonable to factor these parameters out. We
achieve this for Scenario I by testing as many configurations as pos-
sible for a given distance and complexity. For Scenario II, we fix
the intersection volume and test as many configurations as possi-
ble. Thus, for a given geometry and a given algorithm, we obtain
an average collision detection time as a foundation of the separation
distance or the intersection volume, respectively.

In order to generate vast numbers of configurations we used a mod-
ified version of the procedure proposed in [Trenkel et al. 2007]. Li-
braries for the collision detection algorithm described in Section 4.1
were included. In addition, it is now possible to compute configu-
rations for Scenario II, i.e., configurations where objects intersect
with a predefined intersection volume. Because of the high compu-
tation time (see Section 3.1.1) we implemented the functionality to
run the benchmark on a cluster.

3.1.1 Computation of configurations

In order to calculate the distance d between two objects we need the
two closest points from object A and object B. So as to be scale-
invariant, the distance is given in percent of the whole bounding
box of object A.

Object A has a fixed position and object B is placed on a sphere
around object A. This sphere must be bigger than the bounding box
of object A plus the given distance d between both objects. In the
next step, we move object B on a straight line to the center of ob-
ject A until we reach the required distance or intersection volume.
This configuration is then stored.

Our search space has 6 dimensions. To get as many configurations
as possible consequently the configuration space must be sampled
densely. For Scenario I we chose a step size of 15� for the spherical
coordinates and a step size of 15� per axis for the rotations of ob-
ject B. With these values, we generated a set of 1 991 808 sample
configurations for each distance.



Figure 1: The search space that is
sampled by our sphere-method.

Figure 2: Happy buddha with
10% intersection volume

We computed sample configurations for distances from 0 up to 30%
of the object size in 1% steps, because in all example cases, there
was no significant time spent on collision detection for larger dis-
tances. To compute the configuration of two objects with the correct
distance we used PQP [Gottschalk et al. 1996; Larsen et al. 1999].

For Scenario II we used Inner Sphere Trees (IST) (see Sec-
tion 4.1.2) to compute the configurations. A tetrahedron-based ap-
proach could not be used because of the probability relatively large
intersection times. Although ISTs compute intersection volumes
very quickly, we still had to reduce the sampling of the configura-
tion space. Therefore, we changed the step size per axis to 30�. We
computed sample configurations for intersection volumes from 0
up to 10% of the total fixed object volume in 1% steps. With these
values, we generated a set of 268 128 sample configurations for
every intersection volume. Because most applications of collision
detection try to avoid collision/intersection, an intersection volume
of 10% seems more than enough, as shown in Figure 2.

To compute all these configurations we used a PC cluster with 25
cluster nodes, each with 4 Intel Xeon CPUs and 16GB of RAM.
The time needed to calculate configurations for a complete set of
distances or intersection volumes varies from object to object be-
tween 10h and 200h. Overall, we computed configurations for 86
objects, which lasted 5 600 CPU days.

3.1.2 Benchmarking

Benchmarking is not as time consuming as configuration computa-
tion. To perform the benchmark, we load the set of configurations
for one object. For each object-object distance and intersection vol-
ume respectively, we start timing, set the transformation matrix of
the moving object to all the configurations associated with that dis-
tance, and perform a collision test for each of them. After that,
we get a maximum- and an average collision detection time for the
given distance or intersection volume, respectively. Overall, we did
65 million different collision detection tests with each collision li-
brary.

3.2 Force and Torque Quality Benchmark

The quality benchmark evaluates the deviation of the magnitude
and direction of the virtual forces and torques ideal prediction mod-
els. Ideal forces and torques will be denoted by Fi and Ti, respec-
tively, while the ones computed by one of the collision detection
algorithms — measured forces — will be denoted by Fm and Tm.

Consequently, the scenarios in this benchmark, including objects
and paths, should be meet two requirements: a) they should be sim-
ple enough so that we can provide a model; and b) they should be a
suitable abstraction of the most common contact configurations in
force feedback or physically-based simulations.

This Section introduces the implemented scenarios (Section 3.2.1)

and methodology (Sections 3.2.2 and 3.2.3) in order to evaluate
force and torque quality.

3.2.1 Benchmarking Scenarios

Figure 3 shows all scenarios with their parameters; they are ex-
plained in the following.

Scenario I (a,b): A cone is translated while colliding with a
block, maintaining a constant penetration. The penetration we
chose is δ = 1

3 H = 2
3 r and the length of the trajectory is L+ 2a.

Two situations have been differentiated in this scenario: (a) h > δ

and (b) h! 0, i.e., the block is a thin rectangle.

Ideally, only forces should appear and they should have only a com-
ponent in the positive y direction. Moreover, these forces should be
constant while the cone slides on the block. This scenario evaluates
the behavior of algorithms with objects that have flat surfaces or
sharp corners. In addition, Scenario Ib evaluates how algorithms
handle the so-called tunneling effect which occurs when thin or
non-watertight objects yield too small forces and torques that al-
low interpenetration.

Scenario II: A sphere is revolved around a cylinder maintaining
a constant penetration. The radius of the orbit is ρ = 5

3 R = 5
3 r.

Ideally, only forces should appear (no torques) and they should have
uniquely sinusoid components in x and y directions. In addition to
that, the measured force magnitude should be constant while the
sphere revolves around the cylinder. This is a suitable benchmark
for environments with objects that have smooth, rounded surfaces.

Scenario III: A so-called pins object with a rectangular and a cir-
cular pin and a matching holes object compose this scenario. The
rectangular pin is introduced in the rectangular hole and is turned
around its axis. The size of the objects is b = 2a, the side of the
rectangular pin is c = 2r and it has a length of a in z direction. The
maximum rotation angle is φmax = 30�. Ideally, only torques should
appear and they should have only a component in positive z direc-
tion. Moreover, the measured torque magnitude should increase
as φ increases. This scenario evaluates the behavior of algorithms
with large contact areas.

Scenario IV: This scenario uses the same objects as in Scenario
III. The start configuration is shown in Figure 3. Then, the pins
object is revolved around the central axis of the second one. The
orbit radius is ρ = 1

10 c = 1
20 r. The expected forces and torques are

those that bring the pins object towards the central axis, i.e., sinu-
soidal forces on the xy plane and torques with only z component.
This scenario evaluates the behavior of algorithms with large and
superfluous contact areas that should not generate collision reac-
tions, such as the contact between objects in the xy plane. Besides
of that, this scenario contains small displacements around a config-
uration in which two objects are in surface contact. These small
displacements should generate the corresponding small forces that
push the pins object back to the only-surface-contact configuration.

3.2.2 Evaluation Method

For each scenario, we measured and recorded the following values
for each time stamp k.

1. forces Fm
k ,

2. torques Tm
k ,

3. penalty values qm
k and
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Figure 3: Scenarios in the force and torque quality benchmark, explained in Section 3.2.1. Upper row shows 3D snapshots, whereas the
lower displays parametrized schematics. Trajectories are represented with red dashed curves. Expected relevant forces and/or torques are
shown with blue vectors. Coordinate systems are placed in points where forces and torques are measured – for the cone and the sphere this
point is in their AABB center, whereas the position in z axis for the pins object is in the middle of the pin.

4. computation time tk.

In order to assess these measured values, we have developed ideal
models of the expected forces and torques (i). The directions of
these force and torque vector models are displayed in Figure 3,
whereas magnitudes are considered to be proportional to analyti-
cally derivable collision properties, such as

1. kFik or kTik � p, translational penetration depth,

2. kFik or kTik �V , intersection volume.

In each scenario, we have determined p and V , respectively, as fol-
lows:

� Scenario Ia: p� δ and V � δ 3

� Scenario Ib: p� δ

� Scenario II: p = ρ = const and V = const

� Scenario III: p � sin( φ

2 ) � 1 and V � ( 1
tan(φ) +

1
tan( π

2 �φ) )(
p

2 cos( π

4 �φ)�1)2

� Scenario IV: p = ρ = const and V = c2 � (c� ρjcosφ j)(c�
ρjsinφ j)+πr2�4

R r
ρ

2
(r2� τ2)dτ

In order to evaluate the quality of the magnitude, the standard devi-
ation of measured (m) and ideal (i) curves is computed:

σF =
1
N

vuut N

∑
k=1

� kF̂i
kk�kF̂m

k k
�2

; (1)

where F̂ = F
kFkmax

, and N being the total amount of time stamps.

Analogously, the indicator for direction deviation is the angle be-
tween ideal and measured values; the average value of this angle is:

γF =
1
N

N

∑
k=1

arccos
Fi

kFm
k

kFi
kkkFm

k k
: (2)

Deviation values for torques (σT ,γT ) are computed using Tm
k and

Ti
k, instead of force values.

Additionally, we measure the amount of noise in the measured
signals. A color coded time-frequency diagram using short time
Fourier transform can be used to visualize the noise in time do-
main. In order to define a more manageable value for evaluations,
we compute the ratio

ν =

R
Sm

R
Si ; (3)

where Sm is the energy spectral density of the measured variable
(e.g. kFmk) and Si is the spectrum of the corresponding ideal sig-
nal. ν can be evaluated for forces and torques directions and mag-
nitudes separately.

3.2.3 Equivalent Optimized Resolutions for Comparing Dif-
ferent Algorithms

Usually, when increasing the resolution quality is improved,
whereas computation time increases. Therefore, an appropriate
trade-off between quality and time performance must be found.

When properly evaluating or comparing collision detection algo-
rithms, such a resolution must be found that makes possible to
compare algorithms’ quality for a given average performance, or to
compare their performance for a given desired quality. In this con-
text, we name “equivalent” optimized resolutions such resolutions
with which algorithms exhibit a same desired time performance,
being possible to fairly compare their qualities.

Considering two objects in a scenario (A is dynamic, B is static), we
define the resolution pair (eA

opt;e
B
opt) to be the optimum equivalent

resolution pair:

(eA
opt;e

B
opt) = minfη(eA

;eB) j t̄(eA
;eB) = τg; (4)

where τ is the maximum admissible average computation time, t̄
and η = ωσ σ +ωγ γ , the equally weighted sum of the standard de-
viations.
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In practice, since time and quality functions of Equation 4 are un-
known, performed evaluations were carried out numerically after
running several tests. For each scenario and algorithm, we defined
three different resolutions within a reasonable2 domain for each ob-
ject A and B, building sets of 3�3= 9 pairs (eA;eB). Then, the sets
of 9 corresponding tests were performed, recording all necessary
average computation times (t̄) and global deviations (η) in each
one. Next, we applied a linear regression to values of t̄, obtaining
the plane which predicts the average computation time for a resolu-
tion pair in each scenario. Each of these planes was intersected with
τ = 0:9ms3, obtaining the lines formed by all (eA;eB) expected to
have t̄ = 0:9ms for each scenario.

Being aware of the fact that further refinements would yet be possi-
ble, it is considered that the reached compromise is accurate enough
in order to make a fair comparison. The average absolute difference
between predicted and measured η values with equivalent resolu-
tions was 1:2% for the VPS algorithm and 2:1% for the IST algo-
rithm.

4 Results

In order to test our benchmark, we used two collision detection al-
gorithms, VPS and IST. Both algorithms use a penalty-based haptic
rendering method, which allows colliding objects to penetrate each
other to some degree. Each algorithm uses different penalty values:
the one from VPS is the penetrated distance, while the one from
IST is the intersection volume.

First, we explain the algorithms and how they compute force and
torque values they return to our benchmark. After this, we discuss
the output of the Performance Benchmark and the Force and Torque
Quality Benchmark.

4.1 The Collision Detection Algorithms

4.1.1 The Voxmap-Pointshell (VPS) Algorithm

The Voxmap-Pointshell (VPS) Algorithm was initially presented
by [McNeely et al. 1999]. The algorithm computes collision forces
and torques of potentially big and complex geometries with 1kHz

2 Between coarse but acceptable and too fine resolutions.
3 Collision detection and force computation must lie under 1ms; hence, we

chose a resonable value under this barrier.

update rates. To achieve this goal, two types of data structures are
generated offline for each colliding object-pair: a voxmap and a
pointshell (see Figure 4). In this work, we used the fast and accu-
rate voxmap generator presented by [Sagardia et al. 2008].

Voxmaps are 3D grids in which each voxel stores a discrete distance
value v 2 Z to the surface. Pointshells are sets of points uniformly
distributed on the surface of the object; each point has additionally
an inwards pointing normal vector.

During collision detection, the normal vectors ni of colliding
points Pi — those which are in voxels with v� 0 — are summed, af-
ter being weighted by their penetration in the voxmap, yielding the
collision force F. Torques Ti generated by colliding points are the
cross product between forces Fi and point coordinates Pi, all mag-
nitudes expressed in the pointshell frame, with its origin in with
being the center of mass. At the end, these torques Ti are summed
to compute the total torque T.

4.1.2 The Inner Sphere Tree (IST) Algorithm

Inner Sphere Trees [Weller and Zachmann 2009] are a novel geo-
metric data structure, that provides hierarchical bounding volumes
from the inside of an object. The main idea is to fill the interior of
the model with a set of non overlapping spheres that approximate
the object’s volume closely. Therefore ISTs and, consequently, the
collision detection algorithm are independent of the geometry com-
plexity; they only depend on the approximation error.

The penetration volume corresponds to the water displacement of
the overlapping parts of the objects and, thus, leads to a physically
motivated and continuous repulsion force. The algorithm deter-
mines all pairs of overlapping spheres and computes a force for
each of them. Summing all these pairwise forces gives the total
penalty force F. Similarly, the torque is computed separately for
each pair of intersecting spheres and accumulated to obtain the to-
tal torque T.

4.2 Discussion of the Benchmark Results

In this section we present the results returned from our benchmarks.
The algorithms presented in Section 4.1 were used for this propose.

It is very hard to tell which algorithm is better because this is very
dependent on the requirements. Our benchmark provides a wide
range of test cases to evaluate the given algorithm and return the
computation time and the computed values. In the next sections we
explain the results returned by the tested algorithm.

4.2.1 Results of the Performance Benchmark

Appart from the distance or the penetration depth between objects,
the performance of the most collision detection libraries mainly de-
pends on the complexity and the shape of the objects. Figure 5
shows some of the objects we used. All objects that are in the pub-
lic domain can be accessed on our website. Within our benchmarks,
we tested a model against a copy of itself. Of course, our bench-
mark also supports the use of two different objects, but the first
method is sufficient to draw conclusions about the performance of
the libraries.

We tested the libraries on an Intel Core2 CPU 6700 @ 2.66GHz
and 2GB of RAM running Linux. All source code was compiled
with gcc 4.3.

An example of a result of the Performance Benchmark is shown in
Figure 6, using Happy Buddha as object. Our Performance Bench-
mark facilitates a comparison of different algorithms as well as an



Figure 5: Some of the objects we used in our Performance Benchmark: A model of a Happy Buddha (1 087 716 polygons), a Chinese Dragon
(1 311 956 polygons), a Circular Box (1 402 640 polygons) and a Gargoyle (1 726 420 polygons).

assessment of the behavior of one algorithm, with respect to the
objects complexity.

With the results from the Performance Benchmark it is now possi-
ble to compare collision libraries regarding their collision response
time. These tests can also be used to determine objects or a place-
ment of two objects which are not ideal for the tested algorithm. It
is also possible to determin the influence of the object complexity
or a lower approximation error on the collision response time.

However, the computation time is not enough to fully assess a col-
lision detection algorithm. Often, the quality of the collision re-
sponses is another important factor. This is discussed in the next
section.

4.2.2 Results of the Force and Torque Quality Benchmark

As in the case of the Performance Benchmark, all objects and paths
used in the Force and Torque Quality Benchmark (see Figure 3) are
available on our website4. We tested them on an Intel Core2Quad
CPU Q9450 @ 2.66GHz and 3.4GB of RAM running Linux SLED
11. The libraries were compiled with gcc 4.3.

For the voxel size s we have chosen a fixed lenght unit u in the
voxelized objects such that H = 60u;h= 30u (Scenario I), R= 30u
(a penetration of 20u is maintained) (Scenario II), c = 20u (Sce-
nario III), and ρ = 20u (Scenario IV). The number of voxels was
chosen to be 728�24�303 voxels for the block in Senario I while
the cone has 15669 pointshell points. In Scenario II, we used
491�816�491 voxels for the cylinder and 12640 pointshell points
for the sphere. In Scenario III, the number of voxels was chosen to
be 1204�604�603 for the holes and 12474 pointshell points for
the pins object. For the last Scenario, the number of voxels was
chosen to be 243� 123� 123 for the holes and 13295 pointshell
points for the pins object.

Figures 7 and 8 show example plots of the magnitude analysis. The
left side of Figure 7 contains the expected model curves for ideal
force magnitudes in Scenario I. Measured curves are superposed to
expected curves to give an idea of how reliable they are derived with
respect to these proposed collision response models. The standard
deviation between measured and ideal curves yields the magnitude
deviation σF = 0:043 for VPS and σF = 0:176 for ISTs. In Sce-
nario III, the standard deviation between measured and ideal curves
yields the magnitude deviation σT = 0:169 and σT = 0:112 for the
torques, respectively. The right side of Figure 7 shows the curve
kTk
kFk , which should be 0 for Scenario II, since ideally no torques
should appear. This quotient gives information about the magni-
tude of forces or torques that actually should not occur.

In Figure 9, force and torque components are displayed, giving a
visual idea of force and torque direction deviations. The left plot of

4 http://cg.in.tu-clausthal.de/research/colldet benchmark/index.shtml

Figure 8 shows this direction deviation for Scenario II, the associ-
ated γ values are γF = 2:40 for VPS and γF = 7:64 for ISTs.

Finally, Figure 10 shows the results of our noise measurement
of the force in the x-direction in Scenario III. The color coded
time-frequency diagrams visualize the amount, the time, and the
frequency of the signal’s noise. The corresponding ν values are
νF = 0:620 for VPS and νF = 1:12 for ISTs, where values closer
to one denote a minor amount of noise.

All these results show that VPS and IST are very close to their un-
derlying models and that different haptic rendering algorithms can
be evaluated. From these results we can say that our models for
penetration are suitable. Furthermore, they prove empirically that
our benchmark is vaild. In particular, the benchmark also reveals
significant differences between the algorithms: Whereas ISTs seem
to have a higher standard deviation from the ideal model, VPS tends
to deliver noisier signal quality. The decision between accuracy and
noise could be essential for some applications.

5 Conclusions and Future Work

The results maintain the validity of our analytically derived force
and torque models. In addition, they show that quite different colli-
sion detection algorithms can be easily benchmarked with our pro-
posed methods.

Our benchmark will be published as open source, so it will be a
great asset to users who want to figure out the best suited colli-
sion handling scheme to meet their specific requirements, as well
as to researchers who want to compare their algorithms with other
approaches using a standardized benchmark that delivers verifiable
results. Moreover, it helps to identify geometric cases in which the
collision response scheme diverges from the correct results.

In the future, it would be nice to generate a ranking of the differ-
ent measurements, like continuity of forces and torques in magni-
tude and direction or the noise of the signals, with respect to psy-
chophysical cognition. To achieve that, elaborate user studies need
to be done, including testbeds with different haptic devices and in-
vestigations about the perception of the different parameters.

Another promising future project would be to extend our bench-
marking suite for multi-body-simulations. Finally, a standardized
benchmarking suite for deformable objects is still missing and
would be very helpful for users and researchers.
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Figure 6: Performance Benchmark: Example result for Happy Buddha. The left plot shows the measured average collision response time
for Scenario I (no collision) and the right one for Scenario II (collision) (see Section 3.1). Distance 0:0 means that the objects are touching.
Volume 1% means that the intersection volume is equal to 1% of the total object volume. The number in parentheses after IST denotes the
number of spheres (see Section 4.1.2). The two numbers after VPS denote the number of voxels and points, respectively (see Section 4.1.1).
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Figure 7: Force and Torque Quality Benchmark: On the left, an example for the normalized collision force vector computed by the tested
algorithms (Scenario I) and on the right the orientation of the vectors (Scenario II).
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Figure 8: Force and Torque Quality Benchmark: On the left, an example for an average angle between model and measured forces (Sce-
nario II) and on the right the normalized collision torque vector computed by the tested algorithms (Scenario III).
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Figure 9: Force and Torque Quality Benchmark: On the left, an example for the collision torque (Scenario III) and on the right an example
for the collision force computed by the tested algorithms (Scenario IV).



Figure 10: Force and Torque Quality Benchmark: On the left, the noise in the force signal of the VPS algorithm and on the right noise in
force signal of IST algorithm. The colored picture shows the time frequency domain: The colors decode the intensity of the frequency, where
dark blue represents an intensity of zero.
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