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Abstract
We present a novel bounding volume hierarchy that al-
lows for extremely small data structure sizes while still
performing collision detection as fast as other classical hi-
erarchical algorithms in most cases. The hierarchical data
structure is a variation of axis-aligned bounding box trees.
In addition to being very memory efficient, it can be con-
structed efficiently and very fast.

We also propose a criterion to be used during the con-
struction of the BV hierarchies is more formally estab-
lished than previous heuristics. The idea of the argument
is general and can be applied to other bounding volume
hierarchies as well. Furthermore, we describe a general
optimization technique that can be applied to most hierar-
chical collision detection algorithms.

Finally, we describe several box overlap tests that ex-
ploit the special features of our new BV hierarchy. These
are compared experimentally among each other and with
the DOP tree using a benchmark suite of real-world CAD
data.
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1 Introduction
Fast and exact collision detection of polygonal objects un-
dergoing rigid motions is at the core of many simulation
algorithms in computer graphics. In particular, virtual re-
ality applications such as virtual prototyping need exact
collision detection at interactive speed for very complex,
arbitrary “polygon soups”. It is a fundamental problem
of dynamic simulation of rigid bodies, simulation of nat-
ural interaction with objects, and haptic rendering. It is
very important for a VR system to be able to do all sim-
ulations at interactive frame rates. Otherwise, the feeling
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of immersion or the usability of the VR system will be
impaired.

The requirements on a collision detection algorithm for
virtual prototyping are: it should be real-time in all situ-
ations, it should not make any assumption about the in-
put, such as convexity, topology, or manifoldedness (be-
cause CAD data is usually not “well-behaved” at all), and
it should not make any assumptions or estimations about
the position of moving objects in the future. Finally, poly-
gon numbers are very high, usually in the range from
10,000 up to 100,000 polygons per object.

The performance of any collision detection based on hi-
erarchical bounding volumes depends on two factors: (1)
the tightness of the bounding volumes (BVs), which will
influence the number of bounding volume tests, and (2)
the simplicity of the bounding volumes, which determines
the efficiency of an overlap test of a pair of BVs [GLM96].
In our algorithm, we sacrifice tightness for a fast overlap
test.

Our hierarchical data structure is a tree of boxes, which
are axis-aligned in object space. Each leaf encloses exactly
one polygon of the object. Unlike classical AABB trees,
however, the two children of a box cannot be positioned
arbitrarily (hence we call this data structure “restricted
boxtree”, or just “boxtree”). This allows for very fast
overlap tests during simultaneous traversal of “tumbled”
boxtrees.

Because of the restriction we place on the relation be-
tween child and parent box, each node in the tree needs
very little memory, and thus we can build and store hi-
erarchies for very large models with very little memory.
This is important as the number of polygons that can be
rendered at interactive frame rates seems to increase cur-
rently even faster than Moore’s Law would predict.

We also propose a very efficient algorithm for con-
structing good boxtrees. This is important in virtual pro-
totyping because the manufacturing industries want all
applications to compute auxiliary and derived data at startup
time, so that they do not need to be stored in the product
data management system. With our algorithm, boxtrees
can be constructed at load-time of the geometry even for
high complexities.

1



In order to guide the top-down construction of bound-
ing volume hierarchies, a criterion is needed to determine
a good split of the set of polygons associated with each
node. In this paper, we present a more formal argument
than previous heuristics did to derive such a criterion that
yields good hierarchies with respect to collision detection.
The idea of the argument is generally applicable to all hi-
erarchical collision detection data structures.

We also propose a general optimization technique, that
can be applied to most hierarchical collision detection al-
gorithms.

Our new BV hierarchy can also be used to speed up ray
tracing or occlusion culling within AABBs.

The rest of the paper is organized as follows. Section 2
gives an overview of some of the previous work. Our new
data structure and algorithms are introduced in Section 3,
while Section 4 describes the efficient computation of box-
trees. Results are presented in Section 5.

2 Related Work
Bounding volume trees seem to be a very efficient data
structure to tackle the problem of collision detection for
rigid bodies.

Hierarchical spatial decomposition and bounding vol-
ume data structures have been known in computational
geometry, geometrical data bases, and ray tracing for a
long time. Some of them are k-d trees and octrees [PS90],
R-trees [BKSS90], and OBB trees [AK89].

For collision detection, sphere trees have been explored
by [Hub96] and [PG95]. [GLM96] proposed an algorithm
for fast overlap tests of oriented (i.e., non-axis-parallel)
bounding boxes (OBBs). They also showed that an OBB
tree converges more rapidly to the shape of the object than
an AABB tree, but the downside is a much more expensive
box-box intersection test. In addition, the heuristic for
construction of OBB trees as presented in [GLM96] just
splits across the median of the longest side of the OBB.

DOP trees have been applied to collision detection by
[KHM+98] and [Zac98]. AABB trees have been studied
by [Zac97, vdB97, LAM01]. All of these data structures
work quite efficiently in practice, but their memory usage
is considerably higher than needed by our hierarchy, even
for sphere trees.

More recently, hierarchical convex hulls have been pro-
posed for collision detection and other proximity queries
by [EL01]. While showing excellent performance, the
memory footprint of this data structure is even larger than
that of the previously cited ones. This is even further in-
creased by the optimization techniques the authors pro-
pose for the collision detection algorithm.
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Figure 1: We have found that for most nodes in an AABB
tree there is very little empty space between them and
their parent on most sides.

Non-hierarchical approaches try to subdivide object space,
for instance by a voxel grid [MPT99] or Delaunay triangu-
lation [Gei00]. In particular, non-hierarchical approaches
seem to be more promising for collision detection of de-
formable objects [ABG+00, HMB01, FL01].

Regarding the name of our data structure, we would like
to point out that [BCG+96] presented some theoretical
results on a class of bounding volume hierarchies, which
they called BOXTREE, too. However, their data structure
is substantially different from ours, and they do not pro-
vide any run-time results.

Bounding volume hierarchies are also used in other
areas, such as nearest-neighbor search and ray tracing.
For point k-d trees, [DDG00] have shown that a longest-
side cut produces optimal trees in the context of nearest-
neighbor searches. However, it seems that this rule does
not apply to collision detection.

3 Data Structure and Algorithms
Given two hierarchical BV data structures for two objects,
the following general algorithm scheme can quickly dis-
card sets of pairs of polygons which cannot intersect:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children A[i] and B[j] do

traverse(A[i],B[j])
end for

end if
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Figure 2: Child nodes are obtained from the parent node
by splitting off one side of it. The drawing shows the
case where a parent has a lower and an upper child that
have coplanar splitting planes.

Almost all hierarchical collision detection algorithms
implement this traversal scheme in some way. It allows
to quickly “zoom in” on pairs of close polygons. The char-
acteristics of different hierarchical collision detection al-
gorithms lie in the type of BV used, the overlap test for
a pair of nodes, and the algorithm for construction of the
BV trees.

In the following, we will first introduce our type of BV,
then we will present several algorithms to check them for
overlap.

3.1 Restricted Boxtrees

In a BV hierarchy, each node has a BV associated that com-
pletely contains the BVs of its children. Usually, the par-
ent BV is made as tight as possible. In binary AABB trees,
this usually means that a parent box touches each child
box on at least 3 sides. We have pursued this observation
further: in the AABB tree of three representative objects,
we have measured the empty space between all of its nodes
and their parent nodes.1 Figure 1 shows that for about half
of all nodes the volume of empty space between its bound-
ing box and its parent’s bounding box is only about 10%.

The reason for the closeness between child and parent
box along most directions is the way we split a set of poly-
gons. One can, of course, imagine other splitting proce-
dures that will lead to boxtrees not exhibiting this prop-
erty. But the usefulness of such construction schemes
seems to be questionable.

Consequently, it would be a waste of memory (and com-
putations during collision detection), if we stored a full
box at each node. Therefore, our hierarchy never stores

1 For all nodes, one side was excluded in this calculation, which was the
side where the construction performed the split.

BV hierarchy Bytes FLOPS

Restr. Boxtree (3.2.1) 9 12
Restr. Boxtree (3.2.4) 9 24
Restr. Boxtree (3.2.3) 9 82
sphere trees 16 29
AABB tree 28 90
OBB tree 64 243
24-DOP tree 100 168

Table 1: This table summarizes the amount of memory
per node needed by the various BV hierarchies, and the
number of floating point operations per node pair in the
worst case during collision detection. The number of
bytes also includes one pointer to the children. If the
optimization technique from Section 3.2.5 is applied,
then all FLOPS counts can be further reduced (about a
factor 2 for boxtrees).

a box explicitly. Instead, each node stores only one plane
that is perpendicular to one of the three axes, which is the
(almost) least possible amount of data needed to represent
a box that is sufficiently different from its parent box. We
store this plane using one float, representing the distance
from one of the sides of the parent box (see Figure 2). The
reason for this will become clear below.2 In addition, the
axis must be stored (2 bits) and we need to distinguish be-
tween two cases: whether the node’s box lies on the lower
side or on the upper side of the plane (where “upper” and
“lower” are defined by the local coordinate axes of the ob-
ject).

Because each box in such a hierarchy is restricted on
most sides, we call this a restricted boxtree. Obviously,
this restriction makes some nodes in the boxtree hierar-
chy slightly less tight than in a regular AABB tree. But,
as we will see, this does not hurt collision detection per-
formance. On the contrary, the resulting hierarchical data
structure will allow very fast traversal.

The observation we made above for AABB trees is prob-
ably also true for other hierarchies utilizing some kind of
axis-aligned BV (such as DOPs). If a DOP tree hierarchy
is built according to the heuristics proposed in [Zac98], or
according to the one proposed for OBB trees in [GLM96],
then it is very likely that about half of the sides of each
child DOP touch the corresponding side of the father DOP
(and are, in fact, a subset of it). Therefore, the technique
proposed above, together with the one below for testing
the overlap, could be applied there as well.

Section 4 will describe in detail our algorithm to con-
struct a restricted boxtree.

2 One could picture the resulting hierarchy as a cross between k-d trees
and AABB trees.
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Figure 3: Only one value per axis s needs to be recom-
puted for the overlap test.

Figure 4: A reduced version of the separating axis test
seems to be a good compromise between the number
of false positives and computational effort.

3.2 Box Overlap Tests

The basic step in each hierarchical collision detection al-
gorithm is the overlap test of two nodes of the hierar-
chy. There are usually two contradictory requirements:
it should be fast, and it should return few or no false pos-
itives.3

In the following, we will describe several variations of
an algorithm to test the overlap of two restricted boxes,
exploiting the special properties of the restricted boxtree.
All algorithms will assume that we are given two boxes A
and B, and that (b1, b2, b3) is the coordinate frame of box
B with respect to A’s object space.

3.2.1 Axis alignment

Since axis-aligned boxes offer probably the fastest over-
lap test, the idea of our first overlap test is to enclose B
by an axis-aligned box (l, h) ∈ R3 × R3, and then test
this against A (which is axis-aligned already). In the fol-
lowing, we will show how this can be done with minimal
computational effort for restricted boxtrees.

We already know that the parent boxes of A and B must
overlap (according to the test proposed here). Notice that
we need to compute only 3 values of (l, h), one along each
axis. The other 3 can be reused from B’s parent box. No-
tice further that we need to perform only one operation to
derive box A from its parent box.

Assume that B is derived from its parent box by a split-
ting plane perpendicular to axis b ∈ {b1, b2, b3}, which
is distance c away from the corresponding upper side of
the parent box (i.e., B is a lower child).

3 These requirements are somewhat related to the ones on the type of BV
itself, i.e., it should allow for fast overlap tests, and it should be as tight
as possible. Both sets of requirements can be expressed in the total cost
function for interference detection T = NbvCbv + NtrCtr [GLM96].

We have already computed the parent’s axis-aligned
box, which we denote by (l0, h0). Then, lx , hx can be com-
puted by (see Figure 3)

hx =

{
h0

x − cbx if bx > 0
h0

x if bx ≤ 0

and

lx =

{
l0
x if bx > 0

l0
x − cbx if bx ≤ 0

Similarly, if B is an upper child, lx , hx can be computed by

hx =

{
h0

x if bx > 0
h0

x + cbx if bx ≤ 0

and

lx =

{
l0
x + cbx if bx > 0

l0
x if bx ≤ 0

Analogously, the new value along the other 2 axes can be
computed.

In addition to saving a lot of computations, we also save
half of the comparisons of the overlap tests of aligned
boxes. Notice that we need to compare only 3 pairs of
coordinates (instead of 6), because the status of the other
3 has not changed. For example, the only comparison we
need to do along the x axis is

B and A do not overlap if

{
hx < lA

x if bx > 0
lx > hA

x if bx ≤ 0

where lA
x , hA

x are the x-coordinates of box A. Note that
the decision bx ≶ 0 has been made already when comput-
ing hx or lx. Of course, these comparisons are precom-
puted, so that during traversal we only check a precom-
puted boolean value.
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Overall, this method needs 12 floating point operations
(3 mul. + 4 add. + 5 comp.) for checking the overlap of a
pair of nodes of a restricted boxtree.

3.2.2 Lookup tables

Since the bi are fixed for the complete traversal of two
boxtrees, and the c’s can be only from a range that is
known at the beginning of the traversal, it would seem
that the computations above could possibly be sped up by
the use of a lookup table.

At the beginning of the traversal, we compute 3x3 lookup
tables Li

j with 1000 entries each, one table for each com-

ponent bi
j. Then, during traversal, a term of the form

hx = h0
x − cbs

x is replaced by hx = h0
x + L[s][x][c], where

c now is an integer and s is the splitting axis.
See below for results and discussion.

3.2.3 Separating axis test

The separating axis test (SAT) is a different way to look
at linear separability of two convex polytopes: two convex
bodies are disjoint if and only if we can find a separating
plane, which is equivalent to finding an axis such that the
two bodies projected onto that axis (yielding two line in-
tervals) are disjoint (hence “separating axis”). For boxes,
[GLM96] have shown that it suffices to consider at most
15 axes.

We can apply this test to the nodes in our restricted box-
tree.4 As previously, we do not need to compute all line in-
tervals from scratch. Instead, we modify only those ends
of the 15 line intervals that are different from the ones of
the parent.

Let s be one of the candidate separating axes and assume
that B is a lower box (see again Figure 3). As above, for a
lower box we compute only

{
hs = h0

s − c(b · s) if (b · s) > 0
ls = l0

s − c(b · s) if (b · s) ≤ 0

(and analogously for an upper box). Of course, we can
precompute all 3x15 possible products bi · sj.

The advantage of this test is that it is precise, i.e., there
are no false positives. One disadvantage of this test is that
there are 9 axes that are not perpendicular to A nor to B
(these are the edge-edge cross products). For instance, in
order to update the line intervals of B on the 3 separating
axes given by bi, we do not need any multiplication at all.
This is not possible with the 9 edge-edge axes.

4 In fact, our test by axis alignment can be considered a variant of the sep-
arating axis test, where only a special subset of axes is being considered
instead of the full set.

In total, this method needs 82 FLOPS in the worst case,
which is much higher than the method above, but still less
than 200 FLOPS worst case for OBBs.5

3.2.4 SAT lite

As we have seen in the section above, the 9 candidate axes
obtained from all possible cross products of the edge orien-
tations do not lend themselves to some nice optimizations.
Therefore, a natural choice of a subset of the 15 axes would
be the set of 6 axes consisting of the three coordinate axes
of A and B resp. (see Figure 4). This has been proposed
by [vdB97] (who has called it “SAT lite”). Here, we apply
the idea to restricted boxtrees and show that even more
computational effort can be saved.

This variant can also be viewed as the first variant be-
ing executed two times (first using A’s then B’s coordinate
frame). The total operation count is 24.

3.2.5 Further Optimizations

In this section, we will describe several techniques to fur-
ther improve the speed of restricted boxtrees and hierar-
chical collision detection in general.

The first optimization technique is a general one that
can be applied to all algorithms for hierarchical collision
detection if the overlap test of a pair of nodes involves
some node-specific computations that can be performed
independently for each node (as opposed to pair-specific
computations). Examples of this are the matrix multipli-
cation at each node of a OBB hierarchy traversal, and the
computations needed for the axis alignment or separating
axis intervals during a restricted boxtree traversal.

The idea is to shift the node-specific computations up
one level in the traversal. Assume that the costs of a node
pair overlap test consist of a node-specific part c1 and an
overlap-test-specific part c2. Then, the costs for a pair
(A, B) are C(A, B) = 2c1 + c2 + 4(2c1 + c2) = 10c1 +
5c2, because if (A,B) are found to overlap, all 4 pairs of
children need to be checked. However, we can compute
the node-specific computations already while still visiting
(A,B) and pass them down to the children pairs, which re-
duces the costs to C(A, B) = c2 + 2c1 + 4c2 = 2c1 + 5c2.

If the node-specific computations have to be applied
only to one of the two hierarchies (or the node-specific
costs of the other hierarchy are neglectible), then the dif-
ference is even larger, i.e., 9c1 + 5c2 vs. 1c1 + 5c2.

Depending on the actual proportions of c1 and c2, this
can result in dramatic savings. In the case of restricted
boxtrees with our first overlap test (axis alignment), this
technique reduces the number of floating point operations

5 The worst case, of course, actually happens for exactly half of all node
pairs being visited during a simultaneous traversal.
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to 1.5 multiplications, 2 additions, and 5 comparisons! In
the case of restricted boxtrees, this suggests to actually
store the splitting plane offset of a node with its parent,
so that each node holds two splitting planes. An additional
advantage is that we can spend the storage of the leaves for
triangle information, and we still have a proper restricted
box available for them.

While this technique might already be implemented in
some collision detection code, it has not been identified as
a general optimization technique for hierarchical collision
detection.

As usual, we arrange the children of a common parent
node contiguously in memory, so that we need to keep
only one pointer in the parent to the first of its children.
This is not so much a necessity with other hierarchies, the
nodes of which already have a large “net” memory foot-
print, but it does save considerable memory with our re-
stricted boxtrees.

4 Construction of Boxtrees
The performance of any hierarchical collision detection
depends not only on the traversal algorithm, but also cru-
cially on the quality of the hierarchy, i.e., the construction
algorithm.

Our algorithm pursues a top-down approach, because
that usually produces good hierarchies and allows for very
efficient construction. Other researchers have pursued the
bottom-up approach [BCG+96], or an insertion method
[GS87, BKSS90].

4.1 A General Criterion

Any top-down construction of BV hierarchies consists of
two steps: given a set of polygons, it first computes a BV
(of the chosen type) covering the set of polygons, then it
splits the set into a number of subsets (usually two).

Before describing our construction algorithm, we will
derive a general criterion that can guide the splitting pro-
cess, such that the hierarchy produced is good in the sense
of fast collision detection.

Let C(A, B) be the expected costs of a node pair (A, B)
under the condition that we have already determined dur-
ing collision detection that we need to traverse the hierar-
chies further down. Assuming binary trees and unit costs
for an overlap test, this can be expressed by

C(A, B) = 4 + ∑
i,j=1,2

P(Ai , Bj) · C(Ai , Bj) (1)

where Ai , Bj are the children of A and B, resp., and P(Ai , Bj)
is the probability that this pair must be visited (under the
condition that the pair (A, B) has been visited).

B1
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possible
locus of

anchor points
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Figure 5: By estimating the volume of the Minkowski
sum of two BVs, we can derive an estimate for the cost
of the split of a set of polygons associated with a node.

An optimal construction algorithm would need to ex-
pand (1) down to the leaves:

C(A, B) =P(A1, B1) + P(A1, B1)P(A11, B11)
+ P(A1, B1)P(A12, B11) + . . . +

P(A1, B2) + P(A1, B2)P(A11, B21)
+ . . .

(2)

and then find the minimum. Since we are interested in
finding a local criterion, we approximate the cost function
by discarding the terms corresponding to lower levels in
the hierarchy, which gives

C(A, B) ≈ 4
(
1 + P(A1, B1) + . . . + P(A2, B2)

)
(3)

Now we will derive an estimate of the probability P(A1, B1).
For sake of simplicity, we will assume in the following
that AABBs are used as BVs. However, similar arguments
should hold for all other kinds of convex BVs.

The event of box A intersecting box B is equivalent to
the condition that B’s “anchor point” is contained in the
Minkowski sum A⊕ B. This situation is depicted in Fig-
ure 5.6 Because B1 is a child of B, we know that the an-
chor point of B1 must lie somewhere in the Minkowski
sum A ⊕ B ⊕ d, where d = anchor(B1) − anchor(B).

6 In the figure, we have chosen the lower left corner of B as its anchor
point, but this is arbitrary, of course, because the Minkowski sum is in-
variant under translation.
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Since A1 is inside A and B1 inside B, we know that
A1 ⊕ B1 ⊂ A ⊕ B ⊕ d. So, for arbitrary convex BVs the
probability of overlap is

P(A1, B1) =
Vol(A1 ⊕ B1)

Vol(A⊕ B⊕ d)

=
Vol(A1 ⊕ B1)
Vol(A⊕ B)

(4)

In the case of AABBs, it is safe to assume that the aspect
ratio of all BVs is bounded by α. Consequently, we can
bound the volume of the Minkowski sum by

Vol(A) + Vol(B) +
2
α

√
Vol(A) Vol(B) ≤

Vol(A⊕ B) ≤
Vol(A) + Vol(B) + 2α

√
Vol(A) Vol(B) (5)

So we can estimate the volume of the Minkowski sum of
two boxes by

Vol(A⊕ B) ≈ 2(Vol(A) + Vol(B))

yielding

P(A1, B1) ≈ Vol(A1) + Vol(B1)
Vol(A) + Vol(B)

(6)

Since Vol(A) + Vol(B) has already been committed
by an earlier step in the recursive construction, Equa-
tion 3 can be minimized only by minimizing Vol(A1) +
Vol(B1). This is our criterion for constructing restricted
boxtrees.

4.2 The Algorithm

According to the criterion derived above, each recursion
step will try to split the set of polygons so that the cost
function (3) is minimized. This is done by trying to find
a good splitting for each of the three coordinate axes, and
then selecting the best one. Along each axis, we consider
three cases: both subsets form lower boxes with respect
to its parent, both are upper boxes, or one upper and one
lower box.

In each case, we first try to find a good “seed” polygon
for each of the two subsets, which is as close as possible
to the outer border that is perpendicular to the splitting
axis. Then, in a second pass, we consider each polygon
in turn, and assign it to that subset whose volume is in-
creased least. In order to prevent “creeping greediness”,7

7 This happens, for instance, when the sequence of polygons happens to
be ordered such that each polygon increases one subset’s volume just a
little bit, so that the other subset never gets a polygon assigned to.
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Figure 6: This plot shows the build time of restricted
boxtrees for various objects.

we run alternatingly through the array of polygons. An
alternative would be to access them in a random order

After several good splitting candidates have been ob-
tained for all three axes, we just pick the one with least
total volume of the subsets.

The algorithm and criterion we propose here could also
be applied to construct hierarchies utilizing other kinds of
BVs, such as OBBs, DOPs, and even convex hulls. We
suspect that the volume of AABBs would work fairly well
as an estimate of the volume of the respective BVs.

We have also tried a variant of our algorithm, which
considers only one axis (but all three cases along that axis).
This was always the axis corresponding to the longest side
of the current box. This experiment was motivated by a
recent result for k-d trees [DDG00]. For the result, see
Section 5.

In our current implementation, the splitting planes of
both children are coplanar. We have not yet explored the
full potential of allowing perpendicular splitting planes,
too.

Our algorithm has proven to be geometrically robust,
since there is no error propagation. Therefore, a simple
epsilon guard for all comparisons suffices.

4.3 Complexity

The complexity of constructing a boxtree is in O(n log n),
where n is the number of polygons. This is supported by
experiments (see Section 5).

Our algorithm takes a constant number of passes over
all polygons associated with a node in order to split a set
of polygons F . Each pass is linear in the number of poly-
gons. Every split will produce two subsets such that F =

F1
·∪ F2. Therefore, T(n) = cn + T(αn) + T((1− α)n).

In other words, each polygon gets visited exactly cn
times on each level. Assuming there are log n levels, the
total work over all levels is O(n log n).
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Figure 7: Some of the objects of our test suite. They are (left to right): body of a car, a car headlight, the lock of a
car door (and a torus). (Data courtesy of VW and BMW)
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Figure 8: Our benchmark procedure computes the av-
erage collision detection time for a range of distances
for each object in the test suite. In this example, the
objects are the headlight with 64000 polygons and the
door lock with 80000 polygons; the algorithm is the SAT
lite.

Figure 9: A comparison of the different overlap tests
for pairs of boxtree nodes shows that the “SAT lite” test
seems to offer the best performance.

5 Results
Memory requirements of different hierarchical data struc-
tures can be compared by calculating the memory foot-
print of one node, since a binary tree with n leaves always
has 2n − 1 nodes.8 Table 1 summarizes the number of
bytes per node for different BV hierarchies (only inner
nodes are considered, because leaf nodes often store infor-
mation about the polygon instead of a BV).

Table 1 also compares the number of floating point oper-
ations needed for one node-node overlap test by the meth-
ods described above and three other fast hierarchical col-
lision detection algorithms (OBB, DOP, and sphere tree).
This does not, of course, imply the actual performance of
any of these algorithms.

In the following, all results have been obtained on a
Pentium-III with 1 GHz and 512 MB. All algorithms have

8 The per-node memory consumption is also a sensible measure for com-
paring k-ary trees, provided each BVH stores the same number of poly-
gons per leaf.

been implemented in C++ on top of the scene graph OpenSG.
The compiler was gcc 3.0.4.

For timing the performance of our algorithms, we have
used a set of CAD objects, each of which with varying
complexities (see Figure 7), plus some synthetic objects
like sphere and torus. Benchmarking is performed by the
following scenario: two identical objects are positioned at
a certain distance d = dstart from each other. The distance
is computed between the centers of the bounding boxes of
the two objects; objects are scaled uniformly so they fit
in a cube of size 23. Then, one of them performs a full
tumbling turn about the z- and the x-axis by a fixed, large
number of small steps (5000). With each step, a collision
query is done, and the average collision detection time for
a complete revolution at that distance is computed. Then,
d is decreased, and a new average collision detection time
is computed.

Figure 8 shows, as an example, the output of our bench-
marking procedure for two objects. In order to get a better
overview when comparing different algorithms, we sum-
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Figure 10: Runtime comparison between the restricted boxtree and the DOP tree for various objects and polygon
complexities.

marize such a plot by the average time taken over that
range of distances which usually occur in practical appli-
cations, such as physically-based simulation.

Figure 9 compares the performance of the various box
overlap tests presented in Section 3.2 for one of the CAD
objects. Similar results were obtained for all other ob-
jects in our suite. Although the full separating axis test
can determine the overlap of boxes without false posi-
tives, it seems that the computational effort is not worth
it, at least for axis-aligned boxes ([vdB97] has arrived at
a similar conclusion for general AABB trees). From our
experiments it seems that the “SAT lite” offers the best
performance among the three variants.

A runtime comparison between our boxtree algorithm
and DOP trees for various objects can be found in Fig-
ure 10. It seems that boxtrees offer indeed very good per-
formance (while needing much less memory). This result
puts restricted boxtrees in the same league as DOP trees
[Zac98] and OBB trees [GLM96].

For sake of brevity, we have omitted our experiments
assessing the performance of the lookup table approach.
It has turned out that lookup tables offer a speedup of at
most 8%, and they were even slower than the non-lookup
table version for the lower polygon complexities because
of the setup time for the tables. The reason might be that

floating point and integer arithmetic operations take al-
most the same number of cycles on current CPUs.

As shown in Section 4, boxtrees can be built in O(n).
Figure 6 reveals that the constant is very small, too, so
that the boxtrees can be constructed at startup time of the
application.

6 Conclusion
We have proposed a new hierarchical BV data structure
(the restricted boxtree) that needs arguably the least pos-
sible amount of memory among all other BV trees while
performing about as fast as DOP trees. It uses axis-aligned
boxes at the nodes of the tree, but it does not store them
explicitly. Instead, it just stores some “update” informa-
tion with each node, so that it uses, for instance, about a
factor 7 less memory than OBB trees.

In order to construct such restricted boxtrees, we have
developed a new algorithm that runs in O(n) (n is the
number of polygons) and can process about 20,000 poly-
gons per second on a 1 GHz Pentium-III.

We also propose a better theoretical foundation for the
criterion that guides the construction algorithm’s splitting
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procedure. The basic idea can be applied to all BV hierar-
chies.

A number of algorithms have been developed for fast
collision detection utilizing restricted boxtrees. They gain
their efficiency from the special features of that BV hier-
archy. Benchmarking them has shown that one of them
seems to perform consistently better than the others.

Several optimization techniques have been presented
that further increases the performance of our new col-
lision detection algorithm. The most important one can
also be applied to most other hierarchical collision detec-
tion algorithms, and will significantly improve their per-
formance, too.

Finally, using a suite of CAD objects, a comparison with
DOP trees suggested that the performance of restricted
boxtrees is about as fast in most cases.

6.1 Future Work

While BV trees work excellently with rigid objects, it is
still an open issue to extend these data structures to ac-
commodate deforming objects.

Our new BV hierarchy could also be used for other
queries such as ray tracing or occlusion culling. It would
be interesting to evaluate it in those application domains.

As stated above, most BV trees are binary trees. How-
ever, as [ES99] have observed, other arities might yield
better performance. This parameter should be optimized,
too, when constructing boxtrees.

So far, we have approximated the cost equation 2 only
to first order (or rather, first level). By approximating
it to a higher order, one could possibly arrive at a kind
of “look-ahead” criterion for the construction algorithm,
which could result into better hierarchies.
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