

GDS: Gradient based Density Spline Surfaces for Multiobjective Optimization in Arbitrary Simulations

<u>Patrick Lange</u>, Rene Weller, Gabriel Zachmann University of Bremen, Germany <u>cgvr.informatik.uni-bremen.de</u>

ACM SIGSIM PADS

24-26 May 2017, NTU, Singapore

Motivation

- Known objective functions
- Fast simulation execution

Motivation

Our Approach

- Feasibility studies
- Blackbox simulation leads to unknown objective functions
- Computational expensive (stochastic) simulation

Simulation-based Optimization

 Multidisciplinary design attempts to satisfy multiple, possibly conflicting, objectives at once

$$(MOP)\min_{x \in X} F(x) = (f_1(x), f_2(x), \dots, f_p(x))$$

- Precise approximation of unknown objective functions and feasible design space
- Approximation allows (multiobjective-)optimization
- Deterministic and stochastic blackbox simulations for SOP and MOP

- Knowledge discovery in (deterministic) simulation (based optimization)
- Single objective optimization
 - Landscape characterization problem exploration via support vector machines [Burl'06]
 - Determination of adaptation strategies for linear relationships [Lattner'11]
 - Linear regression of input parameters and classification [Painter'06]
 - Visual analytics [Feldkamp'15]
- Multi objective optimization
 - Analysis of existing Pareto solutions [Bandaru'10,Sugimura'07,Liebscher'09,Dudas'15]

Remaining Challenges

- Automatic approximation and optimization
- Consider computationally expensive simulations
- Consider stochastic simulations
- Within the context of knowledge discovery process
 - What are suitable data mining methods in order to achieve above?

Overview of Approach

Our Approach

Bremen

Relationship Approximation

Our Approach

Relationship Approximation

Our Approach

Evaluation

Motivation

Related Work

Our Approach

Evaluation

Conclusion

Gradient based Sampling

Feasible Design Space Approximation

Re-formulation of MOP based on B-spline surface approximations

$$\omega_i(c,t) = \sum_{p=0}^{p=k} \Theta_p \cdot |\frac{o}{n} - s_p(c,t) \cdot \frac{o}{\sum_{q=0}^{q=k} |t_q - s_q(c,t)|}|$$

Bremen

Multi-Agent System based Optimization

- Windows, C and C++/14
- Nine competitors
 - Three sampling strategies
 - Three clustering approaches
- Synthetic functions

$$f_p(c,t) = \sum_{i=0}^n a_i (c-p)^i + \sum_{j=0}^m b_j (t-q)^j + N$$
$$f_g(c,t) = \sum_{i=0}^n a_i e^{-\frac{(c-b_i)^2}{2c_i^2}} + \sum_{j=0}^m b_j e^{\frac{(t-b_j)^2}{2c_j^2}} + N$$

Evaluation Overview

Sampling:	Uniform						Random						Gradient					
Clustering:	Det.	. Dbscan		K-Means		Det.		Dbscan		K-Means		Det.		Dbscan		K-Means		
	$\bar{e_p}$	$\bar{e_g}$																
Probability mass functions																		
Binominal, $t = 9.0, p = 0.5$ $P(i t,p) = {t \choose i} \cdot p^i \cdot (1-p)^{t-i}$	15.8	15.9	10.71	10.8	13.86	13.96	16.68	16.71	10.55	10.59	13.42	13.56	15.65	15.72	8.67	8.71	11.34	11.41
Geometric, $k = 0.3$ $p(i k) = k \cdot (1-k)^i$	15.66	15.71	10.61	10.67	13.34	13.58	16.54	16.68	10.33	10.4	13.23	13.32	15.52	15.76	8.62	8.69	11.56	11.63
Pascal, $k = 3.0, p = 0.5$ $p(i k,p) = \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i$	15.6	15.72	10.58	10.61	12.26	13.37	16.27	16.32	10.32	10.4	13.67	13.7	15.65	15.86	8.53	8.6	11.23	11.38
Uniform, $a = 0.1, b = 9.0$ $p(x a, b) = \frac{1}{b-a}$	15.33	15.56	10.29	10.41	13.44	13.49	16.02	16.1	10.07	10.12	13.72	13.79	15.3	15.53	8.32	8.45	11.67	11.75
Poisson, $\mu = 0.1$ $p(x \mu) = \frac{\mu^4}{i!}e^{-\mu}$	15.59	15.81	10.54	10.61	12.19	12.55	16.42	16.51	10.3	10.38	13.21	13.32	15.56	15.62	8.56	8.61	11.85	11.93
Probability density functions																		
Cauchy, $a = 5.0, b = 1.0$ $p(x a, b) = \frac{1}{\pi \cdot b \cdot [1 + (\frac{x-a}{b})^2]}$	15.1	15.3	10.44	10.48	12.42	12.56	16.24	16.28	10.25	10.3	13.33	13.42	15.15	15.25	8.47	8.52	11.24	11.4
$ \begin{array}{l} \text{Chi-squared, } n=3.0\\ p(x n)=\frac{1}{\Gamma(\frac{n}{2})\cdot2^{\frac{n}{2}}}\cdot x^{\frac{n}{2}-1}\cdot e^{-\frac{x}{2}} \end{array} $	15.7	15.9	10.61	10.63	12.11	12.46	16.28	16.43	10.4	10.48	13.56	13.61	15.7	15.78	8.62	8.7	10.87	10.96
$ \begin{array}{l} \mbox{Fisher-F}, \ m=2.0, n=2.0\\ p(x m,n)=\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\cdot\Gamma(\frac{n}{2})}\cdot \frac{\frac{mx}{n}\frac{m}{2}}{x\cdot(1+\frac{mx}{n})\frac{m+n}{2}} \end{array} $	15.35	15.51	10.84	10.88	12.71	12.83	16.35	16.48	10.73	10.79	13.56	13.6	15.13	15.31	8.75	8.81	11.74	11.83
Normal, $\mu = 5.0, \sigma = 2.0$ $p(x \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	15.56	15.62	10.55	10.63	11.98	12.68	16.4	16.53	10.39	10.44	13.67	13.72	15.52	15.59	8.48	8.54	11.52	11.6
Exponential, $\lambda = 3.5$ $p(x \lambda) = \lambda e^{-\lambda x}$	15.65	15.7	10.62	10.67	13.46	13.66	16.36	16.48	10.34	10.41	13.73	13.78	15.6	15.72	8.63	8.78	11.64	11.67

Optimization problem

$$f_1(x, y) = 4x^2 + 4y^2 + N$$

$$f_2(x, y) = (x - 5)^2 + (y - 5)^2 + N$$

s.t.

$$g_1(x, y) = (x - 5)^2 + y^2 \le 25$$

$$g_2(x, y) = (x - 8)^2 + (y + 3)^2 \ge 7.7$$

(Binh/Korn'99)

MAS-based Optimization

- Approximation of objective functions and the feasible design space
 - Minimizes amount of required samples
 - Arbitrary deterministic and stochastic blackbox simulations
- Computation of Pareto solution via multi-agent system approach
 - Converges fast and solutions are close to Pareto front
- Approximation can replace costly simulation runs
- Requires knowledge discovery process [Lange'16]

Thank you for your attention

Patrick Lange, Rene Weller, Gabriel Zachmann {lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by German Aerospace Center (DLR) with funds of German Federal Ministry of Economics and Technoloy (BMWi) grant *50NA1318*

