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ABSTRACT
We present a new graph-based approach called GraphPool
for the generation, management and distribution of sim-
ulation states for 3D simulation applications. Currently,
relational databases are often used for this task in sim-
ulation applications. In contrast, our approach combines
novel wait-free nested hash map techniques with traditional
graphs which results in a schema-less, in-memory, highly ef-
ficient data management. Our GraphPool stores static and
dynamic parts of a simulation model, distributes changes
caused by the simulation and logs the simulation run. Even
more, the GraphPool supports sophisticated query types
of traditional relational databases. As a consequence, our
GraphPool overcomes the associated drawbacks of relational
database technology for sophisticated 3D simulation appli-
cations. Our GraphPool has several advantages compared
to other state-of-the-art decentralized methods, such as per-
sistence for simulation state over time, object identification,
standardized interfaces for software components as well as
a consistent world model for the overall simulation system.
We tested our approach in a synthetic benchmark scenario
but also in real-world use cases. The results show that it
outperforms state-of-the-art relational databases by several
orders of magnitude.

CCS Concepts
•Theory of computation → Data structures and al-
gorithms for data management;

Keywords
3D Simulation System; Graph Database; Nested Hash Maps;
Simulation Database

1. INTRODUCTION
Today, there are numerous 3D simulation applications

available including virtual testbeds for space robotics or
industrial automation and many more. The goal of such
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3D simulations is usually to simulate a given model and to
provide the users visual feedback, most often in real-time.
Usually, many independent inhomogeneous software compo-
nents need to communicate and exchange data in order to
simulate the model as well as to provide data for the visual
feedback [20, 23]. This data exchange is usually done con-
currently in highly parallel manner in order to preserve a
fast simulation and immersive visual feedback to the user.
Therefore, current simulations rely on some kind of data
which is concurrently shared between all software compo-
nents. For instance the 3D geometries of the objects, like
the spacecraft and its’ individual components in spaceflight
simulations, but also their dimensions, their mass, their po-
sition and orientation in the world space and other physi-
cal properties that are required for the simulation. During
the simulation runs, several components need access to that
data, e.g. input/output devices, the renderer, a physically-
based simulation component, etc. The data is not always
pre-defined and fixed, but it may change during the simula-
tion run. For instance, the physically-based simulation mod-
ule changes the positions and orientations according New-
tons laws of motion. Moreover, it is possible that several
simulation components, like input devices controlled by the
user and the physically-based simulation, want to access and
manipulate the same data at the same time.

To summarize, 3D simulations (and simulations in gen-
eral) require a data management that is easy to handle and
guarantees fast access to data for both, reading and writ-
ing while maintaining a consistent simulation state even in
heavily concurrent access scenarios [17].

Currently, relational databases are often used for this task.
They are well-researched, easy-to-use and deliver out-of-the-
box functionality for a consistent data management. Unfor-
tunately, they also have some drawbacks when considering
3D simulation applications.

For instance, they do not scale well to massively parallel
access due to their inherent serialization of access queries.
Moreover, the relational data model requires a strict def-
inition of a schema (consisting of tables with the defined
data fields in row-column format) prior to storing any data.
This constraints typical simulation engineering tasks such
as capturing new simulation data which was previously not
considered or introducing simulation behavior changes due
to new data formats and content. Finally, simulation appli-
cation developers usually use object-oriented programming
languages to build 3D simulation applications as handling
object-oriented data is nowadays most efficient.



In contrast to this, the data needs to be collected from
many tables (often hundreds or thousands in today’s simu-
lation applications) and combined before it can be provided
to the application. Similarly, when writing data, the write
access needs to be coordinated, separated and performed on
many tables [6]. This results in a fundamental mismatch
exists between the way a simulation application would like
to see its data and the way it’s actually stored in a relational
database.

We present a novel approach that overcomes these disad-
vantages of relational database technology for the use in 3D
simulations.

Our approach uses wait-free hash map techniques in graph-
based schema-less, in-memory resident manner in order to
store object-oriented content. As a result, the time-consuming
serialization as well as table-based coordination and separa-
tion of relational databases are eliminated. Even more, the
wait-free hash map techniques allow high performance access
even for massive numbers of concurrent read and write oper-
ations. Consequently, our data management incorporates a
highly responsive low-latency data access for any number of
simulation components accessing it. Finally, our approach
implements the same functionality as state-of-the-art rela-
tional databases such as aggregate queries as well as caching
strategies.

The system can be used to flexibly build simulation appli-
cations in various fields of applications, like high fidelity end-
to-end spaceflight simulations [19] or self-optimizable virtual
testbeds [21].

In summary, our contribution of this paper is a central-
ized data management approach for high performance 3D
simulations that incorporates
• high scalability due to wait-free access for all simula-

tion components to the simulation state
• high performance because it is completely in-memory

resident
• high adaptability due to graph-based schema-less data

storage of object-oriented content

Figure 1: Architecture of a 3D simulation system, using our

GraphPool approach: All software components concurrently

access the centralized GraphPool which stores the complete

simulation data.

Another advantage of our GraphPool is the support of all
common kinds of query operations like storing and managing
static and dynamic data while enabling sophisticated query
types of traditional relational databases. Furthermore, our
GraphPool incorporates a versioning mechanism which gen-
erates a queryable archive of the complete simulation. As
a result, simulation components can be used in an online
viewing mode to replay a simulation run step by step, al-
lowing analysis and debriefing. Figure 1 gives an overview
of the overall architecture.

2. RELATED WORK
Research in combining database, simulation and render-

ing methodology has attracted increasing interest in the last
decade because databases have been integrated into 3D sim-
ulation systems in many different ways. Though many at-
tempts have been made to incorporate database technology
into 3D simulation systems, to our knowledge, no one has
used in-memory schema-less technology with wait-free ac-
cess behavior before.

State-of-the-art research in the integration of database
technology into 3D simulations use standard full-fledged SQL
databases because they are easy-to-use and deliver out-of-
the-box functionality for a consistent data management. [17,
13] introduced schema and data synchronization for dis-
tributed 3D simulations with a versioning interface. In more
basic applications, databases have been used to store addi-
tional meta-information (e.g. about scene objects [25, 3]).
More sophisticated approaches use the database to store the
scene data itself [25], where some do support collaboration
[9, 24, 5, 15, 16] while others do not [1, 7]. A flexible sup-
port for different data schemata is not widespread among
these systems [5, 7, 16]. The simplest realizations allow
schema alteration by adding attributes to generic base ob-
jects [11]. The more advanced systems support different
static [12] or dynamic [7] schemata. However, these data
management approaches can only alter their relational table
schema based on a new schema delivered by another simula-
tion architecture component (e.g. a simulation server). Con-
sequently, this schema alteration is done manually by hand
and is only distributed automatically. In all applications,
the table schema alteration is complex and computationally
expensive.

To summarize, the above mentioned related studies were
focussed on combining traditional relational databases with
simulation technology. However, traditional database tech-
nology has three main technical limitations:
• the adaptability to object-oriented data due to rigid

table-based schema
• the scalability to massive amounts of components ac-

cessing the database in real-time manner
• the performance with respect to massively parallel read

and write operations due to serialization of access queries
The database research community established in-memory

resident databases and the NoSQL (”Not-only”SQL) method-
ology to compensate for these technical limitations shared by
the majority of relational database implementations. NoSQL
started out as industry developments in companies such
as Amazon, Google, Twitter or Facebook which discovered
these serious limitations of relational database technology
[10].



In order to overcome these limitations, database archi-
tects had sacrificed many of the most central aspects of re-
lational databases, such as joins and fully consistent data,
while introducing many complex and fragile pieces into the
operations puzzle. They simplified the database schema and
introduced various query caching layers. Finally, schema
devolved from many interrelated fully expressed tables to
something much more like a simple key/value look-up in an
attempt to address these new requirements. [6].

Relational and NoSQL data models are very different.
The relational model takes data and separates it into many
interrelated tables consisting of rows and columns. These
tables reference each other through foreign keys that are
stored in columns as well. Every piece of data is then stored
only once in one table. Consequently, the relational model
minimizes the amount of storage space required, which was a
key requirement when relational database were created due
to expensive hardware [6]. However, space efficiency comes
at expense of increased complexity when inserting and look-
ing up data. Developers generally use object-oriented pro-
gramming languages to build 3D simulation applications as
handling object-oriented data is nowadays most efficient. In
contrast to this, the data needs to be collected from many
tables (often hundreds or thousands in today’s simulation
applications) and combined before it can be provided to the
application. Similarly, when writing data, the write needs
to be coordinated, separated and performed on many tables
[6]. Consequently, a fundamental mismatch exists between
the way a simulation application would like to see its data
and the way it’s actually stored in a relational database.

Another major difference is that relational technologies
have rigid schemas while NoSQL models are schema-less [6].
The relational data model requires a strict definition of a
schema (consisting of all tables with the defined data fields
in row-column format) prior to storing any data. This re-
quirement makes typical simulation engineering tasks such
as capturing new simulation data which was previously not
considered or introducing simulation behavior changes due
to new data formats and content extremely disruptive and
frequently avoided.

Figure 2: Performance comparison of wait-free and lock-

based concurrency control management implementations,

which are traditionally used for simulation applications.

Adopted from [22].

This is the exact opposite of the desired behavior in the
area of simulation and modelling, where developers need to
rapidly, and constantly, incorporate new types of data to
enrich their simulation models and applications. In com-
parison, schema-less databases allow the format of the data
being inserted or changed at any time, without application
disruption [6].

When introducing such a data management we will im-
mediately encounter the well-known problem of concurrent
data structures and race conditions which constitutes an-
other challenge of implementing a centralized solution.

In the past, several concurrency control management (CCM)
approaches have been proposed to solve this kind of paral-
lel access. In order to avoid problems of traditional lock-
based CCMs such as thread starvation or deadlocks, wait-
free approaches based on hash maps for realtime interactive
systems had been introduced [20, 22, 23]. Wait-free ap-
proaches guarantee access to the shared data structure in a
finite number of steps for each thread, regardless of other
threads accessing the shared data structure by introducing
a few atomic operations [18]. This means that these ap-
proaches do not need any traditional locking mechanism in
order to preserve a consistent data state. Experiments have
shown a superior performance of wait-free approaches with
respect to traditional locking approaches as Figure 2 illus-
trates. These wait-free approaches not only support struc-
tured data such as arrays or list but also use fast hash key
operations in order to find and retrieve the stored data in-
side the used hash table. Due to their excellent scalability,
they are perfectly suited for simulation applications which
need to support massive parallel access. Consequently, us-
ing wait-free data structures as a data access backbone can
highly improve the performance and scalability of a simula-
tion data management.

3. GRAPHPOOL CONCEPT
In this section, we describe the three concepts of our novel

GraphPool approach which overcomes the limitations of the
presented related work.

First, in order to improve the overall scalability for mas-
sive amounts of concurrent simulation components, we intro-
duce a sophisticated wait-free concurrency control manage-
ment based on hash maps. Second, in order to improve the
overall adaptability and performance of the data manage-
ment, we use object-oriented data formats as data storage
backbone. As a result of this, the time consuming separation
of data into interrelated tables of relational database tech-
nology is eliminated. Third, in order to provide a compara-
ble data management system to common relational databases,
we implement relational core and aggregate queries within
our approach.

In order to implement these concepts, our approach intro-
duces a central world state (CWS), based on wait-free access
using data replication [20, 22]. The CWS is stored in our
GraphPool, acting as a centralized data management. This
means, the GraphPool is used for storing and managing all
parts, dynamic as well as static, of the shared simulation
model in a consistent object-oriented data schema. This
object-oriented approach correlates to typical 3D construc-
tion and environmental data used in 3D simulation applica-
tions.

During runtime, every simulation component can repli-
cate any parts of the CWS into its local world state (LWS)



while local changes are tracked and written back into the
CWS. These read and write processes execute in wait-free
behaviour, without synchronisation [20, 22]. As mentioned
above, not only are all static parts of a 3D simulation model
(e.g. the 3D environment) are stored in the GraphPool,
but also all dynamic objects which are changed by the run-
ning simulation. These changes are likewise written to the
CWS, hence communicating the new state of the simulation
model to the CWS. Consequently, the GraphPool drives the
simulation itself as it represents the central communication
(dataflow and workflow) hub.

Many more advantages arise from using centralized data
management system for a simulation system [17]: Different
applications (e.g. for authoring) can be employed using its
standardized interfaces, an inherent rights management pro-
vides means for fine grained access control, consistent data
schema, solution to object identification (”id problem”), and
(spatial) queries allow very selective loading and changing
of the simulation model.

As described in [20, 22], we developed wait-free synchro-
nization methods based on local and global guarding princi-
ples with atomic operations allowing simulation components
to efficiently access hash maps. Wait-free concurrency ap-
proaches guarantee access to the shared data structure in a
finite number of steps for each thread, regardless of other
threads accessing the shared data structure. Consequently,
wait-free approaches deliver high performance access even
for massive numbers of concurrent components as evalua-
tions have shown [20, 22].

In order to achieve this wait-free behavior for all data
transactions, we identify all kinds of data that need to be
shared between different components, e.g. simulation time
or the transformations of the objects in the scene. This
data is arranged into logically structured data packets. For
instance, the 3D geometry of a car but also its’ individual
components in a car simulation, such as mass, position, ve-
locity or acceleration are logically arranged into one data
packet. We store these data packets in a hash map and as-
sign a set of unique key-identifiers (object-key and member-
keys) to each of these data packets. The member-key refer-
ences the complete data packet while member-keys reference
a specific data type within the packet. This combination of
identifiers and hash map bucket is denoted as GraphNode.
All GraphNodes are registered in our GraphPool and mem-
ory is reserved for the data. The GraphPool connects all
GraphNodes into a graph-based lookup structure and con-
structs thereby the CWS. If any component wants to access
the data, it simply has to look up the key in the GraphPool.

Hash maps outperform other container types (e.g. lists or
arrays) due to their constant lookup, insertion and deletion
time of O(1) which makes them perfectly suitable for a high
performance data management. Our nested hash map ap-
proach enables row and column based queries for the stored
data. From a relational database point of view, a GraphN-
ode is a 1-by-n schema-less table in which all columns n
can be accessed separately by n member-keys. Figure 3 il-
lustrates this concept with an simple person data example
while Figure 4 illustrates the main concept of the GraphPool
consisting of GraphNodes.

As all intermediate states of the simulation are made per-
sistent in the GraphPool, a simulation run can easily be cap-
tured by our versioning mechanism. This versioning mech-
anism generates a time-stamped history of all GraphNodes.

These recorded time-stamped GraphNodes represent a query-
able archive of the complete simulation. Every simulation
component can be used in an off-line viewing mode to re-
play a simulation run step by step, allowing analysis and
debriefing of the complete simulation.

Figure 3: Comparison of GraphPool approach and rigid

table schema: In contrast to a rigid table schema (right),

GraphNodes store the data in a nested hash map. The data

is then available via object- and member-keys (left).

Figure 4: Access workflow of system components using the

GraphPool. The stored data is available is via relational core

(put, get) and aggregate functions.

3.1 Property Graph Model for Nested Hash
Maps

In order to allow for relational core and aggregate func-
tions, we arrange the GraphNodes in a property graph struc-
ture. We define this graph structure as G = {N ,R,K,P L}
with N nodes, R relationships, K keys, P properties and L
labels.

The property graph contains connected GraphNodes which
can hold any number of properties within its hash map.
GraphNodes can be tagged with labels representing their
different roles in the simulation domain. Labels can serve as
a contextualization for GraphNode and relationship prop-
erties. Furthermore, labels may also denote constraint or
metadata information of GraphNodes.

Every relationship provides a directed, named semanti-
cally relevant, connection between two GraphNodes. A re-
lationship always has a direction, a start node, an end node
and a type.



The relationship type can be arbitrary, for instance a
weight, cost, time interval, distance or inheritance/tree struc-
ture. GraphNodes can share any number or type of rela-
tionships because they are stored efficiently, without sacri-
ficing performance. In order to enable fast traversion of the
GraphNodes, the GraphPool can navigate between GraphN-
odes regardless of relationship direction.

Furthermore, we follow the consistent rule that no bro-
ken links shall be present in the graph. Since a relation-
ship always has a start and end GraphNode, a GraphNode
can not be deleted without also deleting its associated rela-
tionships. Consequently, an existing relationship will never
point to a non-existing endpoint. Moreover, the GraphPool
provides a versioning mechanism that archives every pre-
vious state of the GraphNodes as a time-stamped version.
This mechanism provides transparent access to these historic
states. A user interface element or any other component of
the simulation system can then set a reference time and the
versioning interface takes care of reloading the appropriate
versions of the object data. Furthermore, there is no global
main loop required; each simulation component can access
the GraphNodes, i.e. read or write, at any point in time.

Figures 5 and 6 illustrate our property graph structure.

Figure 5: The building blocks of our property graph model:

The GraphPool consists of linked GraphNodes which can be

accessed via their object- and member-keys.

Figure 6: Property graph model example illustrating the

use of member- and object-keys, relationships as well as la-

bels.

3.2 Relational Core & Aggregate Queries
In this section, we described how relational core and aggre-

gate queries can be implemented within our property graph
structure with caching. The GraphPool has to provide two
relational core functionalities:

• Pushing a local world state (LWS) to the central world
state (CWS), respectively putting values into the Graph-
Pool
• Retrieving a local world state (LWS) from the central

world state (CWS), respectivey getting values from the
GraphPool

The CWS is thereby defined by the complete set of GraphN-
odes which are stored in the GraphPool. As a result, the
LWS is a subset of these GraphNodes which a simulation
component can access by the GraphPools put and get func-
tion.

The put function is used to update a GraphNode via its
object-key in the GraphPool. If the object-key is not already
stored in the pool, it simply creates a new GraphNode. Oth-
erwise the existing GraphNode will be updated. The value
can be retrieved in constant time using our hash function
as described below. The get function is used to retrieve an
existing GraphNode from the GraphPool.

We presented local [20] and global [22] guarding princi-
ples as well as merge strategies [22] for solving this kind
of access in wait-free manner. In short, we differentiate be-
tween consumer and producer simulation components. Con-
sumer components only read a set of GraphNodes whereas
producer components read and write a set of GraphNodes.
Therefore, each GraphNode maintains two copies of the data,
a producer reference and a consumer reference. These ref-
erences are used from the corresponding simulation compo-
nents. This means, that read requests of a GraphNode will
return the consumer reference and that write requests of a
GraphNode will return the producer reference.

If a consumer wants to read a value, it calls the get func-
tion and the GraphPool returns the current consumer copy.
This is decided via an access request which every get query
has to contain. Moreover, it increments a local atomic marker
(see Algorithm 2) of the consumer reference. If the con-
sumer has finished reading, the consumer decrements the
local marker again. In addition, it checks whether the local
marker is zero and, in case no consumer is reading it any-
more, deletes the consumer reference. If the memory can not
be directly deleted, the GraphPool will take care of releasing
the memory at a later time point as described in [22].

Writing access also begins with a call of the get function
in order to retrieve the data which should be manipulated.
In this case, the GraphPool returns the producer reference
and sets the ownership of the system component. This own-
ership is an atomic id of the producer reference, which is set
and checked in the get and put function. In the get func-
tion, the producer reference is marked with the correspond-
ing producer id. When the write operation is conducted,
the producer checks whether its id is the current one. If this
is not the case, another producer has udpated the producer
reference in the meantime (see Algorithm 1). This means
that another system component has changed the GraphN-
ode and the changes have to be merged in order to preserve
a consistent GraphNode state. The needed merge is then
implemented as described in [22]. In short, conflicting pro-
ducer references are sorted into a producer queue and the
GraphPool calls a merge function that processes the merges



of those GraphNodes. In order to do so, every GraphN-
ode contains a merge strategy (e.g. first-come first-serve
or averaging the values). Algorithms 1 and 2 illustrate the
implementation.

In contrast to the above introduced relational core func-
tionalities which use single data, relational aggregate func-
tions use multiple data. Aggregate functions are essential
functions of relational databases. These functions collect in
their original implementation the values of multiple columns
and rows. They use this collection as input on certain crite-
ria which further filter the result. Typically, selective (equal,
not, smaller, greater, between) and numerical (average, min,
max, sum) operators are most commonly used for aggregate
functions.

Algorithm 3 illustrates the general implementation of an
aggregate function in our graph structure. First, the corre-
sponding hash is determined. If the result of the aggregate
function was computed before, we take the value from the
GraphCache. If not, we recalculate the result of the aggre-
gate function. In order to do so, we collect the corresponding
data and apply the associated aggregate function onto this
data and store the result in the GraphCache.

Algorithm 1 GraphPool::put(K object-key, V value)

R retired graph node
if K ∈ GraphPool then

N graph node = GraphPool[K]
if VId = N .P roducer.Id then

N .P roducer = V
R = N .Consumer
N .Consumer = Vclone

else
N .P roducer.Queue(V)
R = N .Consumer
GraphPool.notify

end if
else

GraphPool.insert(pair(K,V))
end if
GraphCache.update(K)
return R

Algorithm 2 GraphPool::get(K object-key, A access)

if K /∈ GraphPool then
return empty

else
N graph node = GraphPool[K]
if A is producer then

N .P roducer.Id = A.Id
return N .P roducer.Clone

else
N .Consumer.MarkerIncrement
return N .Consumer

end if
end if

3.3 Wait-Free Caching
Caching is widely used in database technology to store

results of expensive aggregate query results. This enables
the database to quickly deliver previously computed results.
We also provide a caching strategy based on a tree data
structure, called GraphCache.

The GraphCache supports two types of workflows. First,
if a GraphNode is updated in the GraphPool from a system

Algorithm 3 aggregate(K object-keys, I member-keys, A ag-
gregator)

H = getHash(K, I, A)
if Hvalid then

return GraphCache.get(H)
end if
C = empty collection
for Ki ∈ K do
N GraphNode = GraphPool[Ki]
C += N [I]

end for
R = A(C)
GraphCache.set(H,R)
return R

component by calling the put function, the associated stored
data in the GraphCache is marked as outdated. Second, if
an aggregate query is used, either a cached result is returned
or the associated nodes in the GraphCache are marked as
valid and the corresponding data is updated.

For the first case, the GraphPool has to support a Graph-
Cache traversal via object-key in order to find those hash
values which (partly) consist of the given GraphNode. For
the second case, the GraphPool needs to support a tradi-
tional cache traversal via hash value in order to find the
corresponding cached query result.

Consequently, our GraphCache is accessible via its two
roots: the key-root and the hash-root. This enables fast ac-
cess because unnecessary tree traversal is avoided (see Figure
7).

Due to the main principle of wait-free access of the under-
lying concurrency control management [20, 22], we propose a
wait-free caching approach in order to maintain overall wait-
free access control of the GraphPool. When a wait-free data
management system is implemented, every access workflow
to the stored data has to be wait-free, in order to guarantee
the wait-free behavior of the complete system [22]. There-
fore, we initialize the complete GraphCache at simulation
startup. This initialization at startup has the advantage
that cache entry insertion and deletion does not have to be
implemented in wait-free manner, but only the update. This
update process can be implemented with an atomic boolean,
which is used as an indicator that sores whether a cache
entries is outdated or not. The GraphCache initialization
involves all possible combinations of object-, member-keys
and aggregate query types because the queries conducted
by the system components are unknown. This results in a
tree structure with o ·m · a nodes, where o is the number of
object-keys, m is the number of member-keys and a is the
number of aggregate types.

In detail, the initialization of the GraphCache involves the
creation of two root nodes, the key-root KR and cache-root
CR. These roots are created at first. The GraphCache fur-
ther consists of three node levels: object-keys, member-keys
and aggregate types. In order to generate all hash entries for
all possible combinations of object-keys, member-keys and
aggregate keys, we iteratively combine them: Object-keys
are added to KR as nodes and all member-keys are added
to the object-key nodes. Finally, all aggregate types are
added to the member-key nodes (see Algorithm 4). After
the initialization, the GraphCache can be directly used for
caching operations.



Algorithm 4 initGraphCache(O object-keys, M member-keys
, A aggregate types)

KR = key root
CR = cache root
for Oi ∈ O do
R = node with Oi

forMi ∈ M do
T = node with Mi

for Ai ∈ A do
U = node with Ai

Ti−childs += U
end for
Ri−childs += T
CRchilds += hash(Oi, Mi,Ai)

end for
KRchilds += R

end for

Figure 7: The GraphCache: Updates based on object keys

are traversed via the key-root while updates based on hash

values are traversed via the hash-root.

Algorithm 5 hash(K object-keys, M member-key, A
aggregate-type)

V = empty hash value
P = prime number
H = hash function
for Ki ∈ K do
V = V · P + H(Ki);

end for
V = V · P + H(M);
V = V · P + H(A);
return V

The GraphCache contains a large number of cache entries
for sophisticated simulations. We use a uniform distribution
of hash values in order to avoid collisions for cache lookup.
In order to deliver such a uniform distribution of hash values,
even for massive amounts of cache entries, we use a prime-
based hash generation in order to generate unique hash val-
ues for all concatenations of object- and member-keys with
respect to all defined aggregate functions (see Algorithm 5).

Algorithm 6 prune(O object-keys, M member-keys, A
aggregate-types)

for N ∈ KR do
if Nkey ∈ O then

remove N and all children from KR
else

for C ∈ Nchilds do
if Cmember ∈ M then

remove C and all children from N
else

forM ∈ Cchilds do
if Maggregate ∈ A then

remove M and all children from C
end if

end for
end if

end for
end if

end for

Howeer, most of these possible key combinations will never
be used during runtime. In order to reduce the memory over-
head, we propose a pruning strategy that removes unused
nodes from the GraphCache. The main idea is to remove
those nodes which have not been used by the simulation
application after a predefined timespan.

Consequently, the input for the pruning is a set of object-
keys OK = {O0, ...,Ok}, a set of member-keys
MK = {M0, ...,Ml} and aggregate typesAT = {A0, ...,An}
which have not been used as input for any aggregate query.
The pruning is conducted in three phases. First, we re-
move all child nodes and sub-trees of the key-root KR which
contain a O ∈ OK. Second, we remove those nodes which
contain a M ∈ MK from the remaining nodes. Finally, we
remove those nodes which contain a A ∈ AT (see Algorithm
6).



3.4 Relational Database
Import & Export

Currently, most 3D simulation system rely on relational
databases. In order to keep the implementation overhead
small when moving existing systems to our GraphPool, we
present an automatic import and export mechanism. The
export of GraphPool data to relational databases can be
easily realized in two steps: First, the empty tables for the
property graph model objects are generated: Nodes, keys,
relationships, labels and history. Second, all GraphNodes of
the GraphPool are traversed and for every GraphNode, the
label, the relationship and the member variables are stored
in the aforementioned tables. Additionally, the history of
every GraphNode is traversed in order to store the data in
the corresponding table. Switching both steps realizes the
import of database tables into our GraphPool.

Algorithm 7 illustrates the GraphPool export implemen-
tation and Figure 8 shows the resulting rigid table schema:

Algorithm 7 export(G GraphNodes, N Nodes table, R Rela-
tionships table, L Labels table, K Keys table, H History table)

for Gi ∈ G do
Store Gi.Label in L
for Ri ∈ Gi.Relationships do

Store (Ri.T ype,Ri.F rom,Ri.T o) in R
end for
for Hi ∈ Gi.History do

Store (Gi.Id, Hi.Id) in H
Store (Hi.Id,Hi.Object,Hi.Member) in N

end for
for Di ∈ Gi.Member do

Store Di in K
end for
Store Gi.Object in K
Store (Gi.Id,Gi.Object,Gi.Member) in N

end for

Figure 8: The resulting rigid table schema for importing

and exporting the GraphPool.

4. CASE STUDY
Our approach enables the implementation of very differ-

ent categories of 3D simulation applications. Exemplar-
ily, we present the application to a high fidelity dynamics
and spacecraft EDL (entry, descent and landing) end-to-end
spaceflight mission simulator [19, 2].

More precisely, we adopted our system to a simplified
version of ESAs ARCHEO-E2E system [4] that defines a
reference architecture for spacecraft engineering feasibility
studies. Instruments of the spacecraft, as well as the envi-
ronment, including the spacecraft’s orbit and attitude, are
simulated and defined as simulation components within the
software architecture. The sensor input (e.g. camera and
range finder measurements) for the instruments is synthe-
sized from the simulated environment. In our implementa-
tion, all this synthesized data and the current world state
(e.g. spacecraft pose, positions of celestial bodies, sensor
configurations, scene nodes) are represented as GraphNodes
in our central GraphPool. The instruments and the physically-
based simulation read and write the entries periodically.
Consequently, this scenario has a large amount of concur-
rent read- and write operations on our GraphPool. Fig-
ure 9 shows the visual output of the simulation in which a
spacecraft conducts scientific experiments while orbiting an
asteroid.

Figure 9: Use case study: A spacecraft is orbiting an aster-

oid. Rangefinder (red) and landmark (green) measurements

are generated for spacecraft self-localization [14, 8] purposes.



5. EVALUATION
We implemented our GraphPool in C++. We performed

experiments on a machine with an Intel Core i7 quad core
processor with enabled Hyperthreading, operated by Win-
dows 7 64 bit and 8GB of memory.

We applied different experiments to measure the perfor-
mance as well as the quality of our approach. For the qual-
ity measurement, we used the use case scenario described
above. However, as the scenario is domain-dependent, it can
be hardly used to evaluate the performance of our approach.
Hence, we additionally implemented a synthetic benchmark
for performance measurements.

The GraphPool contained 1000 GraphNodes for the syn-
thetic benchmark. We performed 10,000 read-, write- and
aggregate queries for each test. Each test was additionally
repeated 100 times and we averaged the resulting timings.
The access to the GraphPool was modelled with an equal
read/write distribution of concurrent system components.
The transactions to the GraphPool and its competitors var-
ied in size from 1 Byte to 1 Megabyte. We compared the
performance of our new approach with three competitors.
The first competitor was a lock-based implementation of our
GraphPool. The other two competitors were a relational
SQLite database and a MySQL database. We compared the
performance with the traditional on-disk option as well as
in-memory resident versions of the databases. Furthermore,
we validated if the results from our GraphPool implementa-
tions yield the same results as the database competitors.

Our results show, that, in case of a single component,
our wait-free GraphPool outperforms all in-memory and re-
lational databases for every query type in several orders
of magnitude. However, the traditional lock-based imple-
mentation of the GraphPool is slightly outperformed by in-
memory resident relational databases. In this case, the lock
acquisition introduces a computational overhead with re-
spect to the wait-free implementation. In addition, standard
relational databases can not compete with the in-memory
databases and GraphPool implementations (see Figure 10).

This performance gain of our GraphPool increases with an
increasing number of components accessing the data man-
agement systems. In this case, the wait-free access shows
its strengths when several components simultaneously ac-
cess the GraphPool. Like in the single access case, the in-
memory relational database slightly outperforms the lock-
based GraphPool implementation. The in-memory and re-
lational databases are again outperformed by the wait-free
GraphPool by several orders of magnitude (see Figure 11).

Overall, our evaluation underlines the aforementioned tech-
nical limitations of 3D simulation systems which rely on re-
lational databases: The relational databases scale not very
well with many concurrent components accessing them. Fur-
thermore, our evaluation shows that the hash map backbone
of our GraphPool can effectively solve the problems of the
rigid table format of relational databases because no trans-
formations of object-oriented data into tables is necessary.
Additionally, the wait-free access of the GraphPool improves
the overall performance even for massive concurrent read
and write operations. In summary, our approach improves
the overall system performance of 3D simulations by several
orders of magnitude in all access query cases.

6. CONCLUSION
We presented a novel in-memory resident, schema-less,

wait-free GraphPool for high performance 3D simulation ap-
plications.

Our GraphPool supports all common kinds of data oper-
ations like storing and managing static and dynamic parts
while maintaining the support of sophisticated query types
of traditional relational databases. Additionally, our Graph-
Pool represents a central communication hub that drives the
simulation itself. Every simulation run is implicitly logged
by the GraphPools versioning techniques. This allows subse-
quent replay, analysis and archiving of the complete simula-
tion. During runtime, simulation components can replicate
any parts of the central world state into their local world
state while local changes are tracked and written back into
the central world state. Our approach has already proven
its feasibility, real-time performance and flexibility in a high
fidelity space robotics application.

The results of our synthetic benchmarks show that our
approach is able to outperform state-of-the-art relational
database driven simulation applications by several orders
of magnitude.

We believe that our approach can be applied to a wide
variety of 3D simulations (such as industrial automation,
process or manufacturing simulations) where it will improve
the performance.

In the future, we would like to extend the GraphCache
technique. It would be desirable to remove the initial setup
phase of the GraphCache while maintaining its wait-free be-
havior. Probably, this could be done by using unique prime
numbers as identifiers for the components using the Graph-
Cache. These identifiers could be used for unique cache ac-
cess determination, which would result in ”private” Graph-
Caches for every component accessing the GraphPool.
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Figure 10: Performance comparison of core & aggregate queries: Overall (left), our GraphPool outperforms all competitors for

all query types for single-component access. In detail (right), in-memory resident relational databases outperform the traditional

lock-based implementation of the GraphPool.

Figure 11: Performance comparison of core & aggregate queries: Overall (left), our GraphPool outperforms all competitors for

all query types for multi-component access. In detail (right), in-memory resident relational databases outperform the traditional

lock-based implementation of the GraphPool.
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