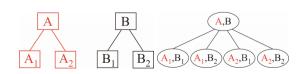


Jan Klein janklein@upb.de

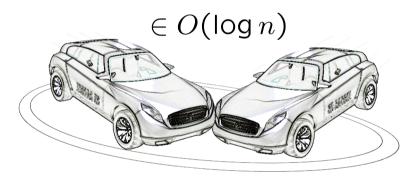
Gabriel Zachmann zach@in.tu-clausthal.de

The Expected Running Time of Hierarchical Collision Detection

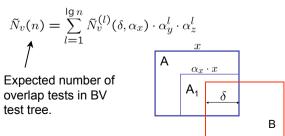
Problem


Analysis of the expected running time of hierarchical collision detection that utilizes bounding volume hierarchies.

Until now:
$$T(n) = N_v C_v + N_p C_p$$
.

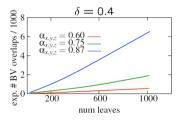

N_v (= num. overlap tests) defines the asymptotic running time.

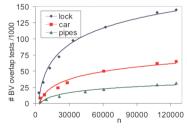
Bounding volume (BV) hierarchy of a model.


Hierarchies for 2 objects. BV test tree.

Solution

Compute probability of BV overlap based on two parameters:


- $\delta\!$: the overlap of the root bounding volumes
- $\alpha_{\text{x}},~\alpha_{\text{y}},~\alpha_{\text{z}}$: the bounding volume diminishing factor.


Results

For realistic cases: average running time is in O(n) or even in $O(\log n)$, n = # leaves.

$\alpha_x, \alpha_y, \alpha_z$	T(n)
< 0.5	O(1)
0.5	$O(\lg n)$
0.59	$O(\sqrt{n})$
0.71	O(n)
0.87	$O(n^{1.58})$
1	$O(n^2)$

Left: Running time T(n) for different BV diminishing factors α_{x} , α_{y} , α_{z} (δ is arbitrary). Right: Running time for root overlap δ =0.4

Logarithmic running time for different objects.