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Multiobjective Optimization

 Simulation-based optimization

 Multidisciplinary design attempts to satisfy multiple, possibly

conflicting, objectives at once

 Blackbox simulations: 𝑓𝑖 not known

 No partial derivatives, no constraints, no relationships…

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑝 𝑥 )
𝑥 ∈ 𝑋
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Motivation: Blackbox Simulations

 Engineers can not describe the relationships which are used to

formulate a mathematical problem (e.g. differential equations)

 Finding a tradeoff set of input parameters which satisfy all 

simulation goals

 Application in simulation-based feasibility studies

 Our use case scenario: Autonomous spacecraft operations for small

planetary objects
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Simulation goals

Parameters Satisfaction of

goal states

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑝 𝑥 )
𝑥 ∈ 𝑋

𝑓𝑖 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛



Motivation: Autonomous Spaceflight Example

 Propulsion type ⇒ Orbit transfer ⇒ Planetary visibility ⇒ Self-localization

⇒ Ground station communication ⇒ Bandwidth ⇒ Antenna diameter
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The Knowledge Discovery Process

 Main idea: Use simulation itself to generate data in order to

simulate, optimize or analyze the given model

 Making sense of huge data collections

 Semi-automatic five step process

 Requires several iterations of some steps

 Collection of data mining techniques

Motivation Related Work Our Approach Evaluation Conclusion



KD Processes in Simulations

 Single objective optimization

 Landscape characterization problem exploration via support vector machines

[Burl‘06]

 Determination of adaptation strategies for linear relationships [Lattner‘11]

 Linear regression of input parameters and classification [Painter‘06]

 Multi objective optimization

 Analysis of existing Pareto solutions

[Bandaru‘10,Sugimura‘07,Liebscher‘09,Dudas‘15]
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Remaining Challenges

1. Multiobjective optimization

 Approximation of the feasible design space

2. Blackbox simulation

 Determination of relationships between input parameters and

simulation goals
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Features

1. Reduce amount of simulation data farming

2. Completely autonomous knowledge discovery process

 Remove manual assessment of knowledge discovery results
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Our Approach

 Completely autonomous knowledge discovery process

 Uncovers hidden relationships between simulation input parameters

and simulation goals with few samples from the simulation

 Approximates feasible design space

 Approximates Pareto gradient information for multiobjective algorithms

Relationship

Analysis

Simulation

Design Space

Approximation

Pareto Gradient

Approximation

Optimization algorithms

Simulation 

parameters

Goals
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Goal

 Approximate objective function 𝑓 and determine their input

(𝑥𝑖 , … , 𝑥𝑘)

 Complexity of simulation data farming

 Brute-force approach is too computationally expensive

 Our two phase approach reduces the farming operations

 Forest-based association rule analysis determines

 Spline-based sampling approximates

𝑓𝑗 𝑥𝑖 , … , 𝑥𝑘 → 𝐺𝑛

𝑂 (𝑝2−𝑝 ⋅ 𝑚)
𝑚 ∶ #𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑜𝑎𝑙𝑠

𝑝 ∶ #𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑥𝑖 , … , 𝑥𝑘
𝑓𝑗
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Association Rule Mining

 Requires centralized data management which records

transactions of all software modules (e.g. GraphPool)

 Outputs list of association rules

 Association rule implies workflow from𝑋 to 𝑌

 Example: 

ARM

Simulation

Transactions

Simulation 

dataflow & 

workflow Rules Forest

Analysis

Module A: X ⇒ 𝑌 𝑋 ∩ 𝑌 = 0 𝑋, 𝑌 ⊆ 𝑃

Module Propulsion: Fuel ⇒ Mass

Data 

Management
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Forest-Based Association Rule Analysis

 Represent list of association rules in a tree data structures

(association rule tree)

 One association rule tree for every goal

Module 1: A ⇒ B
Module 2: B ⇒ E
Module 3: C ⇒ B
Module 4: D ⇒ E

B

A C

E

DB

A C

Goal 1 Goal 2

Association rules Forest representation
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Forest-Based Association Rule Analysis

 Determination of correlation between input parameter and

simulation goal

 Prune sub-tree if no correlation can be found

 Approximate the relationship with splines
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B

A C

E

DB

A C

Goal 1 Goal 2

Forest representation

x x



Spline-based Sampling

 Relationship defines three-dimensional space

1. Approximate behavior per time frame with one spline

2. Analyze spline for correlation

Parameter value

Simulation time

Goal satisfaction

Spline at 𝑡𝑛

Spline at 𝑡𝑘
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Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space

 Stop if spline predicts next 𝑛 satisfaction states correctly

Parameter value

Goal satisfaction
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Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space
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Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space

 Stop if spline predicts next 𝑛 satisfaction states correctly

Goal satisfaction
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Parameter value



Recursive Correlation Analysis

 Compute correlation coefficient for spline

 If coefficient does not yield correlation, split the spline and

recompute the coefficient

𝑟 =
∑(𝑃 − 𝑃)(𝐺 − 𝐺)

∑ 𝑃 − 𝑃
2

∑ 𝐺 − 𝐺
2

Parameter value (P)

Goal satisfaction (G)
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∑(𝑃 − 𝑃)(𝐺 − 𝐺)

∑ 𝑃 − 𝑃
2

∑ 𝐺 − 𝐺
2

Goal satisfaction (G)

Parameter value (P)



Recursive Correlation Analysis

 Compute correlation coefficient for spline

 If coefficient does not yield correlation, split the spline and

recompute the coefficient
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𝑟 =
∑(𝑃 − 𝑃)(𝐺 − 𝐺)

∑ 𝑃 − 𝑃
2

∑ 𝐺 − 𝐺
2

Goal satisfaction (G)

Parameter value (P)



Feasible Design Space Approximation

Parameter value

Simulation time

Goal satisfaction

Spline at 𝑡𝑛

Deviation over time for xi
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Feasible Design Space Approximation

 Weighting of spline deviation

 Pareto space

𝛾(𝑥𝑖 , 𝑡𝑖) =
𝑒−𝑘

2
𝛼𝑡𝑖 𝑥𝑖 + …+ 𝑒−𝑔

2
𝛼𝑡𝑚(𝑥𝑖)

𝑚

𝜔𝑝𝑎𝑟𝑒𝑡𝑜 (𝑥𝑖 , 𝑡𝑖) =
∑Φ(|

𝑜
𝑛
−

𝑜
∑𝑓(𝑥𝑖)

⋅ 𝛾(𝑥𝑖 , 𝑡𝑖)|)

𝑘
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Parameter value

𝑥𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑑

Φ𝛼 = 0,Φ𝛽 = 1Φ𝛼 = 1,Φ𝛽 = 0
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Evaluation

 Performance evaluation of association rule mining step, forest

generation and spline-based sampling

 Two use case studies for quality performance evaluation

 Lotka-Volterra prey predator system

 Interplanetary cruise flight

 Synthetic optimization scenarios

 Gradient descent, simulated annealing, evolutionary algorithm
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Simulation Analysis
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Spline-Based Sampling
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Quality of Optimization Algorithms
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Conclusion

 Completely autonomous knowledge discovery process

 Uncovers hidden relationships between simulation input

parameters and simulation goals

 Our technique requires up to 40 % less samples

 Approximates Pareto gradient information for multiobjective

algorithms

 Gradient descent up to a factor of 5

 Simulated annealing up to a factor of 8

 Evolutionary algorithm up to a factor of 12
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Future Work

 Extension of spline-sampling for stochastic simulation

 Integration of gradient information into spline-based objective

function sampling

 Evaluation with standard optimization problems (e.g. SimOpt

library)
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Thank you for your attention

Questions?
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