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Abstract

Purpose: Marker-based tracking of surgical instruments facilitates surgical nav-
igation systems with high precision, but requires time-consuming preparation
and is prone to stains or occluded markers. Deep learning promises marker-less
tracking based solely on RGB videos to address these challenges. In this paper,
object pose estimation is applied to surgical instrument tracking using a novel
deep learning architecture.
Methods: We combine pose estimation from multiple views with recurrent neu-
ral networks to better exploit temporal coherence for improved tracking. We also
investigate the performance under conditions where the instrument is obscured.
We enhance an existing pose (distribution) estimation pipeline by a spatio-
temporal feature extractor that allows for feature incorporation along an entire
sequence of frames.
Results: On a synthetic dataset we achieve a mean tip error below 1.0mm and
an angle error below 0.2◦ using a four-camera setup. On a real dataset with four
cameras we achieve an error below 3.0mm. Under limited instrument visibility
our recurrent approach can predict the tip position approximately 3mm more
precisely than the non-recurrent approach.
Conclusion: Our findings on a synthetic dataset of surgical instruments demon-
strate that deep-learning-based tracking using multiple cameras simultaneously
can be competitive with marker-based systems. Additionally, the temporal infor-
mation obtained through the architecture’s recurrent nature is advantageous
when the instrument is occluded. The synthesis of multi-view and recurrence has
thus been shown to enhance the reliability and usability of high-precision surgical
pose estimation.
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1 Introduction

Surgical navigation systems facilitate a variety of applications in clinical interventions
such as minimal invasive neurosurgery, stereotaxy or implant placement [1]. Com-
bining pre-operative medical images with real-time tracking during surgery provides
invaluable guidance for the surgeon and improves surgical precision, accuracy, and
safety [2, 3].

Marker-based approaches achieve high precision and repeatability with errors
below 1mm [3]. However, the markers require to be in line-of-sight, which forces
the surgeon to prevent occlusion. Furthermore, the instrument can become polluted,
preventing tracking entirely and requires marker replacement. AI-based marker-less
approaches could address these challenges by predicting the instrument pose from RGB
images using neural networks, even with partial visibility. These techniques represent
a potential future direction for surgical tracking. Significant progress has already been
made for hand-object estimation [4] and multi-view pose estimation [5] for surgical
instruments.

In this paper, we investigate how multi-view approaches and recurrent neural net-
works (RNN) can further improve the precision, reliability, and usability of surgical
tracking systems. Multi-view pose estimation [6–8] leverages images from multiple
cameras to enhance the accuracy and reliability of estimations compared to single-
view setups [9, 10]. EpiSurfEmb [7] estimates 3D-3D correspondence distributions from
single-view correspondences. CosyPose [6] uses single-view results to simultaneously
optimize the positions of cameras and objects using RANSAC. The SpyroPose archi-
tecture [8] utilizes a grid-based method to compute a pose distribution. A multi-view
approach is accomplished in SpyroPose by using the same grid for all views.

Additionally, recurrent architectures leverage temporal information to improve
tracking performance, reducing jitter, and compensating for information loss due
to partial occlusion [11, 12]. [11] applies a Recurrent Neural Network (RNN) for
temporal-information-enhanced object pose refinement, while [12] leverages temporal
information for the consistency of motion within the estimation of human poses.

Our recurrent architecture incorporates Convolutional GRU (ConvGRU) layers
[13] into a feature extractor [14] for object pose estimation and combines the novel
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Fig. 1: Screwdriver (left) and drill sleeve (right). The blue arrows show the tip and
the red arrows the rear of the instruments. We use the line between tip and rear to
measure the angle error.

architecture with a multi-view approach. We investigate how these two approaches
improve the tracking and in particular, how they interact with each other when com-
bined. We conduct a study on a simulated dataset of surgical instruments with realistic
hand poses. Artificial occlusion is added to analyze the behavior under partial visibil-
ity. Finally, the findings of the synthetic dataset are evaluated on a real dataset that
resembles a surgical scene. All data is available online1. To the best of our knowl-
edge this is the first concept to combine recurrence and multi-view for object pose
estimation.

2 Method

A novel recurrent multi-view architecture for 6DoF pose estimation is developed
and evaluated alongside the baseline implementation. An existing multi-view pose
estimation architecture is extended by recurrence to investigate the effect of tempo-
ral information and to develop a pose estimator that is more robust against object
occlusion.

2.1 Dataset Creation

We create synthetic datasets featuring two medically relevant objects—a screwdriver
and a drill sleeve (see Figure 1) using BlenderProc to generate photorealistic images.
Each object is grasped in 20 unique ways by a gloved hand model. Using a motion-
capturing system, we record three minutes of trajectories for the instrument movement,
so that the final datasets contain sequences of linearly sampled frames at 10 FPS. We
also collect a real dataset using marker-based motion capture, following the approach
in [15], which enables training after marker removal via inpainting.

1https://cgvr.informatik.uni-bremen.de/research/ai surgical navigation/
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2.2 Pose Estimation Baseline

We have selected SpyroPose as our baseline architecture due to its capabilities in multi-
view pose estimation and pose distribution learning, which is particularly effective in
managing object symmetries. In the following, we briefly summarize the main features.
For a more detailed overview, we refer to Haugaard et al. [8]. Coarse-to-fine hierarchi-
cal grids are combined with deep-learning-based feature extraction and a Multilayer
Perceptron (MLP)-based hypothesis scoring (see Figure 2). A feature extraction net-
work encodes spatial and semantic information into pixel-wise embeddings of RGB
images cropped by an object detector. The feature extractor combines a U-Net [16]
with a ResNet18 [17] backbone to obtain 64-dimensional features per input pixel.

Res-U-Net Feature Extractor
MLP

DL
Object

Detector

Pose
Hypothesis

Grids

Keypoint
Interpolation Scored

Hypotheses

Fig. 2: SpyroPose baseline architecture consisting of multi-level pose hypotheses grids,
object detector, feature extractor and an MLP network for pose hypotheses scoring.

The hierarchical grids differ in granularity and describe pose candidates, such that
candidates from multiple levels of granularity can be obtained. For each pose candi-
date, represented as a grid element, keypoints are projected onto the image. These
keypoints are selected using furthest-point sampling on the object’s 3D model. Inter-
polated keypoint features from the feature extractor output are fed into an MLP
to score hypotheses by predicting unnormalized log-likelihoods. The MLP learns to
differentiate between correct and incorrect pose hypotheses using the InfoNCE loss.
Furthermore, SpyroPose applies importance sampling by leveraging the learned scores
to focus computations on the most promising hypotheses.

2.3 Multi-view Point Estimation Strategy

SpyroPose generates distributions of possible poses. The pose candidate with the
highest probability is selected as the final pose. We investigate additional selection
methods. For surgical applications, we focus on two specific aspects: the tip posi-
tion and the direction of the instrument, referred to as object angle. These features
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are crucial for the navigation system. The tip position is determined by using its
coordinates in object space from the most likely pose candidate. The direction the
instrument points is calculated by considering a second point located at the object’s
rear (see Figure 1). By focusing on these two measurements rather than directly using
the 6D pose, we eliminate challenges with rotationally symmetric instruments. We’ve
examined three methods to determine the final pose candidate:

• Max Probability: We select the 6D pose that has the highest probability as the
final pose. This is the approach in SpyroPose [8].

• Weighted Averages: We compute the weighted average of the top n predicted
poses weighted by their probabilities.

• Grid-Based Method: The position of the tip is represented by coordinates x, y, z
and a probability p. Since errors in depth (z) are usually the largest, we set smaller
error bounds dx and dy within the plane, and a larger bound for dz perpendicular to
it. We create a stretched cuboid for each of the top n pose candidates according to
these bounds. These cuboids are then arranged in a uniform grid. For grid cells where
cuboids overlap, we combine their probabilities. The final 6D pose is determined by
choosing the grid cell with the highest total probability.

To minimize depth ambiguity in pose estimation, we utilize images from multi-
ple cameras. Currently, SpyroPose includes a multi-view estimation feature, where it
employs the same grid across all camera views. For the recursive grid refinement, the
grid cells with the highest probabilities across all cameras are selected. Essentially,
SpyroPose incorporates sensor fusion directly within its neural network architecture.

In addition to this integrated approach, we explore late fusion, where we combine
the results from individual camera views after initial pose estimations are made. To
find the optimal number of views, we examine how the number of camera views affects
the accuracy of the pose estimation.

2.4 Recurrent Pose Estimation

Incorporating recurrence might be suitable in SpyroPose’s MLP and the feature extrac-
tor. However, extending the MLP by recurrence can be challenging as its input consists
of all the feature vectors per key point for each pose candidate of a single frame. Thus,
up to 512 feature vectors have to be considered for a single frame. On one hand, con-
catenating these features in the batch’s feature dimension leads to very large features,
which is computationally expensive [13]. On the other hand, concatenating in the
sequence dimension requires the recurrent layers to go back up to 512 time points per
frame, which may limit the temporal processing. Furthermore, the MLP input might
vary between frames due to the difference in pose hypothesis grids, which worsens the
temporal consistency.

SpyroPose’s feature extractor allows for recurrence incorporation to provide
sequence-enhanced features enriched by previous frames. Due to their ease of training
compared to Long Short Term Memorys (LSTMs) or standard RNNs, Gated Recur-
rent Units (GRUs) are applied [14]. Standard GRU layers are not specifically designed
for spatial inputs. They require prior feature flattening and thereby enlarge the feature
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Fig. 3: 5-level Recurrent-Residual-U-Net for spatio-temporal feature extraction.
ConvGRU layers replace convolutional layers on second and fifth encoder as well as
third and fifth decoder level. Residual connections of the encoder are not shown to
improve readability.

vectors depending on the input’s spatial size. The introduction of ConvGRU layers
promises spatio-temporal feature learning [13, 14].

The fully-connected operation of standard GRU gates are replaced by convolutions
in a ConvGRU, which reduces the number of weights for multi-dimensional data such
as images. The convolution operation further allows focusing on regional context.
Equations 1 to 4 describe the processing of a ConvGRU layer with W as trainable
weights, xt as input and ht as output at time t. The * denotes a convolution.

zt = σ(xt ∗Wxz + ht−1 ∗Whz + bz) (1)

rt = σ(xt ∗Wxr + ht−1 ∗Whr + br) (2)

ĥt = tanh(xt ∗Wxh + ht−1 ∗Whh + bh) (3)

ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt (4)

ConvGRU layers replace the convolutional layers at different stages of SpyroPose’s
Residual-U-Net architecture (see Figure 3). Randomly initialized recurrent layers
are incorporated into the pretrained ResNet18 [17] encoder and decoder such that
temporal information can facilitate latent representation learning as well as spatial
information reconstruction. The residual nature of the encoder allows the model to
ignore temporal information by using the identity connection [17].

The current implementation (RC) has been empirically shown to obtain best results
compared to other variants, such as a single ConvGRU layer at the U-Net bottleneck
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Table 1: Tip and angle errors of different architecture
approaches obtained from the synthetic baseline dataset
for the screwdriver. RB: recurrence on bottleneck level;
RA: recurrence on all levels; RC: recurrence on custom
levels.

Tip Error (in mm) Angle Error (in degree)
Mean±SD RMSD Mean±SD RMSAD

RB 26.32±30.51 46.00 2.39±2.99 0.0490
RA 28.30±32.13 46.77 2.51±2.68 0.0445
RC 25.86±28.88 44.12 2.39±2.70 0.0463

(RB) or ConvGRU layers at every encoder and decoder level (RA) (see Table 1).
Recurrence in the bottleneck seems to have a large effect as the RB and RC results
are similar, in contrast to the additional GRU layers of RC. Adding a GRU layer to
each level (RA) increases the number of trainable parameters by about 23 million
compared to RC.

2.5 Recurrent Multi-view

For the synthesis of both methods, the trained single-view recurrent models are com-
bined with the multi-view early fusion approach. This merges spatio-temporal features
with fused grids and candidate probabilities from multiple cameras.

3 Experiments

The synthetic baseline training set of the conducted experiments consists of 10,000
unique scenes (120,000 total images). In each scene, a camera is randomly positioned
to capture images at twelve different time points. For the test set, we create 100 scenes.
In each of these, 96 images are taken from eight randomly placed cameras, capturing
images at the same twelve time points. The training set lacks multi-view data, which
is not required for training our neural network.

A second synthetic training set, referred to as the synthetic distractor dataset,
contains distractor objects that are added between the sixth and ninth frame (62,400
total images). The corresponding test set applies two cameras (6,000 total images)
where the view of one camera is occluded from the sixth frame onward. The real dataset
consists of three scenes and a total of around 40,000 annotated images captured with
four cameras at the same time. The experimental setup is shown in Figure 4. We utilize
the SpyroPose architecture with the same training parameters as those specified in [8].

3.1 Multi-view Point Estimation

We evaluate the three final pose selection methods across three scenarios: i) single-
view, ii) multi-view with late fusion, and iii) SpyroPose with integrated multi-view
analysis, using the synthetic baseline dataset. For the multi-view approaches we use
all eight cameras. The results are summarized in Table 2. For the single-view and Spy-
roPose multi-view scenarios, Weighted Averages performs best with a 55% reduction
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Fig. 4: Experimental setup for collecting real-world training and test images.

Table 2: Tip error obtained with point estimation methods on the
synthetic baseline dataset: Max Probability, Weighted Averages,
and Grid-Based methods from the pose distribution for the screw-
driver, measured in millimeters.

Single-view Multi-view Late Fusion Multi-view
Max Probability 16.9 13.6 1.86
Weighted Averages 15.8 5.8 0.83
Grid-Based 18.3 3.5 2.4

for multi-view in comparison to the Max Probability method of SpyroPose. For multi-
view late fusion, the Grid-Based approach yields the best performance, with an error
of 3.5mm.

These results demonstrate that the late fusion approach is considerably less effec-
tive than using sensor fusion directly within the neural network. As indicated in
Table 2, the two methods show a difference of 76%. Based on these findings we use
the SpyroPose multi-view with Weighted Averages.

Table 3: Influence of number of views on tip error and angle error for the
synthetic baseline and the real datasets.

Views Screwdriver Drill Sleeve
Tip Error (mm) Angle Error (°) Tip Error (mm) Angle Error (°)

S
y
n
th

et
ic

1 15.80 1.43 11.83 1.02
2 2.37 0.47 1.90 0.47
4 1.04 0.20 0.75 0.18
6 0.86 0.16 0.57 0.14
8 0.83 0.15 0.55 0.13

R
ea

l 1 11.50 1.87 16.05 2.05
2 4.23 0.65 4.15 0.69
4 2.85 0.44 2.64 0.53
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The results for different camera setups are summarized in Table 3. Our findings
demonstrate a substantial improvement when employing a multi-view setup. Partic-
ularly, with six or eight views, the tip error is reduced to sub-millimeter levels, and
the angle error is minimized to less than 0.15°. Multi-view performance on real data
is lower than on the synthetic dataset. Nonetheless, performance remains strong, with
single-view results matching those on synthetic data.

(a) Tip Error (b) Angle Error

Fig. 5: Box plot depicting the distribution of tip and angle errors in millimeters as
a function of the number of cameras, ranging from 2 to 8 on the synthetic baseline
dataset.

Figure 5 illustrates how the accuracy of tip and angle errors is influenced by
the number of camera views. The median tip error and interquartile range (IQR)
decreases as the number of cameras increases, highlighting an improvement in accuracy
and precision with more viewpoints. Fewer tip error outliers are observed in setups
with more than four cameras, suggesting enhanced reliability. Overall, the increase in
performance appears to be converging, wherefore the accuracy cannot be improved
indefinitely.

3.2 Recurrent Single-view

Temporal information is expected to be particularly useful when visual information
is limited, e.g. due to object occlusion [11]. In order to investigate the recurrent per-
formance under these circumstances, experiments with artificial occlusion through a
checkerboard overlay are conducted using the synthetic baseline dataset. Occlusion is
randomly applied to 50% of the frames in the second half of each sequence to ensure
that objects are visible at the beginning. Furthermore, the checkerboard pattern is
added with a random offset. For better comparability, the test set frames are iden-
tical across different model evaluations. The models are trained and evaluated with
and without artificially occluded frames. Evaluation metrics include the tip positional
error and object angle error as well as metrics measuring the smoothness of the pre-
dicted trajectories, namely Root Mean Squared Deviation (RMSD) and Root Mean
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Table 4: Single-view results of the synthetic baseline test set with and
without checkerboard occlusion separated by surgical instruments.

Test set without Occlusion Test set with Occlusion

Mean±SD
RMSD /
RMSAD

Mean±SD
RMSD /
RMSAD

Tip Error (in mm)

Screw
Driver

NRB 15.80±12.80 23.35 73.48±170.56 204.20
NRO 16.74±13.46 24.20 29.46±51.62 64.70
NRSBO 20.71±18.17 27.60 37.40±63.15 77.01
RB 19.51±16.41 25.92 64.47±135.26 164.86
RO 19.37±15.72 26.52 25.86±28.88 44.12

Drill
Sleeve

NRB 11.83±9.87 19.57 58.30±147.46 167.26
NRO 11.57±9.59 19.95 22.79±42.90 54.72
NRSBO 12.44±10.70 20.57 25.69±54.11 62.46
RB 12.66±11.52 20.81 50.58±126.67 139.93
RO 12.74±11.62 21.01 19.57±26.40 38.90

Angle Error (in degree)

Screw
Driver

NRB 1.43±1.51 0.0103 9.55±25.80 0.4549
NRO 1.50±1.54 0.0261 3.48±9.58 0.1312
NRSBO 1.91±1.90 0.0318 4.83±12.76 0.1772
RB 1.84±2.00 0.0288 8.07±22.82 0.3643
RO 1.81±1.79 0.0296 2.39±2.70 0.0463

Drill
Sleeve

NRB 1.02±1.22 0.0220 7.19±20.62 0.3372
NRO 1.00±1.00 0.0223 2.65±8.26 0.1095
NRSBO 1.06±1.00 0.0232 3.30±10.60 0.1417
RB 1.09±1.12 0.0235 4.59±12.73 0.1902
RO 1.07±1.04 0.0229 1.64±1.98 0.0405

Squared Angular Deviation (RMSAD). The RMSD and RMSAD measure the devia-
tion of the tip position and object angle between subsequent frames. Due to the actual
movement of the instrument between frames, the RMSD and RMSAD of a smooth
trajectory prediction are not expected to be zero but close to the ground truth.

The following models are evaluated as shown in Table 4:

• Non-recurrent baseline (NRB) trained without occlusion
• Non-recurrent model trained with occlusion (NRO)
• Non-recurrent model trained with sequential batch sampling and occlusion
(NRSBO)

• Recurrent baseline (RB) trained without occlusion
• Recurrent model trained with occlusion (RO)

The baseline experiment (NRB) applies random frame sampling and data aug-
mentation as per [8] to the training set without occlusion. The baseline achieves the
best results for the screwdriver on the non-occluded test set with a mean tip error of
15.80mm and a mean angle error of 1.43°. The mean results for the drill sleeve are
11.83mm and 1.02°. The NRO model predicts the instruments’ pose similarly well
as the baseline. To investigate the effect of batch variance, the non-recurrent model
(NRSBO) is trained with occlusion and the same sequence batch sampling as the recur-
rent models, where batches consist of entire sequences. The shrinkage in batch variance
has a severe impact on the evaluation metrics for both instruments. The experiments
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(a) Sample input (b) Ground truth (c) Non-recurrent (d) Recurrent

Fig. 6: Sample from the distractor test set depicting the occluded screwdriver.

with the recurrent architecture achieve similar results as the NRSBO model, thus all
metrics are worse than the other non-recurrent approaches.

On the occluded dataset, the recurrent architecture improves the performance.
Models trained without occlusion have considerably larger errors when applied to an
occluded test set, as not being faced with similar data during training. Also for the
models trained with occlusion the metrics drop but less severely. The non-recurrent
model (NRO) predicts the tip with a mean error of 29.46mm and 22.79mm. The
recurrent approach (RO) is able to outperform the non-recurrent in all metrics with
a mean tip error for the screwdriver of 25.86mm and 19.57mm for the drill sleeve.
Similarly, the angle error and trajectory smoothness metrics improve.
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(a) Mean tip error per binned visibility.
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(b) Mean angle error per binned visibility.

Fig. 7: Mean tip and angle error of recurrent and non-recurrent models applied to
the screwdriver test set for binned visibilities with each bin of size 1%.

Figure 6 depicts a screwdriver sample with distractor occlusion, which demon-
strates the recurrent architecture’s strength of facilitating previous frames in case of
ambiguous poses. While the non-recurrent model predicts a plausible yet false angle
of the occluded instrument, the recurrent model can leverage temporal information to
resolve the ambiguity.
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Figure 7 highlights the beneficial effect of recurrence regarding tip and angle error
with respect to object visibility. The visibility is measured by the percentage of visible
surface pixels considering occlusion by scene objects, hands or the artificial checker-
board compared to the visible pixels without any occlusion. The heavier the instrument
is occluded, the better is the recurrent prediction compared to the non-recurrent. In the
interval between 20% and 40% visibility, the recurrent architecture achieves a tip error
of 44.70± 12.10mm and an angle error of 4.29± 1.15◦, compared to 59.58± 18.38mm
and 8.27± 3.83◦ for the non-recurrent architecture.
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Fig. 8: Distribution of the tip error of the non-recurrent and recurrent model for the
screwdriver test set with checkerboard occlusion considering occluded frames only.

Figure 8 shows the screwdriver tip error distribution for the non-recurrent and
recurrent model. Only the latter half of the sequence is displayed, where all frames
are occluded with the checkerboard pattern. The lack of considerable differences is
expected in the non-recurrent approach, while the result of the recurrent approach
indicates that the temporal receptive field covers the six occluded frames over the
period of 0.6 seconds and suggests experiments with longer sequence lengths.

3.3 Recurrent Multi-view

Recurrent multi-view experiments combine both methods by processing a batch of
frames from multiple cameras of an entire sequence. The experiments use the synthetic
baseline dataset with two out of eight cameras. The results resemble the findings from
the single-view experiments and are presented in Table 5. Without occlusion, the
benefit of recurrence seems negligible, and temporal information cannot compensate
for the lower variance in training data. In general, the results of the different models
do not deviate considerably across all metrics. For the screwdriver the best result
is achieved by the non-recurrent baseline (NRB) with a mean tip error of 2.37 ±

12



Table 5: Multi-view results of the synthetic baseline test set with multi-
view setup using two cameras.

Test set without Occlusion Test set with Occlusion

Mean±SD
RMSD /
RMSAD

Mean±SD
RMSD /
RMSAD

Tip Error (in mm)

Screw
Driver

NRB 2.37±1.45 16.52 11.86±43.95 42.44
NRO 2.42±1.44 16.57 4.39±11.11 20.97
NRSBO 2.49±1.48 16.63 6.32±16.97 26.17
RO 2.56±1.50 16.56 4.52±7.64 19.93

Drill
Sleeve

NRB 1.90±1.26 14.53 7.84±33.04 33.23
NRO 1.92±1.48 14.55 4.07±10.99 19.03
NRSBO 1.92±1.35 14.56 4.14±17.87 21.06
RO 1.87±1.28 14.57 3.92±8.84 18.47

Angle Error (in degree)

Screw
Driver

NRB 0.47±0.28 0.0167 2.29±11.73 0.1104
NRO 0.50±0.29 0.0182 0.73±1.67 0.0283
NRSBO 0.50±0.29 0.0174 1.15±3.47 0.0504
RO 0.52±0.30 0.0174 0.71±0.79 0.0218

Drill
Sleeve

NRB 0.47±0.39 0.0166 2.08±10.97 0.1168
NRO 0.49±0.48 0.0160 0.86±2.73 0.0347
NRSBO 0.48±0.38 0.0168 0.91±4.27 0.0437
RO 0.47±0.38 0.0167 0.64±0.73 0.0213

1.45mm, for the drill sleeve the recurrent model (RO) achieves the lowest mean tip
error with 1.87 ± 1.28mm. As recurrence does not considerably improve the results
for two cameras and the effect of recurrence is expected to decrease with increasing
number of views, experiments with more cameras are not conducted.

0.0 0.2 0.4 0.6 0.8 1.0
Visibility (binned)

0

25

50

75

100

125

150

175

M
ea

n 
Ti

p 
Er

ro
r (

m
m

)

Mean Tip Error per Binned Visibility
NRO
NRSBO
RO

(a) Mean tip error per binned visibility.
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(b) Mean angle error per binned visibility.

Fig. 9: Mean tip and angle error of the screwdriver per binned visibility of recurrent
and non-recurrent models applied to the checkerboard occlusion test set in a setup
with two cameras. Visibility is measured as the average surface visibility across both
views.
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Table 6: Multi-view results of the synthetic test set with dis-
tractor, where one of two cameras has an occluded view towards
the instrument.

Test set with Distractor
Tip Error ( mm) Angle Error (degree)

Mean±SD RMSD Mean±SD RMSAD
Screw
Driver

NRD 3.26±7.24 16.61 0.62±1.19 0.0188

RD 3.07±4.23 15.91 0.59±0.57 0.0165
Drill
Sleeve

NRD 2.73±4.93 14.22 0.55±0.62 0.0164

RD 2.45±2.96 14.08 0.51±0.47 0.0161

When adding artificial checkerboard occlusion to the test set, the recurrent results
are able to outperform the non-recurrent in all metrics but the mean tip error of
the screwdriver (NRO: 4.39 ± 11.11mm, RO: 4.52 ± 7.64mm). For the drill sleeve,
the RO model achieves the best tip error of 3.92 ± 8.84mm, while the NRO model
error is 4.07 ± 10.99mm. The occlusion pattern is randomly added to both views of
the test set sequences. In case of low mean instrument visibility across both views,
the recurrent model is able to improve upon the non-recurrent (see Figure 9). In the
interval between 20% and 40% visibility, the mean tip error of the RO model is about
3mm better than the non-recurrent (6.44± 4.07mm and 9.65± 8.52mm).

Table 7: Results of the non-recurrent (NRR) and recur-
rent (RR) model for the real test set with two cameras.

Real test set
Mean Tip Error

(mm)
Mean Angle Error

(degree)
Screw
Driver

NRR 4.23 0.65

RR 3.94 0.65
Drill
Sleeve

NRR 4.15 0.69

RR 4.20 0.90

To examine the beneficial effect of temporal information in a more realistic occlu-
sion setting, models are trained on the synthetic distractor and the real training set
and evaluated on the respective test set containing two cameras. As shown in Table
6, the results of the distractor test set resemble the checkerboard occlusion results,
where the recurrent (RD) outperforms the non-recurrent (NRD) model on all met-
rics. In contrast to the checkerboard occlusion, the distractor test set contains only
sequences with one of two cameras with an occluded view towards the target instru-
ment, which explains the slightly better result. The performance on the real test set
is shown in Table 7. The recurrent (RR) model achieves slightly better results for the
screwdriver (mean tip error of 3.94mm), while the non-recurrent the slightly better
for the drill sleeve (4.15mm).
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4 Discussion

Our experiments emphasize that a multi-view setup is necessary to achieve surgically
required precision. In our analysis of camera configurations, it’s evident that increasing
the number of cameras generally leads to better results. However, a high number of
cameras might not always be practical in real-world clinical settings due to space, cost,
or logistical constraints. When evaluating real data, we observe that pose estimation
performance is generally lower compared to the synthetic dataset. This discrepancy
may stem from labeling inaccuracies, despite careful annotation. Additionally, the
real dataset may present inherently greater challenges due to the complexity and
variability of real-world conditions. Further investigation is needed to fully understand
and address these differences. Overall, multi-view configurations, particularly those
with four or more cameras, show potential for providing tip and angle estimates that
approach the requirements for clinical applications.

Still, the trained model’s performance degrades with limited object visibility. The
novel recurrent architecture is able to improve the pose prediction robustness under
these circumstances. The single-view results obtained on the synthetic test set with
checkerboard occlusion demonstrate that the recurrent architecture is capable of lever-
aging temporal information to improve the pose prediction. However, the non-occluded
precision cannot be obtained. Without occlusion, the recurrent architecture performs
worse due to the lower batch variance during training. In a two-camera setting, the
positive effect of recurrence can be confirmed on the synthetic test set with more real-
istic occlusion from distractor objects that take into account occlusion dependencies
across frames and views. Still, the likelihood that at least one camera has good visibil-
ity is increased for a multi-view setup and the described angle ambiguity is less likely.
Although the recurrence benefit appears to be lower in the real dataset, the less promi-
nent occlusion of this dataset needs to be considered. Further exploring occlusion in
a realistic surgical environment is a potential future direction.

With respect to the clinical application, the recurrent architecture can enhance the
navigation system’s usability as instrument poses can still be predicted under heavy
occlusion. For critical situations during the surgery, the accuracy of an occluded instru-
ment remains insufficient, such that the clinician has to ensure clear line-of-sight for
the cameras to obtain high pose prediction precision. Furthermore, the recurrent archi-
tecture might be of interest in other computer vision tasks where occlusion robustness
is critical and precision requirements are lower.

4.1 Future Work

The recurrent architecture’s dependency towards batch variance could be tackled in
another future work, as this has been shown as a limitation of the recurrent mod-
els. Possible directions could be advanced augmentations, longer training with more
training data, and architectural changes, such as replacing batch normalization layers.
Furthermore, the applied object detector could be investigated in a recurrent setup to
ensure its applicability under heavy object occlusion, e.g. by incorporating recurrence.
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5 Conclusion

We applied marker-less 6DoF pose distribution learning to instruments commonly
used in surgical navigation systems. Using synthetic and real datasets of two realistic
surgical instruments, our experiments demonstrate the true potential of marker-less
multi-view pose estimation. While single-camera tracking yields a mean tip error
above 10mm and a mean angle error above 1◦, the multi-camera setup achieves sub-
millimeter and sub-degree accuracy. These trends are mirrored in experiments on a real
dataset, where single-camera tracking similarly results in tip errors exceeding 10mm,
while a four-camera configuration reduces this to 3.0mm or less.

By extending the deep-learning-based pose estimation pipeline with a recurrent
feature extractor, we are able to exploit the temporal information of video sequences.
This temporal information has been shown particularly beneficial when the frame’s
visual information is limited, e.g. due to instrument occlusion. Even under heavy
occlusion where only between 20% and 40% of the instrument surface is visible, a
setup of only two cameras and our novel recurrent architecture enhances the mean
tip error by approximately 3mm compared to the non-recurrent model. The recurrent
architecture thus serves as a prototype for incorporating temporal information into
6DoF pose distribution learning and improves the reliability and usability of surgical
navigation systems.
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