
DynCam: A Reactive Multithreaded Pipeline Library
for 3D Telepresence in VR

Christoph Schröder
University of Bremen
Bremen, Germany

schroeder.c@cs.uni-bremen.de

Mayank Sharma
CERN

Geneva, Switzerland
mayank.sharma@cern.ch

Jörn Teuber
University of Bremen
Bremen, Germany

jteuber@cs.uni-bremen.de

Rene Weller
University of Bremen
Bremen, Germany

weller@cs.uni-bremen.de

Gabriel Zachmann
University of Bremen
Bremen, Germany

zach@cs.uni-bremen.de

ABSTRACT
We contribute a new library, DynCam, for real-time, low latency,
streaming point cloud processing with a special focus on telep-
resence in VR. Our library combines several RGBD-images from
multiple distributed sources to a single point cloud and transfers
it through a network. This processing is organized as a pipeline
that supports implicit multithreading. The pipeline uses functional
reactive programming to describe transformations on the data in a
declarative way. In contrast to previous libraries, DynCam is plat-
form independent, modular and lightweight. This makes it easy
to extend and allows easy integration into existing applications.
We have prototypically implemented a telepresence application in
the Unreal Engine. Our results show that DynCam outperforms
competing libraries concerning latency as well as network traffic.

KEYWORDS
Collaborative Distributed VR, Functional Reactive Programming,
Point Clouds, RGBD Streaming, Latency Measurement
ACM Reference Format:
Christoph Schröder, Mayank Sharma, Jörn Teuber, Rene Weller, and Gabriel
Zachmann. 2018. DynCam: A ReactiveMultithreaded Pipeline Library for 3D
Telepresence in VR. In Proceedings of Virtual Reality International Conference
(VRIC’18). ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Collaborative virtual environments (CVEs) play an important role
in aworld wheremore andmore decisions aremade based on virtual
prototypes and simulations. Designs for new cars, manufacturing
plants, and aircraft are no longer just two-dimensional blueprints
but are directly created in 3D. Experts meet to make important
design and manufacturing decisions. Current systems either use
2D displays or 3D powerwalls to provide each participant a shared

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VRIC’18, April 2018, Laval, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5381-6. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

view of the 3D data. Both methods have several drawbacks: the
shared 2D views limit the perception of depth. Powerwalls support
stereoscopic view of the scene, however, usually, only a single user’s
head is tracked. This can lead to confusion when pointing in 3D
space [14]. There are first experiments with multi-user powerwalls
but they are only very recently becoming available, and they are
restricted to a very small number (up to 6 in lab prototypes) head-
tracked users [14]. Furthermore, both methods have a big limitation
in common: All participants have to be in the same physical location
which can require time-consuming traveling.

Distributed CVEs can be a viable solution in many cases. Espe-
cially because the advent of high-quality consumer VR headsets
makes distributed CVEs appealing. However, a realistic representa-
tion of other participants in such a CVE is essential for communica-
tion and collaboration. Currently existing distributed CVEs usually
show only parts of the body, like the tracked hand controllers,
or they use non-personalized avatars with skeletal tracking. Cur-
rent research has shown that the quality of the avatar directly
influences behavior and the team performance [29]. Personalized
avatars significantly improve virtual presence and virtual body
ownership as they are closer to realism compared to generic coun-
terparts [30]. However, creating personalized avatars is relatively
time-consuming, complex and requires pre-processing [1]. More-
over, even such personalized avatars can be problematic in case of
design reviewswhere the pointing accuracy is essential.Waltermate
et al. [30] also imply that higher degree of virtual body ownership
achieved by avatars that are closer to reality, ultimately leads to
better immersion in virtual environments. The most realistic avatar,
i.e., a real-time representation of a person, would therefore result
in an optimum immersible experience.

We propose to use a different approach to overcome these draw-
backs: our goal is to directly use the RGBD data delivered by depth
cameras that are usually used for skeletal tracking. These RGBD im-
ages can be used to create a point cloud of the user that we directly
use for rendering. This method automatically leads to completely
personalized avatars for each participant in the CVE and simultane-
ously gives strong perceived ownership over the avatar. However,
there are several challenges to solve: First, we have to take care
of occlusions that occur from persons and objects in front of the
RGBD camera. This can be solved by using not a single, but mul-
tiple RGBD sensors for each user. The data rate of modern RGBD
sensors is relatively high. Therefore, we have to consider methods

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

VRIC’18, April 2018, Laval, France C. Schröder et al.

to compress the data before sending it through the network to the
remote participants in the distributed CVE. Additionally, in real-
time environments, latency is also an issue. Finally, the processed
RGBD images have to be rendered.

In this paper, we present a system that fulfills all the requirements
mentioned above. The core of the system is our novel software
framework, called DynCam, for real-time processing of stream-
ing RGBD data. The main functionality of DynCam is to gather
streaming RGBD images from one or several depth sensors, to com-
bine them to a single point cloud, compress the data and transport
it through networks with the lowest possible latency. In a typi-
cal distributed CVE scenario, there are many camera clients that
record and pre-process RGBD data from connected cameras and
send them to a central server. At the server, the different clouds
are further processed and transformed into a common coordinate
system. The final point cloud is transmitted back to the clients for
visualization. To handle such large amounts of data flexibly and
in real-time, DynCam supports multithreading through the use of
reactive programming. In contrast to other point cloud-oriented
libraries, like ROS, DynCam is platform independent, modular and
lightweight. The rendering of the point cloud is not part of DynCam
itself to retain its platform independence. We show a telepresence
prototype where DynCam is integrated into the Unreal Engine
and use the rendering of splats to display the point clouds. Fur-
ther, we compared DynCam to competing point cloud processing
libraries that support at least network transfer of streaming RGBD
data, even though DynCam offers much more functionality like its
telepresence-oriented pre-processing. To do that we have optimized
the latency measurement proposed by [25] and, additionally, we
consider the network load. Our results show that DynCam receives
much better latency while reducing the network traffic thanks to
supporting compression.

2 RELATEDWORK
Current 3D telepresence systems for distributed CVEs either skip
the representation of user’s body or represent it through avatars
or through 3D visualization of HMDs and controllers in the virtual
environments. The hardware capabilities of such systems play a
crucial role in conveying telepresence. HMDs like Samsung GearVR,
LG 360 VR, and variants of Google Cardboard rely on the Inertial
Measurement Units (IMUs) installed in mobile phones to track the
orientation of the user’s head [3]. Recently, eye gaze tracking cam-
eras installed in HMDs (e.g., Samsung ExynosVR III) allow systems
to utilize corneal position tracking algorithms [28] to enhance the
User Experience (UX) in virtual environments. More sophisticated
systems based on the HTC Vive and Oculus Rift can also track
hand-motion controllers using dedicated infrared cameras besides
tracking the HMD.

Massively Multiplayer Online Virtual Reality (MMOVR) games
like OrbusVR [8] offer a good proof of concept for telepresence-
enabled VR games. These games use tracking information available
from IR cameras that track HMDs such as HTC Vive or Oculus Rift
worn by the players. The game instance can share this information
with other players, playing in different game instances that may be
physically separated. However, HMD’s tracking data is not enough

to mimic the detailed skeletal motion of the subject wearing the
HMD.

More realistic avatar based CVEs rely on skeletal tracking. The
skeletal tracking can be improved by usingmulti-camera setups [22].
Using multiple cameras for capturing a subject from different per-
spectives has become an important research topic in recent years.
Several compelling systems for various applications have been
proposed for both acquisition and analysis of data from such multi-
camera set-ups. Muller et al. [18] proposed a motion capturing
system that utilizes six Microsoft Kinect sensors for gait analysis.
Their system is based on a client-server model where data from
the Kinects is streamed locally over an Ethernet connection to a
server machine for visualization and processing. Another system
utilizing multiple cameras is FusionKit [22] which is a marker-
less skeleton tracking toolkit built using Microsoft Kinect SDK
for Microsoft XBox One Kinect sensor. Skeletal information from
multiple kinects surrounding a subject is fused to obtain a single
skeleton properly aligned with respect to each Kinect. However,
none of these systems directly utilize the point cloud data to realize
a realistic avatar, but they simply transfer the generated skeletons
to pre-computed avatar models. Moreover, these systems are not
platform independent.

Fusion4D [7], which is a real-time motion capturing pipeline
that generates temporally coherent high-quality reconstructions
of subjects in a multi-camera setting. Fusion4D eliminates the use
of skeletons or template models by reconstructing high-quality
meshes from the fusion of point clouds captured from each camera
in real-time. It is also, to some extent, independent of the choice of
devices used for performance capture, given all devices are of the
same type. Fusion4D, although real-time in a local setting, has not
been optimized for network transfers which introduces additional
challenges like the latency and the network traffic.

An important middleware that inherently addresses networking
pipelines for data transfer is the Robot Operating System(ROS). In
the ROS ecosystem, components called nodes stream information
a.k.a topics to other nodes by using TCP/IP protocol. Other nodes
in the system can subscribe to the streamed topics over either a
local or a remote network. While this offers a promising solution
to stream information from multiple Kinect sensors to remote loca-
tions, ROS is more of a generic purpose system that has not been
optimized for VR telepresence. Nevertheless, there have been inter-
esting applications of ROS in Virtual Reality, specifically in the field
of Human Robot Interaction(HRI), where human motion is applied
to robots to allow for their remote operation in environments not
accessible to humans. For instance, Inamura et al. [17], successfully
utilized cloud platforms to store multimodal, interaction informa-
tion, which can be fetched to re-create the interaction at a later
point in time. A real-time telepresence system leveraging ROS is
described in [19]. However, the system is restricted to transferring
hand motion by using a single LeapMotion camera.

Sultani et al. [27] streamed point clouds from a single Kinect
to an Android client and Linux desktop client. While they did not
simultaneously transfer data from multiple Kinect sensors, where
the bandwidth requirement is much higher, their system is a good
demonstration of transferring point cloud information to remote
locations. Figueroa et al. [11] propose InTml (Interaction Techniques
Markup Language), a dataflow system for VR applications. Intml

DynCam: A Reactive, distributed Point-Cloud Pipeline VRIC’18, April 2018, Laval, France

models applications as a series of filters that can be combined by
designers, but is not capable of distributed processing.

It is well known that low latency in VR systems and particularly
in HMDs is an important factor for presence and for alleviating
simulator sickness. Users can develop simulator sickness due to
conflicting sensory inputs, for instance, in scenarios where users
move in virtual environments while the physical body remains
motionless resulting in sensory conflict between visual, somatosen-
sory and vestibular systems [2]. A low-latency system with natural
interaction experience that aggregates the components for captur-
ing and transmitting scenes from multiple cameras in an effective
manner is therefore crucial for optimum telepresence.

3 OUR DYNCAM LIBRARY
The core of our point cloud-based telepresence system is our Dyn-
Cam library that processes and distributes data from RGBD sensors.
We decided to apply the functional reactive programming (FRP)
paradigm for our library. This is appealing because it automatically
leads to multithreaded implementations. We start the description
of our library with a short FRP recap.

3.1 Functional Reactive Programming
We use FRP to describe the dataflow of the pipeline expressively
while simultaneously enabling effortless multithreaded computa-
tions. Different implementations of FPR have been used success-
fully in computer animation, robotics, and GUIs, to name but a
few [6, 9, 20, 21]. The idea is that calculations depend on inputs and
are automatically triggered when the input data changes. While
some implementations deal with continuous and discrete data at the
same time, we abstract our data into discrete events. Input events
are root nodes in a directed acyclic graph (DAG) and the program’s
output (.e.g. files, visualization, network, . . .) are the leaves. Edges
describe the data flow, and inner nodes transform the data. New
inputs automatically update all dependent transformations and
propagate the result to the output. The main advantage of the FPR
paradigm compared to event-based systems that typically use call-
backs is the known graph structure of data flow. This knowledge
enables an automatic parallelization of tasks that do not depend on
each others result.

In our recent DynCam implementation, we use the FRP frame-
work C++React [24]. It supports parallel updates of graph nodes
as well as parallel input. C++React distinguishes between two data
sources, signals and events. Values that should stay available over
multiple graph traversals are stored in signals. If, and only if the
value of a signal node changes, all child nodes update their values.
Signals are most useful for values that do not change often and are
expensive to compute like the extrinsic calibration of a camera. For
large, rapidly changing data like images from a camera stream, it is
not necessary to explicitly store it in the graph. Instead, we want
to quickly hand them to the next node. This behavior is supported
by the second type of input nodes, the events. Transformations take
one or more events and signals. When the input of a transforma-
tion changes, it updates its result and emits a new event. At the
leaf nodes of the DAG, observers monitor their inputs. They do not
produce any reactive output but display the data on the screen or
transmit it over the network.

Server

Extrinsics

Fusion

Visualization

Decompression

Compressed Cloud

..1..1

Client

Visualization Compression

Color Images Depth Images Camera intrinsics

Cloud coloringCamera Extrinsic
extraction

Depth and color
registration 3D mapping

Network

Figure 1: Data flow overview of our pipeline. Data from the
RGBD camera are sources on the client. The different trans-
formation stages run concurrently and, thus, update their
output as soon as their input changes. Acting as sources, data
from multiple clients are then aggregated and displayed on
the server.

3.2 DynCam Structure
Unlike most strict linear pipeline architectures, we describe the data
flow in our DynCam library following the FRP paradigm. In a telep-
resence application that is based on RGBD streams, the cameras are
the main data sources. Less obvious data sources are the intrinsic
and extrinsic camera parameters. These parameters are static and
are determined by the depth and color data sources. We distinguish
between the dynamic image data streams and the mostly static
camera parameters. The image streams are modeled as events and
the camera parameters as signals following the nomenclature of
C++React.

The basic structure of DynCam consists of four layers of nodes
(see Fig. 1). The root nodes are the interface to the depth camera
with a signal for the intrinsic camera parameters and event sources
for the depth and color images as described above. From these
sources, we compute a 3D point cloud from the depth image and
the intrinsic camera parameters. Additionally, we simultaneously
register the depth image to the color image. These processes are
modeled as transform nodes on the event streams in our DAG. This
means they are automatically triggered whenever a new frame is
generated by events on the root level.

VRIC’18, April 2018, Laval, France C. Schröder et al.

The third level combines the point cloud and registered color
image to create a colored point cloud. In another parallel transform
node on the level, we use the registered and undistorted color image
to search for a calibration pattern to generate the extrinsic camera
parameters using the standard procedure of OpenCV.

In the final level, the leaves in our library, we can either send the
colored point cloud to the display, or we send it via the network to
a remote instance of the library that acts as the server. We decided
to send the extrinsic camera parameters and the streaming point
clouds independently. The reason for this is that in case of stationary
cameras they to not change very often. In this case, we have to send
them only once which helps to reduce the network load. However,
in case of changing extrinsic parameters, e.g., because of the usage
of a Leap motion sensor that is mounted to an HMD to track the
user’s hands, it is straightforward to send them regularly. In case of
external tracking devices, e.g., via Optitrack, we have an option to
include this as another signal node in our DAG. In case of network
transfer, we additional included the option to compress the point
cloud to further reduce the network traffic. We explain the details
of our compression method in Section3.3.

In case of a distributed application, an instance of the DynCam
library can act as the server that combines the point clouds of
all connected DynCam client instances. In this case, the, option-
ally compressed, points clouds and the respective extrinsic camera
parameters are the events and signals, respectively. We have one
transform node to decompress the point cloud, and finally, a trans-
form node combines the incoming point cloud to the final shared
virtual environment based on the extrinsic parameters.

3.3 Compression
Modern RGBD sensors like the Kinect 2 transmit huge amounts
of data. The raw color image (1920 × 1080, 32-bit RGBA) and the
depth map (512 × 424, one 32 bit floating value) of the Kinect 2
streamed with 30 frames per second produce 2.048 Gbit of data per
second. Even the reconstructed colored point cloud, i.e., 512 × 424
3D points with float accuracy and 24-bit RGB color would result
in 745Mbps which would almost completely occupy a traditional 1
Gbit ethernet connection. Consequently, reduction of the data is
necessary to enable a multi-camera streaming application in normal
networks. A usual method to reduce the amount of data is the ap-
plication of compression algorithms. In our real-time environment,
the compression and decompression speed of the algorithms is an
essential requirement.

We decided to use different compression algorithms for the RGB
data and the point cloud. For the point cloud data, we use a lossy
compressionwith a negligible loss of accuracy: Themaximum range
of the Kinect 2 sensor is limited to 4.5 m [16], and the accuracy at 3
meters distance is in the range of −8mm to 37mm [23]. We, there-
fore, quantize the 3D position components to 1mm. This reduces
half of the space required per point from 3× 32bit floats to 3× 16bit.

For the RGB point colors, we use JPEG to compress the color
image that was mapped onto the depth map. While this lossy com-
pression reduces the quality, it is fast enough for real-time appli-
cation. However, we can simply switch to lossless PNG or WEBP
compression if required.

Figure 2: Our DynCam library is available as Unreal Engine
4 plugin and can render dynamic point clouds from a local
RGBD camera, or a cloud streamed over the network.

In addition to the individual compression methods mentioned
above, we use LZ4 [5] for additional compression after quantization.
LZ4 is a lossless compression algorithm with focus on fast com-
pression and has been evaluated for UHD 3D video transmission
before [13].

4 USE CASE: MULTI-USER VR-PLUGIN FOR
UNREAL 4

Our library is lightweight and easy to integrate into existing ap-
plications. As an example, we have implemented a plugin for the
recent Unreal Engine 4 (UE4) [10]. This allows to either directly
connect an RGBD camera to the PC and visualize the point cloud in
UE4 or to stream and visualize clouds transmitted via the network.
We will start with a short description of our integration to Unreal
before we describe our visualization of the point cloud.

4.1 Integration
We have integrated DynCam into UE4 using the UE4 plugin sys-
tem. The access point to the DynCam interface is straightforward.
During initialization, we have to decide whether we want to use
DynCam as server or client. For a locally connected RGBD camer,a
we instantiate a new camera and pass it to a point cloud mapper.
When the point cloud data should be sent over the network, we
create a server instance. During runtime, we can access an event
stream that provides point clouds as a simple vector every time a
new cloud is available. This stream is monitored by an observer
who takes a lambda or function pointer as an argument and calls
the function every time new data is available. In our UE4 plugin,
we cache the last point cloud from the lambda. This guarantees that
DynCam does not interfere with ongoing rendering operations.

DynCam: A Reactive, distributed Point-Cloud Pipeline VRIC’18, April 2018, Laval, France

4.2 Visualization
UE4 does not natively support rendering of point clouds. Surpris-
ingly, it turned out to be relatively complicated to implement it. In
this section, we want to share our experience with the research
community. Unreal has an integrated visualization of particle sys-
tems. This can consist of millions of animated particles which are
rendered in real-time. It seems to be obvious to use this also for
our point clouds. The Unreal particle renderer gains its efficiency
from a pure GPU implementation, i.e., the position updates of each
particle are solely computed on the GPU; hence it can be hardly
applied to our point clouds transferred over the network. Another
option we explored was to utilize instancing. Basic tests of 512×424
instanced quads with a simple animation already caused the frame
rate to drop to less than 30 frames per second. Another option we
considered was to use a vertex buffer with three vertices per point,
forming a triangle around the point and update it consecutively.
This method turned out to be slightly faster than the instancing
method, but the rendering speed was still much slower than 45
frames per second which would be the minimum for HMD-based
VR applications.

Finally, dynamic textures and shader-based splatting turned out
to be the most efficient method. The basic idea is to use two different
textures, one for the color information and one the 3D position.
The textures are updated whenever a new point cloud arrives. UE4
allows only textures of square size. Consequently, we map the
1D array of colors and positions generated by DynCam to the 2D
textures. While for the colors a four channel texture with 8bits is
sufficient, we use a 32bit texture per channel for the positions.

To initialize the textures, we generate a static vertex buffer on
the GPU that contains N triangles where N is the number of points
in our point cloud. During runtime, we identify the triangle’s id
i ∈ N by its z position and use this as the index to look up the
corresponding position and color in the texture. This can be easily
done in a vertex shader. The triangles’ vertices Vj , j ∈ 3N , are
centered around the xy-origin, and their z-position corresponds to
the vertex number. In the shader, we can then identify the triangle
id i as follows:

i(v) = v .z div 3 (1)
wherev is the current vertex. With the index, we read the triangle’s
position from the position texture and offset the vertex accordingly.
The color is determined in the same way. To generate circular splats
instead of triangles, we simply discard all pixels from the triangle
that are not part of the triangle’s incircle in the pixel shader. Finally,
we have to discard triangles that are not used because the number
of points in the point cloud is smaller than the size of the texture.
However, this can be easily solved by using a uniform to store N
and allows the use of a static vertex buffer.

This method has a small drawback: UE4’s maximum texture size
is currently restricted to 8k × 8k pixels, thus limiting us to ≈ 67k
points per cloud. However, this seems to be sufficient even for large
scenes.

5 EVALUATION
We have implemented our DynCam library using C++. Our im-
plementation is platform independent, and we tested our library
on several current Microsoft Windows and Linux systems. In this

Figure 3: Latency measurement with a LED mounted on a
pendulum. The Kinect 2’s output is displayed on the screen.
Both the LED on the pendulum and the recorded LED are
filmed by an ordinary camera.

Table 1: End to end latency from Kinect 2 to screen and
required bandwidth of the tested configurations. Entries
markedwith 2D did not reconstruct the point cloud but only
displayed the color stream from the Kinect. In the last three
measurements, the Kinect data is transferred over gigabit
ethernet.

Configuration Mean latency Required bandwidth
ms Mbps

Protonect 2D 87 ± 10
DynCam 2D 101 ± 4
MSKinect 2D 134 ± 9
DynCam 124 ± 11
ROS 136 ± 6

LAN
DynCam uncompressed 146 ± 8 773
DynCam compressed 136 ± 11 314
ROS uncompressed 215 ± 7 901

section, we will present some performance measurements. The
most influential measures are the latency and the network traffic
produced by DynCam. While there exist many tools to track the
network traffic, latency measurements are more complicated. We
decided to apply a method described in [25]. However, we extended
this method in several points which makes it much more robust. We
ported the Matlab code to Python, use OpenCV’s blob detection and
better initialize the optimization step. Our code is available here1.
We will shortly sketch this in the next subsection because this could
be also interesting for other researchers that want to perform la-
tency measurements before we finally present our experiments and
the results.
1http://cgvr.cs.uni-bremen.de/papers/vric2018

http://cgvr.cs.uni-bremen.de/papers/vric2018

VRIC’18, April 2018, Laval, France C. Schröder et al.

●

●

●

●
●

●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

100

150

200

Protonect 2D DynCam 2D MSKinect 2D DynCam local ROS local DynCam LAN
uncompressed

DynCam LAN
compressed

ROS LAN
uncompressed

Configuration

La
te

nc
y

in
 m

s

Figure 4: End to end latency fromKinect 2 to screen of the tested configurations. Entriesmarkedwith 2Ddid not reconstruct the
point cloud but only displayed the color stream from the Kinect. In the last threemeasurements, the Kinect data is transferred
over gigabit ethernet. Blue entries are the samples provided by the open and closed source Kinect drivers. Red entries denote
out results and green are measurements of ROS.

5.1 Improved Latency Measurement
The basic idea of our end to end latency measurements was pro-
posed by Steed [25]: We set a simple LED light that is attached to a
pendulum into motion. Then we record the motion with a Kinect
2. Simultaneously, we display the live video stream of the Kinect
to a screen that is placed next to the pendulum. A regular camera
records the pendulum and the visualization on the screen (see Fig-
ure 3). The recording of this camera is analyzed using computer
vision techniques to measure the latency between the pendulum
and the screen. Obviously, we can simply display the Kinect stream
on the same PC or route through a network to measure the network
latency.

Unfortunately, the original Matlab scripts provided by Steed [26]
are not compatible with the most recent Matlab 2016 version. We
tried to adapt it to the current packages but the localization of the
LED was not reliable, and the sinus fitting failed due to the noise.
Consequently, we reimplemented the algorithm to extend it by a
more robust filtering and better initialization of the optimization.
The basic idea remains the same. In every frame of that recorded
video, we detect the position of the two LEDs. By using a pendulum,
we can model the movement by a sinusoidal of the form:

y(x) = A sin(2π f x + Φ) (2)

The deflection y at frame x depends on the frequency of f and
the phase angle Φ. In order to keep A = 1 constant, we normalize

the range of the pendulum. In contrast to Steed’s approach, our
formulation keeps the phase angle between 0 and 2π . This allows
us to limit our optimization independent of the video’s frame rate.
Moreover, we filter the tracked marker positions with a moving
median and a window of 5 frames (i.e., 100ms in our recordings).
Additionally, we propose the following automatic initialization of
the parameters to reduce the failure rate of the optimization. For the
initialization, we transform the signal into Fourier space and extract
the dominating frequency as well as the corresponding phase shift.
Finally, we can calculate most likely frequency and phase angle by
minimizing the difference between the recorded movement and the
sinus model.

In the video, one marker is ahead of the other by a time shift.
As the frequencies of both markers are the same, the difference
in the phase angles ∆Φ corresponds to the latency of the system.
Depending on the frequency and the frames per second (r) of the
video, we calculate the final latency ∆t in seconds by:

∆t =
∆Φ

2π f r
(3)

In a more recent publication, Fristopn and Steed [12] improve
the original method by correlating the signals instead of fitting a
sine function. In our experiments, this proved to be less reliable
due to the noisy signal from the point clouds, however.

DynCam: A Reactive, distributed Point-Cloud Pipeline VRIC’18, April 2018, Laval, France

5.2 Results
We have measured the latency of our library under different config-
urations and compared it to the sample applications of the closed
and open source Kinect drivers in the single PC case. Furthermore,
we have compared our library to the performance, i.e., the latency
as well as the network traffic, of ROS. ROS is a popular middleware
for distributed environments. The ROS system is comprised of pro-
cesses called nodes that are capable of running on any machine in
the distributed ROS system. Nodes communicate with each other
by publishing data as topics or by subscribing to topics that were
already published by other nodes. By design, this communication
takes place using TCP based networks, similar to our network im-
plementation. We used the IAI Kinect2 package [31] for the Indigo
release and rosviz for the visualization (see Figure Fig. 5). We chose
ROS as it is widely used for point cloud processing in robotics and
is available for Linux. Measurements for the official Kinect SDK
were taken on Windows 10. All other evaluations were taken on
Arch Linux. The PC was equipped with an Intel i7-7800X CPU and
a Nvidia GeForce GTX 1080 TI. The measured latencies are listed
in Table 1 and compared Fig. 4. In the following will describe the
results of our measurements in detail.

In a first, we have measured the end to end latency that is caused
by a single Kinect 2 and the display connected to the same PC. In
this configuration, we test the open source libfreenect2 driver [4]
using the Protonect application that comes with it as well as the
official Microsoft driver [15] (MSKinect). In both cases, we only
measured the latency for the color stream because Protonect does
not show the point cloud. We have compared this baseline to our
DynCamwhich internally uses libfreenect2 to connect to the Kinect.
The results show that the open source driver libfreenect2 has much
lower latency (87ms) compared to the original Kinect driver (134ms).
DynCam uses the same driver as Protonect but does more process-
ing, which results in 14ms higher latency. In all cases, except for
Protonect, the latency is larger than 100ms not considering the
depth image. This could be problematic in VR applications.

In our second experiment, we generated a colored point cloud
and displayed it on the same PC where the Kinect was connected
to. This adds additional 13ms of latency for DynCam. However, it
is still faster than ROS (136ms). This significantly aggravates when
measuring the network performance: In this scenario, we connected
the Kinect to a PC that was connected to the display PC via the
local network with 1 GBit capacity. In this case, we gain a latency
of DynCam that is 69ms smaller than that of ROS. Turning on
compression reduces the latency gain of DynCam and makes it as
fast as ROS without network. Even though more processing power
is required for compression end decompression, the reduced traffic
and parallel processing reduce the latency. Even the uncompressed
DynCam network traffic is smaller than that of ROS (SI773Mbps vs.
901Mbps. However, in both cases, the network operates at almost
full capacity which results in only a single point cloud stream that
can be transferred through the 1GBit connection. The compressed
DynCam stream only requires 314Mbps. This allows connecting
multiple DynCam instances to the same network.

Figure 5: Setup for the distributed latency measurement.

6 CONCLUSIONS AND FUTUREWORKS
We have presented DynCam, a new lightweight, platform inde-
pendent library for real-time, low latency, streaming point cloud
processing. Our library gains its efficiency from the functional
reactive programming paradigm that automatically enables multi-
threading of different data transformations within the processing
pipeline. Our library supports the generation of fused point clouds
from multiple RGBD sources. These streaming images can be even
gathered via network connection thanks to an efficient compression
algorithm. Our results show that the latency of DynCam is lower
than that of the original Microsoft Kinect application when used
on the same PC and also lower than the distributed system ROS
when used with an ethernet connection.

In order to measure the latency, we have presented an improve-
ment of the current stat-of-the-art method for latency measure-
ments which reduces the parameter tuning and is more robust.
Finally, we have presented a plugin of DynCam for the Unreal
Engine 4. To our knowledge, this is also the first real-time visual-
ization of point clouds sourced either from a local depth sensor or
transmitted via ethernet. The Unreal plugin as well as the python
code for the latency measurement are available on our homepage2.

However, our work also opens interesting avenues for future
research. For instance, we plan to enhance the point cloud render-
ing in Unreal. The current approach is fast but does not support
advanced rendering techniques like shadows, global illumination
or ambient occlusion. Moreover, it will be especially interesting
to study the impact of point cloud rendering techniques in VR on
the rendering performance and perceived quality. Also, the user
perception of point cloud avatars would be an interesting topic for
research. Moreover, we want to implement segmentation on the
clients to reduce the bandwidth requirements and allow the use of
specialized fusion algorithms.

REFERENCES
[1] Jascha Achenbach, Thomas Waltemate, Marc Erich Latoschik, and Mario Botsch.

2017. Fast generation of realistic virtual humans. In Proc. 23rd ACM Symp. Virtual
Real. Softw. Technol. - VRST ’17. ACM Press, New York, New York, USA, 1–10.
https://doi.org/10.1145/3139131.3139154

[2] Cassandra N. Aldaba, Paul J. White, Ahmad Byagowi, and Zahra Moussavi. 2017.
Virtual reality body motion induced navigational controllers and their effects on
simulator sickness and pathfinding. In 2017 39th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. IEEE, 4175–4178. https://doi.org/10.1109/EMBC.2017.8037776

[3] Jovis Joseph Aloor, P S Sahana, S Seethal, Sneha Thomas, and M.T Rajappan
Pillai. 2016. Design of VR headset using augmented reality. In 2016 Int. Conf.

2http://cgvr.cs.uni-bremen.de/papers/vric2018

https://doi.org/10.1145/3139131.3139154
https://doi.org/10.1109/EMBC.2017.8037776
http://cgvr.cs.uni-bremen.de/papers/vric2018

VRIC’18, April 2018, Laval, France C. Schröder et al.

Electr. Electron. Optim. Tech. IEEE, 3540–3544. https://doi.org/10.1109/ICEEOT.
2016.7755363

[4] Joshua Blake, Lingzhu Xiang, Florian Echtler, and Christian Kerl. 2015.
libfreenect2: Open source drivers for the Kinect for Windows v2 device. (2015).

[5] Yann Collet. 2011. Lz4. (2011). Retrieved December 17, 2017 from https://github.
com/lz4/lz4

[6] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. In Proc. 34th ACM SIGPLAN Conf. Program. Lang. Des.
Implement. - PLDI ’13. ACM Press, New York, New York, USA, 411. https://doi.
org/10.1145/2491956.2462161

[7] Mingsong Dou, Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich, Shahram
Izadi, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, and David Kim.
2016. Fusion4D. ACM Trans. Graph. 35, 4 (jul 2016), 1–13. https://doi.org/10.
1145/2897824.2925969

[8] Riley Dutton. 2017. OrbusVR :: Fantasy virtual reality MMO for HTC Vive
and Oculus Rift + Touch. (2017). Retrieved December 17, 2017 from https:
//orbusvr.com/

[9] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In Proc. Second
ACM SIGPLAN Int. Conf. Funct. Program. - ICFP ’97. ACM Press, New York, New
York, USA, 263–273. https://doi.org/10.1145/258948.258973

[10] Epic Games. 2014. Unreal Engine 4. (2014). Retrieved December 17, 2017 from
https://www.unrealengine.com

[11] Pablo Figueroa, Walter F Bischof, Pierre Boulanger, H James Hoover, and Robyn
Taylor. 2008. Intml: A dataflow oriented development system for virtual reality
applications. Presence: Teleoperators and Virtual Environments 17, 5 (2008), 492–
511.

[12] Sebastian Friston and Anthony Steed. 2014. Measuring latency in virtual envi-
ronments. IEEE transactions on visualization and computer graphics 20, 4 (2014),
616–625.

[13] Ruan Delgado Gomes, Yuri Gonzaga Gonçalves da Costa, Lucenildo Lins
Aquino Júnior, Manoel Gomes da Silva Neto, Alexandre Nóbrega Duarte, and
Guido Lemos de Souza Filho. 2013. A solution for transmitting and displaying
UHD 3D raw videos using lossless compression. In Proc. 19th Brazilian Symp.
Multimed. web - WebMedia ’13. ACM Press, New York, New York, USA, 173–176.
https://doi.org/10.1145/2526188.2526228

[14] Alexander Kulik, André Kunert, Stephan Beck, Roman Reichel, Roland Blach,
Armin Zink, and Bernd Froehlich. 2011. C1x6: a stereoscopic six-user display for
co-located collaboration in shared virtual environments. In ACM Transactions on
Graphics (TOG), Vol. 30. ACM, 188.

[15] Microsoft. 2012. Kinect Studio. (2012). Retrieved December 17, 2017 from
https://msdn.microsoft.com/en-us/library/hh855389.aspx

[16] Microsoft. 2014. Kinect hardware. (2014). Retrieved December 17, 2017 from
https://developer.microsoft.com/en-us/windows/kinect/hardware

[17] Yoshiaki Mizuchi and Tetsunari Inamura. 2017. Cloud-based multimodal human-
robot interaction simulator utilizing ROS and unity frameworks. In System Inte-
gration (SII), 2017 IEEE/SICE International Symposium on. IEEE, 948–955.

[18] Björn Müller, Winfried Ilg, Martin A Giese, and Nicolas Ludolph. 2017. Improved
Kinect sensor based motion capturing system for gait assessment. bioRxiv (2017),
098863. https://doi.org/10.1101/098863

[19] Lorenzo Peppoloni, Filippo Brizzi, Carlo Alberto Avizzano, and Emanuele Ruffaldi.
2015. Immersive ros-integrated framework for robot teleoperation. In 3D User
Interfaces (3DUI), 2015 IEEE Symposium on. IEEE, 177–178.

[20] J. Peterson, G.D. Hager, and P. Hudak. 1999. A language for declarative robotic
programming. Proc. 1999 IEEE Int. Conf. Robot. Autom. (Cat. No.99CH36288C) 2
(1999), 1144–1151. https://doi.org/10.1109/ROBOT.1999.772516

[21] Alastair Reid, John Peterson, Greg Hager, and Paul Hudak. 1999. Prototyping
real-time vision systems. In Proc. 21st Int. Conf. Softw. Eng. - ICSE ’99. ACM Press,
New York, New York, USA, 484–493. https://doi.org/10.1145/302405.302681

[22] Michael Rietzler, Florian Geiselhart, Janek Thomas, and Enrico Rukzio. 2016.
FusionKit. In Proc. 8th ACM SIGCHI Symp. Eng. Interact. Comput. Syst. - EICS ’16.
ACM Press, New York, New York, USA, 73–84. https://doi.org/10.1145/2933242.
2933263

[23] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. 2015. Kinect
range sensing: Structured-light versus Time-of-Flight Kinect. Comput. Vis.
Image Underst. 139 (2015), 1–20. https://doi.org/10.1016/j.cviu.2015.05.006
arXiv:arXiv:1505.05459v1

[24] Sebastian Schlangster. 2015. C++React. (2015). Retrieved December 15, 2017
from https://github.com/schlangster/cpp.react/tree/legacy1

[25] Anthony Steed. 2008. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proc. 2008 ACM Symp. Virtual Real. Softw.
Technol. - VRST ’08. ACM Press, New York, New York, USA, 123. https://doi.org/
10.1145/1450579.1450606

[26] Anthony Steed. 2008. Latency Measurement Demonstration. (2008). Re-
trieved December 8, 2017 from https://wp.cs.ucl.ac.uk/anthonysteed/research/
tech/latencydemo/

[27] Zainab Namh Sultani and Rana Fareed Ghani. 2015. Kinect 3D Point Cloud
Live Video Streaming. In Procedia Comput. Sci., Vol. 65. Elsevier, 125–132. https:

//doi.org/10.1016/j.procs.2015.09.090
[28] Subarna Tripathi and Brian Guenter. 2017. A Statistical Approach to Continuous

Self-Calibrating Eye Gaze Tracking for Head-Mounted Virtual Reality Systems.
In 2017 IEEE Winter Conf. Appl. Comput. Vis. IEEE, 862–870. https://doi.org/10.
1109/WACV.2017.101

[29] Sarah F. van der Land, Alexander P. Schouten, Frans Feldberg, Marleen Huysman,
and Bart van den Hooff. 2015. Does Avatar Appearance Matter? How Team Visual
Similarity and Member-Avatar Similarity Influence Virtual Team Performance.
Hum. Commun. Res. 41, 1 (jan 2015), 128–153. https://doi.org/10.1111/hcre.12044

[30] Thomas Waltemate, Dominik Gall, Daniel Roth, Mario Botsch, and Marc Erich
Latoschik. 2018. The Impact of Avatar Personalization and Immersion on Virtual
Body Ownership, Presence, and Emotional Response. IEEE Transactions on
Visualization and Computer Graphics (2018).

[31] Thiemo Wiedemeyer. 2015. IAI Kinect2. (2015). Retrieved November 11, 2017
from https://github.com/code-iai/iai

https://doi.org/10.1109/ICEEOT.2016.7755363
https://doi.org/10.1109/ICEEOT.2016.7755363
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2897824.2925969
https://doi.org/10.1145/2897824.2925969
https://orbusvr.com/
https://orbusvr.com/
https://doi.org/10.1145/258948.258973
https://www.unrealengine.com
https://doi.org/10.1145/2526188.2526228
https://msdn.microsoft.com/en-us/library/hh855389.aspx
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://doi.org/10.1101/098863
https://doi.org/10.1109/ROBOT.1999.772516
https://doi.org/10.1145/302405.302681
https://doi.org/10.1145/2933242.2933263
https://doi.org/10.1145/2933242.2933263
https://doi.org/10.1016/j.cviu.2015.05.006
http://arxiv.org/abs/arXiv:1505.05459v1
https://github.com/schlangster/cpp.react/tree/legacy1
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1145/1450579.1450606
https://wp.cs.ucl.ac.uk/anthonysteed/research/tech/latencydemo/
https://wp.cs.ucl.ac.uk/anthonysteed/research/tech/latencydemo/
https://doi.org/10.1016/j.procs.2015.09.090
https://doi.org/10.1016/j.procs.2015.09.090
https://doi.org/10.1109/WACV.2017.101
https://doi.org/10.1109/WACV.2017.101
https://doi.org/10.1111/hcre.12044
https://github.com/code-iai/iai

	Abstract
	1 Introduction
	2 Related Work
	3 Our DynCam Library
	3.1 Functional Reactive Programming
	3.2 DynCam Structure
	3.3 Compression

	4 Use Case: Multi-User VR-Plugin for Unreal 4
	4.1 Integration
	4.2 Visualization

	5 Evaluation
	5.1 Improved Latency Measurement
	5.2 Results

	6 Conclusions and Future Works
	References

