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Abstract

We present a novel massively-parallel algorithm that allows real-time distance computations between arbitrary
3D objects and unstructured point cloud data. Our main application scenario is collision avoidance for robots
in highly dynamic environments that are recorded via a Kinect, but our algorithm can be easily generalized for
other applications such as virtual reality. Basically, we represent the 3D object by a bounding volume hierarchy,
therefore we adopted the Inner Sphere Trees data structure, and we process all points of the point cloud in parallel
using GPU optimized traversal algorithms. Additionally, all parallel threads share a common upper bound in the
minimum distance, this leads to a very high culling efficiency. We implemented our algorithm using CUDA and
the results show a real-time performance for online captured point clouds. Our algorithm outperforms previous
CPU-based approaches by more than an order of magnitude.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality

1. Introduction

During the last years we observed that humans and robots
move more and more to close ranks. For instance au-
tonomous robotic vacuum cleaners have already entered our
living rooms. In the future the importance of such tasks that
unify human and robotic workspaces will increase signifi-
cantly, not only for small service robots, but also in in health-
care, manufacturing, and everyday life. As a consequence,
safety measures protecting humans will become paramount
in the software of robots employed in those areas (which is,
of course, not as critical in small service robots).

This means, unexpected collisions between humans and
robots have to be avoided under all circumstances. This chal-
lenge can be solved by the design of the robotic manipu-
lators and on appropriate development of robust collision
avoidance methods. Actually, collision avoidance includes
three major parts: the perception of the environment, the al-
gorithmic detection of collisions based on environment in-
formation and finally, the appropriate control of the robot
[FKLK12]. All those parts must be solved in real-time be-
cause people tend to behave unpredictably.

Several different sensor types have been proposed for
sensing the environment, including monocular cameras
[CDR∗07], stereoscopic cameras [KA08], laser scanners

[WGS04], time-of-flight cameras [PMR∗08] and especially,
Microsoft’s inexpensive depth camera Kinect. All these sen-
sor types record and output some kind of point cloud data,
most often an pixel image with additional depth information
for each pixel. On the other hand, most fast collision detec-
tion algorithms usually require a polygonal mesh represen-
tation of the objects to work properly.

Obviously, it is possible to simply reconstruct a mesh
from the sensed point cloud and than use traditional colli-
sion detection methods to determine the minimum distances
between the robot and its environment. Unfortunately, re-
cent reconstruction methods are relatively slow and can be
hardly processed in real-time for large point clouds. Addi-
tionally, almost all traditional collision detection algorithms
rely on acceleration data structures like bounding volume
hierarchies (BVHs) that have to be constructed in a time-
consuming pre-processing step. These two limitations make
it impossible to use the mesh reconstruction method under
real-time constraints.

In this paper, we propose a new method that allows us to
compute the minimum distance between a robot and its dy-
namic environment in real-time. In our approach, the robot is
modelled by a polygonal mesh and the environment is rep-
resented by a point cloud like it is output by most sensor
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Figure 1: Left: a KUKA Omnirob robot. Right: our scenario: a KUKA robot senses its environment via a Kinect and computes
the minimum distance (blue line) to the point cloud.

types. A new point cloud is recorded by the sensor in each
frame. We compute a BVH for each part of the robot’s ge-
ometry. More precisely, we adopted the Inner Sphere Trees
data structure that has proven to be very fast for distance
computations [WZ09], but our approach can be easily used
with any other BVH data structure. The volumetric object
representation of ISTs does not only support distance com-
putations, but it also reports collisions if a point of the point
cloud is located inside the object. However, we do not re-
quire any complicated data structures or pre-processing of
the point cloud; we simply use it directly as it is output by
the sensor.

In principle, we test the robot’s BVHs against all points
in the point cloud using traditional BVH-traversal methods.
Such a point cloud usually consists of a large amount of
points. For instance, a single Kinect image contains approx-
imately 300.000 points. For a robot that is modelled of eight
rigid parts this would result in 8× 300.000 BVH traversals.
This could be hardly processed sequentially on the CPU in
real-time. Fortunately, the BVH can be almost trivially paral-
lelized; all points can be tested individually, i.e. independent
from all other points. In our massively parallel algorithm, all
threads share additionally the same upper bound computed
so far during the traversal. This results in a dramatically bet-
ter culling efficiency than in a simple sequential computa-
tion.

One of the main purposes of this work is to explore the
large design space on both the algorithmic and the imple-
mentation level, and to find the optimal solution. For in-
stance, we applied an octree pre-filtering of the point cloud
or we implemented a non-recursive version of the BVH-
traversal that should be better suited for the GPU. Surpris-
ingly, most of these ”improvements” resulted in dead ends
– they simply run slower than the naive approach. Never-
theless we include their description in our paper in order to
prevent other researchers from running into the same dead
ends.

Because of its structural simplicity, e.g. the lack of com-

plicated data structures for the point cloud, our novel ap-
proach is simple to implement and it works very robustly. We
tested it in a real-world scenario using a KUKA Omnirob:
the Omnirob consists of a 7-DOF KUKA Light-Weight-
Robot (LWR) mounted on an autonomously driving car that
adds even more degrees of freedom to the platform. We
mounted a Kinect on the end-effector to sense the environ-
ment. Our algorithm is able to answer distance queries in less
than 3 msec for full resolution Kinect depth images and in 10
msec for point clouds consisting of 5M points. To our knowl-
edge, this is the first description of an algorithm that can
perform this task in real-time. However, our algorithm is not
restricted to this robotic environment. Basically, the same
problem appears also in virtual environments where depth
sensors are used to track objects or users such as games or
virtual reality applications.

2. Related Work

The topic of collision detection is an essential part in most
interactive simulations and computer graphics and it has
been extensively researched in the literature. Usually, 3D ob-
jects in these scenarios are represented by polygonal meshes.
Hence, most work on collision detection has been spend to
accelerate queries for this kind of object representation. Of-
ten, some kind of bounding volume hierarchy is used in or-
der to early prune parts of the geometry that can not collide.
Such hierarchies have been described for different bounding
volumes that all have their unique strengths and weaknesses,
including axis-aligned bounding box boxes [vdB98], orien-
tated bounding boxes [GLM96], spheres [Hub93] or discrete
oriented polytopes [ZL11]. Basically, these data structures
are used for simple boolean collision queries, but they can
be easily extended to compute minimum distances as well.
Johnson et al [JC98] describes a generalized basic BVH-
based distance computation in a framework for minimum
distance computations.

There also exist more specialized data structures for dis-
tance computations: for instance the Linn-Canny algorithms

c© The Eurographics Association 2014.



M. Kaluschke, U. Zimmermann, M. Danzer, G. Zachmann and R. Weller / Massively-Parallel Proximity Queries for Point Clouds

Figure 2: Left: the real robot. Half left: the wireframe model of the robot. Half right: the model of the robot filled with spheres.
Right: some hierarchy levels of the IST.

performs a local search using pre-computed Voronoi dia-
grams [LC91] but it works only for convex polyhedra. Other
approaches are able to additionally provide a lower-bound,
like the spherical sector representation presented by Bonner
et al [BK88], or the inner-outer ellipsoids [JLS∗01,LKC06].
Another alternative for distance computations are distance
fields [FSG03] that can be also combined with BVHs
[FUF06].

However, all these approaches were designed for sequen-
tial processors. Implementations that use parallel CPU in-
structions like OpenMP [ZpTL08] or SSE give considerable
speedups of around 2.7 compared to sequential algorithms,
but there is more potential in modern GPUs. For triangle
mesh representations there already exist a few approaches
that make use of massively parallel processing of GPUs.
For example [Kar12] used the graphics card for collision
detection between multiple objects with a single common
object. Lauterbach et al [LMM10] implemented a distance
computation using OBB trees on the GPU. Some methods
have been described that do not require BVHs: for instance
Faure et al [FBAF08] used layered depth images, Mainzer
and Zachmann [MZ13] proposed a parallel sweep-and-prune
approach and Weller et al [WFZ13] showed an approach that
is based on hierarchical grids.

Compared to mesh representations, the literature on colli-
sion detection for point clouds is relatively sparse. One of the
first approaches to detect collision between point clouds was
developed by [KZ04]. They use a bounding volume hierar-
chy in combination with a sphere covering of parts of the sur-
face. [KZ05] proposed an interpolation search approach of
the two implicit functions in a proximity graph in combina-
tion with randomized sampling. [EFGS07] support only col-
lisions between a single point probe and a point cloud. For
this, they fill the gaps surrounding the points with AABBs
and use an octree for further acceleration. [FOAM10] used
R-trees, a hierarchical data structure that stores geometric
objects with intervals in several dimensions [Gut84], in com-
bination with a grid for the broad phase. [PCM11] described
a stochastic traversal of a bounding volume hierarchy. By
using machine learning techniques, their approach is also
able to handle noisy point clouds. In addition to simple col-

lision tests, they support the computation of minimum dis-
tances [PCM12].

Also some methods for online collision avoidance in
robotics has been described. Some authors simply include
a high number of additional sensors like infra red or ul-
trasound to the robots or the environment. These sensors
have a limited range of view or produce only coarse data
but their combined output can be used to avoid collisions
with abruptly popping up objects [HG05]. Other works
use neural networks [BJ11], behavioural bayesian networks
[YBOB11] or optical flow algorithms for sequences of im-
ages [LW05] that can be further improved by also including
depth images [RTT09]. [KH07] introduced the idea to com-
pute distances directly from single images of the environ-
ment using computer-vision classification techniques. How-
ever, they did not include depth values.

Especially the release of Microsofts inexpensive depth
camera Kinect inspired many researchers to new online col-
lision avoidance algorithms that work directly on the depth
image. For example, [BV12] proposed an error minimiza-
tion method providing real-time robot pose estimation. How-
ever, their approach is restricted to ground robots moving
in a 2D space. Also [BMR∗10] represented the robot only
by a single point in order to simplify the distance compu-
tation. [SBF09] compared the obstacle and the robot depth
maps by an image plane projection in 3D. The approach that
is closely related to our method was presented by [FKLK12].
They also use a KUKA Light-Weight-Robot and a Kinect for
the data retrieval. Their primary focus is the computation of
the collision responses based on distances and velocities and
less the acceleration of the distance queries. Actually, the
distance computation is derived from a simple spherical ap-
proximation of the robot’s surface. But, they do not describe
any acceleration data structures for the distance queries. Like
us, [PSCM13] used a BVH representation of the robot’s ge-
ometry. They applied a pre-filtering of the point cloud that
is based on an octree to reduce the number of BVH-point
tests. However, the construction of the octree is not included
in the timings their primary application was offline path-
planning for static scenes rather than online distance com-
putation for dynamic scenes. Actually, we have presented a
similar octree-based algorithm before [Wel12]. Our experi-
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ments have shown that an online construction of an octree is
too slow for real-time collision avoidance.

3. Our Approach

Algorithm 1: getMinDist( Set of ISTs R, point cloud P )

minDistance = maximum float
forall the ISTs r ∈ R do

forall the Points p ∈ P do
distance = traverseIST(Root sphere of r, p,
minDistance)
if distance < minDistance then

minDistance = distance

In this Section we will describe the basic mechanisms of
our new distance computation scheme. In our scenario, we
assume that the robot is represented by a polygonal mesh.
The robot can consist of different rigid parts that can be
moved using arbitrary rigid object transformations. How-
ever, we do not use the actual surface representation of the
rigid parts for our distance computation, but we adopted
the Inner Sphere Tree (IST) data structure [WZ09]. ISTs
have proven to be extremely fast for distance queries. More-
over, they are independent of the object’s complexity (e.g.
its polygon count) and they can be computed for almost all
surface representations, including polygonal meshes, CSG,
NURBS, etc. The ISTs gain their efficiency from filling the
objects’ interior with sets of non-overlapping spheres in-
stead of using its surface. These inner spheres are used to
construct a traditional bounding volume hierarchy. The only
difference to BVHs that are based on the object’s polygons
is, that the leaves consists of the inner spheres instead of the
polygons. Actually, our algorithm can be easily extended to
all other types of BVHs, it does not rely on any special fea-
tures of this inner BVH.

As mentioned in the introduction, the environment is rep-
resented by a point cloud. This point cloud can be directly
derived from a Kinect input image. Basically, such a point
cloud is simply a set of points P where each point has a 3D
coordinate in space. The goal is to find that point in P that is
closest to any part of the robot.

3.1. Basic Concept

In order to describe the basic concept, we start with a short
description of a sequential version of our algorithm.

We simply compute a minimum distance of each IST with
each point in the point cloud. We are only interested in the
global minimum distance. Hence, we can accelerate the al-
gorithm slightly by additionally passing the minimum dis-
tance computed so far to the traversal. This allows us to in-
terrupt the traversal when the distance of a hierarchy sphere
is larger than this value (See Algorithm 1).

The sequential traversal can be done as with a traditional
recursive BVH traversal algorithm: we check whether two
bounding volumes overlap or not. If this is the case, we re-
cursively step to their children. In order to compute upper
bounds for the minimum distance, we simply have to add
an appropriate distance test at the right place. This has to be
done, when we reach a pair of inner spheres (i.e. the leaves
of the ISTs) during traversal. During traversal there is no
need to visit branches of the bounding volume test tree that
are farther apart than the current minimum distance because
of the bounding property. This guarantees a high culling ef-
ficiency (See Algorithm 2).

Algorithm 2: traverseIST( Sphere s, point p, minDist, d)

if s is Leaf then
return d

forall the Children sc of s do
d = distance( sc, p )
if d < minDist then

minDist = traverseIST( sc, p, minDist, d )
return minDist

3.2. Parallelization

In principle, the parallelization of Algorithm 1 is straight for-
ward: we can simply process all parts of the robot and all
points in parallel because the traversals are almost indepen-
dent of each other. If we would use this naive implementa-
tion, we would compute an individual minimum distance for
each part of the robot and each point. In case of a Kinect
depth map and a robot that is constructed by seven parts this
would result in 8×300.000 local minima. In order to get the
global minimum we would have to search for it in all these
local minima. In other words, we would lose the possibility
to early prune points that are far away. This results in a high
number of unnecessary computations.

Consequently, it is better to keep a common global mini-
mum that is shared by all threads (See Algorithm 3).

During the traversal we have to be careful when updat-
ing the global minimum because concurrent threads could
try to write it simultaneously. This would result in typical
race conditions that appear often in massively parallel algo-
rithms. Consequently, we have to restrict the writing access.

stream0

stream1

stream2

stream3

memcpy kernel

kernel

kernel

kernel

Figure 3: Task scheduling on the GPU when data depen-
dency is specified using streams.
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Figure 4: Left: timings for the two different traversal algorithms. The iterative traversal is slower, except for very large point
clouds. Right: timings for CUDA streams and sequential processing of the BVHs. Streams add a significant performance boost.

Algorithm 3: getMinDist( Set of ISTs R, point cloud P )

minGlobalDistance = maximum float
In parallel forall the ISTs r ∈ R do

In parallel forall the Points p ∈ P do
traverseIST(Root sphere of r, p)

Basically, an atomic compare-and-swap (CAS) in the traver-
sal algorithm solves this challenge. If we simply adopt the
recursive traversal of the ISTs this results in the following
algorithm:

Algorithm 4: traverseIST( Sphere s, point p, distance d )

if s is Leaf then
atomicMin( d, minGlobalDistance )

forall the Children sc of s do
d = distance( sc, p )
if d < minGlobalDistance then

traverseIST( sc, p, d )

4. Implementation

The basic parallel implementation is relatively straight for-
ward. However, current GPUs have their limitations with re-
spect to recursion or memory management. Therefore, we
tested different implementation details and compared their
effects on the performance.

For instance, in the algorithms from the previous sec-
tion we assume that the global minimum distance resides in
global GPU memory. In current GPUs the access to global
memory is known to be relatively slow. Moreover, GPUs are
not optimized for recursion. We will discuss these issues in
this section.

4.1. Recursion

For a long time GPUs were not able to perform recursive
algorithms. When recursion was first introduced, it was ex-
tremely slow, because recursion introduces additional execu-
tion divergence. To overcome this limitation, we additionally
implemented an iterative traversal algorithm for the BVH. It
is based on a stack data structure (See Algorithm 5).

Algorithm 5: traverseIST( Tree t, Point p )

Stack s
s.push(root of t)
while s not emtpy do

Sphere s = s.pop()
forall the Children si of s do

d = distance( s, p )
if d < minGlobalDistance then

if si is leaf then
atomicMin( d, minGlobalDistance )

else
s.push(si)

The concept to manage an explicit stack to compensate
for recursion was inspired by [Kar12]. However, our experi-
ments have shown that this limitation does not seem to hold
anymore. Actually, our recursive implementation performs
best (See Figure 4).

4.2. Streams

In our scenario, a robot consists of several rigid parts. Each
part has its own transformation matrix to the world coord
system. Obviously, we have either to transform the points
of the point cloud into the robot’s part coord system or
vice versa. In each thread, we test a single point against the
whole BVH. Consequently it would be extremely inefficient
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Figure 5: Left: hierarchical minimum distance computation using shared memory and local memory. Right: a single global
variable in global memory stores the global minimum distance.

to transform the bounding volumes during the traversal into
the point’s coord system instead of simply transforming the
point only once into the BVH’s system. However, we could
translate the BVHs in a pre-processing step once, before we
start the tests. Unfortunately, this would require additional
memory to store the transformed BVHs. Consequently, we
decided to simply transform the points into the BVH’s coord
system.

However, this strategy makes the implementation of Algo-
rithm 3 complicated because if we process all parts in par-
allel in a single kernel call, we would have to include all
transformation matrices for all parts. First we thought, that a
sequential processing of the parts would not affect the per-
formance significantly. Surprisingly, it turned out that this
is not true. Therefore, we decided to use CUDA streams to
launch concurrent kernel for the parts as illustrated in Fig-
ure 3. This results in a huge performance boost of up to 50%
(See Figure 4).

Since the individual robot parts are rigid, the geometry
does not change. The bounding volume hierarchies are pre-
computed and all the BVHs can be transferred to the GPU
memory at the start of the application. The movement of the
robot is represented solely by the transformation matrix of
each rigid part. In contrast, the point cloud that represents the
surroundings changes each frame. Consequently, each point
needs to be transferred to the memory of the GPU on-the-fly
prior to the distance query. In both cases we store the data
in global memory, since the amount of data is too large to
store in constant memory. However, for each kernel call, the
arguments are automatically transferred to constant memory
by CUDA, so that consecutive accesses can be cached. By
launching kernels concurrently, we maximize the occupancy
of the GPU, explaining the huge increase in performance.

These streams also have another advantage: if we combine
our algorithm with pre-filtering techniques like an octree,
each part of the robot will get an individual set of pre-filtered

points from the point cloud. In this case, streaming allows a
much more efficient memory transfer from the CPU to the
GPU memory. This comes from the fact that streams allow
us to express data dependency, such that early finishing data
transfers allow certain kernels to start their execution as soon
as their data is copied onto GPU memory. Moreover, this im-
plementation scales perfectly with more powerful hardware
like multiple GPU setups.

4.3. Fast memory access vs. global communication

In our traversal algorithms we use a global variable in order
to communicate the current minimal distance. Global mem-
ory access is about 100 times slower than accessing shared
memory [Har13]. Hence, we saw a potential improvement
here.

In order to make better use of CUDAs memory design,
we added a solution that relies on the faster shared mem-
ory access of CUDA. Basically, shared memory is kind of
a user- managed cache. Unlike global memory, however,
shared memory is accessible only by one block of threads
at a time. † Basically, we simply store an individual local
minimum for each such block. When all BVH traversals of
all blocks are finished, we combine these local minima to the
global minimum. Figure 5 illustrates the idea. Consequently,
the potential global accesses will be reduced to the amount
of blocks b. In the naive solution, it is t · b with t being the
amount of threads in a block.

Surprisingly, our results show a performance loss of ap-
proximately 30% if we apply this strategy, compared to sim-
ple global memory access (See Figure 7). The reading oper-
ations during the traversal seem to be cached and the number
of atomic writing operations is relatively low in our distance

† The set of threads launched by one kernel are partitioned into a
set of blocks.
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Figure 6: Left: test scene from real kinect images (first scenario). Right: artificial test scene (second scenario).
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Figure 7: Left: timings for the shared memory approach and the global memory access. The shared memory strategy is sig-
nificantly slower in all cases. Right: timings with en- and disabled shared memory caching. Enabling caching results in a 7%
performance gain.

computations. Moreover, the local minima result in worse
upper bounds of the distance and hence, also on more traver-
sals of the BVH.

4.4. Cache configuration

Due to the performance loss when using our shared-
memory-strategy described above, our implementation does
not use any shared memory. However, CUDA offers the abil-
ity to use these hardware resources in different ways.
By enabling call cudaDeviceSetCacheCon f ig(Pre f erL1)
we allow the GPU to use a chunk of shared memory for addi-
tional caching This optimizes the access of both, global and
local memory, which we utilize in our algorithm. Our tim-
ings show a performance gain of around 7% by adding just
a single line of code (See Figure 7).

5. Results

We implemented all approaches in a proof-of-concept appli-
cation. All tests were performed on an Intel Core i7 CPU
with 4GB main memory and a NVIDIA Gefore GTX 780
GPU with 2GB of memory.

We used two different test scenarios to test our algorithm.
However, the basic test setup was the same in both scenar-
ios: We use a model of a 7-DOF KUKA Light-Weight-Robot

(LWR) to represent the geometric model. The robot consists
of seven rigid parts and consequently we got seven ISTs, one
for each of the robot’s parts. The total triangle count of the
model was 12k and the number of inner spheres was 15k.
Actually, the ISTs compute only an approximation of the
distance. In our results we recognized an distance error in the
range less than floating point accuracy. This is much smaller
than accuracy of the depth maps generated by a Kinect.

In our first scenario, the robot was placed in front of a
workspace with boxes and tools laying on a table (See Fig.
6). In order to guarantee a fair comparison between different
algorithms we did not use live recordings from a Kinect for
the timings but we used pre-recorded paths of the robot and
also pre-recorded point clouds. The data was recorded by a
Kinect mounted on the end effector of the real robot using
OpenNI and the Point Cloud Library (PCL) to generate 3D
point clouds from the depth images delivered by OpenNI.
Additionally, we merged several of these pre-recorded point
clouds to a larger point cloud. This allows a more detailed
map of the environment that can be applied to path-planning
tasks and it shows the scalability of our algorithm. Please
note, that we did not require any registration algorithm be-
cause the KUKA LWR knows its position and orientation
from sensor data.

In our second scenario we used artificial point clouds gen-
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Figure 8: Left: timings for a single test run with 600k points in the point cloud for our massively parallel algorithm and the
sequential octree pre-filtering. The distance computation is almost independent of the actual distance for our approach. In case
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of the kernel, illustrating data transfer being the bottleneck.

erated from a 3D scene to stress our algorithm (See Fig. 6).
The artificial scene allows us to generate larger point clouds
of up to 5M points. Moreover, we have a large environment
- a whole room - with larger distances than in the first sce-
nario. The resulting point clouds have very different condi-
tions compared to the noisy sensor data from a kinect.

In order to compare the performance of our algorithm, we
implemented also some competitors: first, we used a pure
CPU version of our approach. The IST implementation for
the CPU is hand optimized to support modern SIMD accel-
eration. Additionally, we implemented a pre-filtering based
on an octree. This method is similar to that described by Pan
et al [PSCM13]. The only difference is that we used ISTs as
BVH.

The results show that our new massively parallel algo-
rithm outperforms all competitors significantly (See Figure
9). For instance, in the first scenario, it is more than two
orders of magnitude faster than the pure CPU version that
requires up to 1 sec to compute a single distance for a point
cloud with 1M points. Our algorithm finds minimum dis-
tances even for such large point clouds in less than 10 msec.
This factor of more than 100 can not be explained solely by
the higher computational power. Additionally, the GPU ver-
sion provides a higher culling efficiency due to the globally
shared upper bound on the minimum distance.

In order to reduce the number of points to tests for the
CPU we used an octree for pre-filtering. However, the pure
distance calculation for the octree takes already up to 20
msec in average, not including the construction. In our sce-
nario, a new octree has to be computed in each frame be-
cause the point cloud changes continuously. If we addition-
ally include this construction time of the octree, our algo-
rithm is more than an order of magnitude faster while the

octree is not applicable to real-time scenarios any more (See
Fig. 9).

Almost half of the time in our approach is spent on copy-
ing the point cloud from CPU memory to GPU memory
(See Figure 8). A combination of the octree pre-filtering, that
should reduce the number of points to copy to the GPU, and
our massively parallel test seems to be an interesting idea.
We tested this setup, but our simple non-filtered algorithm
is still much faster because most of the time is consumed by
the CPU filtering of the point cloud (See Fig. 8).

We believe that a much coarser filtering, that is extremely
fast in consequence, would be much better suited for our par-
allel traversal. Of course, this task should be performed in
parallel on the GPU. Another advantage of our algorithm is
its independence of the actual distance. Figure 8 shows the
timings during a single test run and the corresponding dis-
tances. The timings do not change very much as the distance
varies. For the octree, the running time increases with in-
creasing distance because of a reduced culling efficiency.

All these observations also hold for the second scenario,
a worst-case scenario for our algorithm. It is still faster than
the octree, even in very large scenes with up to 5M points.
Due to the very even distribution of points in space this
scenario is better suited for spatial culling using the octree.
However, if we take the construction time into account, our
algorithm is still an order of magnitude faster.

6. Conclusion & Future Works

We presented a novel massively-parallel algorithm for real-
time collision avoidance of autonomous robot navigation in
highly dynamic environments. We extended a typical BVH,
the Inner Sphere Trees, to distance computations with point

c© The Eurographics Association 2014.
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Figure 9: Left: results from our timing. Our new massively parallel algorithm outperforms all competing approaches by more
than an order of magnitude. Please note the logarithmic scaling. Right: timings with point clouds generated from a 3d-mesh.
All GPU timings include the transfer of data to GPU memory.

cloud data that was captured online via a Kinect. Our al-
gorithm is very simple to implement and it can be easily
adapted to other BVHs. We implemented our algorithm us-
ing CUDA and the results show a real-time performance
even for very large point clouds. Moreover, our algorithm is
more than an order of magnitude faster than previous CPU-
based approaches. To our best knowledge, therefore our al-
gorithm is the first to compute this kind of task in real-time.
In addition, we have explored a large number of variations
and optimization of both the algorithm and the data struc-
tures, thus exploring the design space of the algorithm to a
large extent. This provides important insights into what does
and, at least as important, what does not increase the overall
performance.

However, there are still avenues for future improvements.
At the moment, we use our collision detection algorithm
only for collision avoidance between the robot and the en-
vironment. A better performance would also allow path
planning directly on the point cloud data. This offers sev-
eral challenges for future works: for instance, we need an
additional representation of the objects’ volumes, instead
of only their surface. Probably, a real-time version of the
sphere packing algorithms could produce relief. Moreover,
we plan to apply our algorithm also to other scenarios that
are based on real-time point cloud data like tracking prob-
lems in virtual reality systems. For instance, a slight opti-
mization would be able to enable haptic interactions with
online captured point cloud data with full 1000 Hz.
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