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Abstract
In the past few years, many efficient rendering and surface reconstruction algorithms for point clouds have been de-
veloped. However, collision detection of point clouds has not been considered until now, although this is a prerequisite
to use them for interactive or animated 3D graphics.
We present a novel approach for time-critical collision detection of point clouds. Based solely on the point representa-
tion, it can detect intersections of the underlying implicit surfaces. The surfaces do not need to be closed.
We construct a point hierarchy where each node stores a sufficient sample of the points plus a sphere covering of a part
of the surface. These are used to derive criteria that guide our hierarchy traversal so as to increase convergence. One
of them can be used to prune pairs of nodes, the other one is used to prioritize still to be visited pairs of nodes. At the
leaves we efficiently determine an intersection by estimating the smallest distance.
We have tested our implementation for several large point cloud models. The results show that a very fast and precise
answer to collision detection queries can always be given.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of surfaces
and contours I.3.5 [Computer Graphics]: Computational Geometry and Object-Modeling[Geometric algorithms, lan-
guages and systems; object hierarchy; physically-based modeling] I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism[Animation; virtual reality]

1. Introduction

Point sets, on the one hand, have become a popular shape
representation over the past few years. This is due to two
factors: first, 3D scanning devices have become affordable
and thus widely available [RHHL02]; second, points are an
attractive primitive for rendering complex geometry for sev-
eral reasons [PZvBG00, RL00, ZPvBG02, BWG03].

Interactive 3D computer graphics, on the other hand, re-
quires object representations that provide fast answers to ge-
ometric queries. Virtual reality applications and 3D games,
in particular, often need very fast collision detection queries.
This is a prerequisite in order to simulate physical behav-
ior and in order to allow a user to interact with the virtual
environment.

So far, however, little research has been presented to make
point cloud representations suitable for interactive computer
graphics. In particular, there is virtually no literature on de-
termining collisions between two sets of points.

In this paper, we present a novel algorithm to check
whether or not there is a collision between two point clouds.

The algorithm treats the point cloud as a representation of an
implicit function that approximates the point cloud.

Note that we never explicitly reconstruct the surface.
Thus, we avoid the additional storage overhead and an ad-
ditional error that would be introduced by a polygonal re-
construction.

We also present a novel algorithm for constructing point
hierarchies by repeatedly choosing a suitable subset. This
incorporates a hierarchical sphere covering, the construction
of which is motivated by a geometrical argument.

This hierarchy allows us to formulate two criteria that
guide the traversal to those parts of the tree where a collision
is more likely. That way, we obtain a time-critical algorithm
that returns a “best effort” result should the time budget be
exhausted. In addition, the point hierarchy makes it possi-
ble that the application can specify a maximum “collision
detection resolution”, instead of a time budget.

The next section will review some of the work related
to ours. Section 3 describes an overview of our approach,
while Section 4 shows the details. Section 6 provides var-
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ious results and benchmarks of our new approach. Finally,
Section 7 draws some conclusions and describes possible av-
enues for further work.

2. Related Work

Although there is a wealth of literature on the problem of
efficient high-quality rendering of point clouds, there is very
little on geometric queries of such object representations.

An elementary query, at least, has been considered
recently, namely intersecting point clouds with rays
[AA03, SJ00, AA04]. The idea of [SJ00] is to intersect a ray
with a set of discs (surfels). Although they use an octree as
an acceleration structure, the performance seems to be sig-
nificantly slower than using a polygonal reconstruction.

[AA03, AA04] intersect a ray with a continuously defined
surface over a point cloud. The exact intersection point is
approximated by using successive polynomial local recon-
structions. They also construct a sphere covering, which is,
however, not hierarchical. In addition, the exact construc-
tion of our hierarchical sphere covering is theoretically bet-
ter motivated.

The work most related to ours is [AD03]. They present
an algorithm to perform Boolean operations on solids. Al-
though the problem of constructing a new solid by Boolean
operations and the problem of detecting an intersection in a
time-critical scenario are somewhat related, there are many
obvious, significant differences. In addition, [AD03] repre-
sent objects by surfels. In contrast, we consider a continu-
ous surface defined by a set of points. Furthermore, their ap-
proach can handle only solids, because they partition space
in “inside” and “outside” by an octree. Our approach is gen-
eral, i.e., it can handle non-closed geometry.

For efficiently rendering point clouds, most re-
searchers have presented point hierarchies (see e.g.
[RL00, DVS03, BWK02]. However, they are not well suited
for collision detection.

For collision detection of rigid polygonal objects, bound-
ing volume (BV) hierarchies have proven to be a very effi-
cient data structure (e.g. [Hub96, GLM96, Zac02, vdB97]).
Our new algorithm utilizes auxiliary BVs to enclose the
points at different levels of the hierarchy. In principle, any
of the BV types just mentioned can be used, so that one can
choose the one which yields the best performance.

BV hierarchies lend themselves well to time-critical col-
lision detection, where the scheduler interrupts the traversal
when the time budget is exhausted [DO00, Hub96, KZ03].
However, these have been applied only to polygonal objects,
and for point clouds the estimation of intersection probabil-
ities must be done completely different.

3. Overview of Our Approach

A point cloud PA can be viewed as a way to define a func-
tion fA(x) such that the implicit fA(x) = 0 approximates

Figure 1: Our approach constructs a point hierarchy, where
each node stores a sample of the points underneath, which
yields different levels of detail of the surface. In addition, we
store a sphere covering of the surface of each node. Note that
we compose a sphere covering of many more spheres.

PA. Given two point clouds PA and PB, we pursue a hier-
archical approach to quickly determine points x such that
fA(x) = fB(x) = 0 by exploiting the spatial knowledge about
the surface.

The idea of our algorithm is to create a hierarchy where
the points are stored in its leaves. At each inner node, we
store a sample of the point cloud underneath, a simple BV
(such as a box), and a sphere covering for the part of the sur-
face corresponding to the node (see Fig. 1). The point cloud
samples effectively represent a simplified surface, while the
sphere coverings define a neighborhood around it that con-
tains the original surface.

The sphere coverings, on the one hand, can be used to
quickly eliminate the possibility of an intersection of parts of
the surface. The simplified point clouds, on the other hand,
together with the sphere coverings, can be used to determine
kind of a likelihood of an intersection between parts of the
surface.

Given two such point cloud hierarchies, two objects can
be tested for collision by simultaneous traversal (see Fig. 2),
controlled by a priority queue. For each pair of nodes that
still needs to be visited, our algorithm tries to estimate the
likelihood of a collision, assigns a priority, and descends first
into those pairs with largest priority. A pair of leaves is in-
terrogated by a number of test points.

In order to make our point hierarchy memory efficient,
we do not compute an optimal sphere covering, nor do we
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traverse(A,B)
if simple BVs of A and B do not overlap then

return
if sphere coverings do not overlap then

return
if A and B are leaves then

return approx. distance between surfaces inside
for all children Ai and B j do

compute priority of pair (Ai,B j)
traverse(Ai,B j) with largest priority first

Figure 2: Outline of our hierarchical algorithm for point
cloud collision detection.

compute an optimal sample for each inner node. Instead, we
combine both of them so that the sphere centers are also the
sample.

4. Constructing the Data Structure

In this section, we will describe the construction of data
structures being used by our hierarchical collision detection
algorithm.

In the following, we treat the terms bounding volume
(BV) and node of a hierarchy synonymous. A and B will
always denote BVs of two different hierarchies.

For the sake of accuracy and conciseness, we introduce
the following definitions.

Definition 1 (Cloud point) Each point of a given point cloud
is denoted as a cloud point. The set of cloud points lying in
BV A or its rε-border (see previous section) is denoted as PA.

Definition 2 (Sample point) Each inner node A of our hi-
erarchy stores a sample of all cloud points lying in A or its
rε-border. These sample points are denoted as P′A (P′A ⊂ PA).

Definition 3 (Test point) A test point is an arbitrary point
that is not necessarily contained in a given point cloud.

4.1. Surface Definition

We define the surface of a point cloud implicitly based on
weighted least squares. For sake of completeness, we will
give a quick recap of that surface definition in this section;
please refer to [AA03] for the details.

4.1.1. Implicit distance function

Let N points pi ∈ R3 be given. Then, the implicit function
f : R3 → R describes the distance of a point x to a plane
given by a point a(x) and the normal n(x):

f (x) = n(x) · (a(x)−x) (1)

The point a(x) is the weighted average

a(x) = ∑
N
i=1 θ(||x−pi||)pi

∑
N
i=1 θ(||x−pi||)

(2)

Figure 3: The set of convex hulls induced by the leaves un-
derneath an inner node of our hierarchy can be covered by
spheres thus obtaining a neighborhood around P containing
the surface.

and the normal n(x) is defined by weighted least squares,
i.e., n(x) minimizes

N

∑
i=1

(
n(x) · (a(x)−pi)

)2
θ(||x−pi||) (3)

for fixed x and under the constraint ‖n(x)‖ = 1. This is ex-
actly the smallest eigenvector of matrix B with

bi j =
N

∑
k=1

θ(‖x−pk‖)(pki −a(x)i)(pk j −a(x) j) (4)

In the following, we will use the kernel

θ(d) = e−d2/h2
(5)

where the global parameter h (called bandwidth ) allows us
to tune the decay of the influence of the points, which is the-
oretically unbounded. More details are given in Section 5.5.

4.1.2. Horizon of influence

In practice, we consider a point pi only if θ(||x−pi||) > θε,
which defines a horizon of influence for each pi. However,
now there are regions in R3 where only a small number of
pi are taken into account for computing a(x) and n(x). We
amend this by dismissing points x for which the number c of
pi taken into account would be too small.Note that c and θε

are independent parameters. (We remark here that [AA04]
proposed an amendment, too, although differently specified
and differently motivated.)

Overall, the surface S is defined as the constrained zero-
set of f , i.e.,

S =
{

x | f (x) = 0 , #{p ∈ P : ‖p−x‖< rε}> c
}

(6)

where Equ. 5 implies rε = h ·
√
| logθε|.

We approximate the distance of a point x to the surface S
by f (x). Because we limit the region of influence of points,
we need to consider only the points inside a BV A plus the
points within the rε-border around A, if x ∈ A.
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4.2. Point Cloud Hierarchy

In this section, we will describe a method to construct a hi-
erarchy of point sets, organized as a tree, and a hierarchical
sphere covering of the surface.

In the first step, we construct a binary tree where each leaf
node is associated with a subset of the point cloud. In order
to do this efficiently, we recursively split the set of points
by a top-down process. We create a leaf when the number
of cloud points is below a threshold. We store a suitable BV
with each node to be used during the collision detection pro-
cess. Since we are striving for maximum collision detection
performance, we should split the set so as to minimize the
volume of the child BVs [Zac02].

Note that so far, we have only partitioned the point set and
assigned the subsets to leaves.

In the second step, we construct a simplified point cloud
and a sphere covering for each level of our hierarchy. Actu-
ally, we will do this such that the set of sphere centers are
exactly the simplified point cloud. One of the advantages is
that we need virtually no extra memory to store the simpli-
fied point cloud.

In the following, we will derive the construction of a
sphere covering for one node of the hierarchy, such that the
centers of the spheres are chosen from the points assigned
to the leaves underneath. In order to minimize memory us-
age, all spheres of that node will have the same radius. (This
problem bears some relationship to the general mathemat-
ical problem of thinnest sphere coverings, see [CS93] for
instance, but here we have different constraints and goals.)

More specifically, let A be the node for which the sphere
covering is to be determined. Let L1, . . . ,Ln be the leaves
underneath A. Denote by Pi all cloud points lying in Li or its
rε-border, and let CH(Pi) be its convex hull. Let PA =

S
Pi.

For the moment, assume that the surface in A does not
have borders (such as intentional holes). Then

∀x ∈ Li : a(x) ∈ CH(Pi).

Therefore, if x ∈ A and f (x) = 0, then x must be in H =S
i CH(Pi).

So instead of trying to find a sphere covering for the sur-
face contained in A directly, our goal is to find a set K = {Ki}
of spheres, centered at ki, and a common radius rA, such
that Vol(K) = Vol(

S
Ki) is minimal, with the constraints that

ki ∈ PA, K covers H, and bounded size |K| ≤ c (see also
Fig. 3). This problem can be solved by a fast randomized al-
gorithm, which does not even need an explicit representation
of the convex hulls (see below). (An exact solution would
be an expensive combinatorial optimization problem over an
exponential number of possible sets {ki}. In addition, con-
structing the convex hulls and minimal enclosing spheres are
fairly expensive, too.) In Section 5.5, we will derive suitable
bounds c on the size of K.

A

B

r
B

r
B

r
A

r
A

Figure 4: Using the BVs and sphere coverings stored for
each node, we can quickly exclude intersections of parts of
the surfaces.

Therefore, we propose a randomized algorithm that first
tries to determine a “good” sample P′A ⊂PA as sphere centers
ki, and then computes an appropriate rA. In both stages, the
basic operation is the construction of a random point within
the convex hull of a set of points, which is trivial.

4.2.1. Construction of P′A:

The idea is to choose sample points ki ∈ PA in the interior of
H so that the distances between them are of the same order.
Then, a sphere covering using the ki should be fairly tight
and thin.

We choose a random point q lying in BV A; then, we
find the closest point p ∈ PA (this is equivalent to randomly
choosing a Voronoi cell of PA with probability depending on
its size); finally, we add p to the set P′A. We repeat this ran-
dom process until P′A contains the desired number of sample
points (see Section 5.5). In order to obtain more evenly dis-
tributed ki’s, and thus a better P′A, we can use quasi-random
number sequences.

Since we want to prefer random points in the interior
over points close to the border of H, we compute q as the
weighted average of all points Pi of a randomly chosen Li.

4.2.2. Determining rA:

Conceptually, we could construct the Voronoi diagram of the
ki, intersect that with H =

S
i CH(Pi), determine the radius

for the remainder of each Voronoi cell, and then take the
maximum. Since the construction of the Voronoi diagram in
3D takes O(n2) (n = number of sites) [dBvKOS00], we pro-
pose a method similar to Monte-Carlo integration as follows.

Initialize rA with 0. Generate randomly and independently
test points q ∈ H. If q 6∈ K, then determine the minimal dis-
tance d of q to P′A, and set rA = d. Repeat this process until
a sufficient number of test points has been found to be in K.

In other words, we continuously estimate

Vol(K∩H)
Vol(H)

≈ # points ∈ K∩H
# points ∈ H

(7)
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fA

f ′A

f ′B

neighborhood

around fB

fB

p2

p1

Figure 5: Using the sample of two nodes and their r-
neighborhoods, we can efficiently determine whether or not
an intersection among the two nodes is likely.

and increase rA whenever we find that this fraction is less
than 1. In order to improve this estimate, we can apply kind
of a stratified sampling: when q 6∈ K was found, we choose
the next r test points in the neighborhood of q (for instance,
by a uniform distribution confined to a box around q).

5. Simultaneous Traversal of Point Cloud Hierarchies

In this section we will explain the details of the algorithm
that determines an intersection, given two point hierarchies
as constructed above.

5.1. Exclusion Criterion

Utilizing the sphere coverings of each node, we can quickly
eliminate the possibility of an intersection of parts of the sur-
face (see Fig. 4). Note that we do not need to test all pairs of
spheres. Instead, we use the BVs of each node to eliminate
spheres that are outside the BV of the other node.

5.2. A Priority Criterion

As mentioned above, we strive for a time-critical algorithm.
Therefore, we need a way to estimate the likelihood of a
collision between two inner nodes A and B, which can guide
our algorithm shown in Fig. 2.

Assume for the moment that the sample points in A and B
describe closed manifold surfaces fA = 0 and fB = 0, resp.
Then, we could be certain that there is an intersection be-
tween A and B, if we would find two points on fA that are on
different sides of fB.

Here, we can achieve only a heuristic. Assuming that the
points P′A are close to the surface, and that f ′B is close to fB,
we look for two points p1,p2 ∈ P′A such that f ′B(p1) < 0 <
f ′B(p2) (Fig. 5).

In order to improve this heuristic, we consider only test
points p ∈ P′A that are outside the rB-neighborhood around

Figure 6: Visualization of the implicit function f (x) over
a 2D noisy point cloud (black dots). Points x ∈ R2 with
f (x) ≈ 0, are shown magenta. Red denotes f (x) � 0 and
blue denotes f (x) � 0. The normal n(x) flips only across
the red dashed line.

fB, because this decreases the probability that the sign of
fB(p1) and fB(p2) is equal.

Overall, we estimate the likelihood of an intersection pro-
portional to the number of points on both sides.

This argument holds only, of course, if the normal nB(x)
in Equation 1 does not “change sides” within a BV B. In our
experience, fortunately, this appears to be rarely the case, in
particular, if one uses the covariance matrix centered at a(x)
as proposed in Equ. 4 (see Fig. 6).

5.3. Intersection Test in Leaf Nodes

When the traversal has reached two leaf nodes, A and B, we
could just apply the traversal criterion again, and return an
intersection if it is met.

Ideally, however, we would like to find a test point p such
that fA(p) = fB(p) = 0 (where fA and fB are defined over
PA and PB, resp.).

In practice, such a point cannot be found in a reasonable
amount of time, so we generate randomly and independently
a constant number of test points p lying in the sphere cover-
ing of object A (see left of Fig. 7). Then we take

dAB ≈min
p
{| fA(p)|+ | fB(p)|} (8)

as an estimate of the distance of the two surfaces (see right
of Figure 7), and report an intersection if dAB < dε.

Note that it would not be sufficient to compute the dis-
tances between the points stored in A and B, because an in-
tersection point is not necessarily close to a cloud point.

In order to obtain a better estimate, one could perform an
iterative approximation of a pair of closest points on both
surfaces, but in our experience, our simplistic approach has
worked remarkably well.
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fB

a (p)A

a (p)B

p

fA

fB

f (p)A

f (p)B

n (p)B

n (p)A

Figure 7: In order to efficiently estimate the distance be-
tween the surfaces contained in a pair of leaves, we gener-
ate a number of random test points (left) and estimate their
distance from A and B (right).

5.4. Time-Critical Collision Detection

The traversal prioritization and the leaf intersection test de-
scribed above facilitate a time-critical approach: on the one
hand, if the time budget is exhausted, the collision detec-
tion process returns a “best effort” answer to the collision
query. This is needed in time-critical applications where a
real-time response is needed under all circumstances. On the
other hand, if there is still time left, our algorithm can spend
more time on the collision detection in leaf nodes to increase
the accuracy.

This is done by trying to spend the same time tmax for each
collision query by adjusting the number of test points and the
distance dε that has to be found between the objects (see Sec-
tion 5.3). If the time needed is larger than tmax, the number
of test points is gradually decreased and dε is increased, and
vice versa otherwise.

5.5. Automatic Bandwidth Detection and Sampling
Radius Estimation

Our algorithm has to evaluate f (x) for subsets P′A ⊂P, which
have different sampling densities. As a consequence, we
should automatically adjust the bandwidth h (Section 4.1.1)
to the sampling density, so that no holes appear higher up in
our point cloud hierarchy. It is, of course, inevitable that in-
tentional holes in the surface are closed at higher levels, but
this just produces a few “false positives” during the traversal.

Definition 4 (Sampling radius) Consider a volume A, a
point set PA in A, and a subset P′A ⊆ PA. Consider a set of
spheres, centered at P′A, that cover the surface defined by PA
(not P′A) that is inside A, where all spheres have equal radius.
We define the sampling radius r(P′A) as the minimal radius
of such a sphere covering.

Moreover, we can define the sampling radius for the set
PA as a special case with P′A = PA in the definition above.
And, as a special case of that, we define the sampling radius
r(P) of the whole point cloud P where A is the root BV in
the definition above.

Since our surfaces do not interpolate the point cloud, we
do not use the notion of ε-sampling [ACDL00]. In addition,
we believe our definition is more practical.

Given r(P′A), we can determine the bandwidth h such that
points up to a distance of about m times the sampling radius
will have an influence in Equ. 1, if x is close to the surface:

h =

√
−

(r(P′A) ·m)2

logθε

(9)

with θε < 1. This follows from Equ. 5 and the notion of the
horizon of influence (see Section 4.1.2).

Obviously, we could plug in rA as sampling radius r(P′A)
at inner nodes. However, this can be an overestimate, be-
cause the spheres, as constructed in Section 4.2, could cover
intentional holes, which results in an imprecise h.

Alternatively, we estimate r(P′A) as follows. Assume that
the implicit surface SA of the point set PA is approximated by
surfels (2D discs) of equal size. Assume further that it is also
approximated by surfels in P′A, and that both PA and P′A do
not contain significant discrepancies (i.e., the local sampling
radius does not vary too much). Then, the surface area FA
can be estimated as

|P′A|πr(P′A)2 = FA = |PA|πr(PA)2

from which follows

r(P′A) =

√
|PA|
|P′A|

· r(PA). (10)

Using this, we can derive an estimate for the number of
sample points needed in a node A in order to achieve a radius
r(P′A)≤ c · r(PA):

|P′A|= |PA|/c2. (11)

As a consequence, the sampling radius is at most c · r(P)
throughout the point hierarchy, if |P|/c2 points per node
are stored. Then, the largest sampling radius c · r(P) can
be found in the root node, while the sampling radius in the
leaves is r(P). For instance, if the sampling radius in every
node is to be at most 50·r(P) and the point cloud consists
of 75 000 points, then at most 30 points per node need to be
stored. In practice, c = 50 seems to be a good compromise
between the number of points and the corresponding quality.

5.6. Fast Function Evaluation

During the BV traversal, Equation 1 needs to be evaluated
many times. In order to achieve maximum performance, we
use the following procedure.

First, we compute the three eigenvalues by determin-
ing the roots of the cubic characteristic polynomial of B.
[PFTV93] Let λ be the smallest of them. Then, we compute
the associated eigenvector using the Cholesky decomposi-
tion of B−λI.

c© The Eurographics Association and Blackwell Publishing 2004.
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Sharan Happy Buddha Aphrodite Elephant Grid

# cloud points 35,056 62,299 89,036 148,689 197,315
# sample points 45,012 90,068 134,376 180,180 360,404
avg. depth of a node 11 12 13 13 14

Table 1: Comparison of the number of cloud points and sample points as well as the average depth of a node in the hierarchy
(only objects with appreciably different values are listed).
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Figure 8: This plot shows the build time of our point cloud
hierarchies for various objects.

The second step is possible because B− λI is positive
semi-definite (because λ is the smallest of all eigenvalues).
Thus, the Cholesky decomposition can be performed if full
pivoting is done [Hig90].

In our experience, this method is faster than the Jacobi
method by a factor of 4, and it is faster than singular value
decomposition by a factor 8.

6. Results

We implemented our new algorithm in C++. As of yet, the
implementation is not fully optimized. In the following, all
results have been obtained on a 2.8 GHz Pentium-IV.

For timing the performance and measuring the quality, we
have used a set of objects (see Fig. 13), most of them with
varying complexities (with respect to the number of points).
Benchmarking is performed by the procedure proposed in
[Zac02], which computes average collision detection times
for a range of distances between two identical objects.

6.1. Hierarchy Construction

Our point cloud hierarchies can be built in a fairly short time,
so that the construction can be performed at startup time (see
Fig. 8).

The memory consumption of a hierarchy is fairly low:
with each node, we store a BV, a pointer to the child nodes,
1 float for the radius rA, a constant number c1 of pointers to
the sample or to the cloud points lying in A, and also a num-
ber c2 of pointers to points in the rε-border of the BV. That

means, we need 32+4(c1 +c2) bytes for each node. In prac-
tice, c1 + c2 is between 15 and 30 so that at most 150 bytes
per node is needed. For example, the hierarchy of our largest
model (the grid) consisting of about 65,000 nodes consumes
about 9 MB main memory. Of course, we also have to store
the cloud points in main memory. Table 1 gives an overview
of the number of generated sample points as well as the av-
erage depth of a node in the hierarchy.

6.2. Time and Quality

Each plot in Fig. 9 (left) and Fig. 10 (left) shows the average
runtime for a model of our test suite, which is in the range
0.5–2.5 millisec (the two artificial models are considered
later in this section). This makes our new algorithm suit-
able for real-time applications, and, in particular, physically-
based simulation in interactive applications. Using our time-
critical approach (see Section 5.4), the detection time can be
decreased even further (e.g., when there are too many colli-
sions going on).

For each object of our test suite, we have also compared
the outcome of our new algorithm with a traditional polyg-
onal collision detection using a very high-resolution polyg-
onal model. That way, we can give some experimental hints
about the error probability of our new algorithm. Note that
the polygonal models are not a tessellation of the true im-
plicit surface, but just a tessellation of the given point cloud.
The results in Fig. 9 (right) and Fig. 10 (right) show that the
difference is always relatively low on average. For distances
between 0.6 and 2 about 1.2% (happy buddha), 1.06%(ele-
phant), 1.20% (aphrodite) and 0.64% (sharan) different an-
swers are reported. Here, only collision tests were consid-
ered where at least the root BVs intersect. The differences
can be explained by two facts: first implicit surface defined
by the vertices of a polygonal object is obviously different
from the polygonal model. Second, our intersection finding
algorithm in the leaf nodes is very simplistic at the moment.

Equivalent measurements for our two artificial models can
be found in Fig. 11. Note that the models have boundaries,
and that the spheres model consists of several unconnected
components. Obviously, our approach achieves results as
good as for the other models. The grid model causes more
differences compared to polygonal collision detection (up to
10%). Probably, this is because the surface definition in Sec-
tion 4.1 is valid only for manifold objects.
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Figure 9: Left: timings for different objects (see Fig. 13). Right: differences to polygonal collision detection; the differences
measure not errors but the number of different reports from the point-based versus the polygonal collision detection algorithms.
Note that the polygonal models are not a tessellation of the true implicit surface, but just a mesh of the (densest) point cloud.
The results for the teddy are very similar to that of the sharan, and are therefore omitted.
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Figure 10: Left: timings for different object complexities (# points) of the happy buddha model. Right: differences to polygonal
collision detection of the objects.

6.3. Time-Critical Collision Detection

Our time-critical algorithm (Section 5.4) tries to spend the
same amount of time tmax for each collision query. The re-
sults can be found in Fig. 12. Obviously, the time-critical
algorithm always spends almost the same amount of time on
the collision detection. Therefore, it can adapt the number of
test points in the leaves of the point hierarchy much better.

Note further that the measured average collision query
time is sometimes lower than tmax because sometimes a re-
sult can be achieved earlier, and sometimes the traversal
doesn’t reach any leaf nodes.

7. Conclusion and Future Work

In this paper we have presented a novel approach for colli-
sion detection of point clouds, which is, to the best of our
knowledge, the first one. It works for non-closed surfaces,
which we base on the weighted least squares approach.

We have proposed an efficient algorithm for constructing
point hierarchies incorporating a hierarchical sphere cover-
ing that are well-suited for collision detection. We have de-
scribed a method for automatic bandwidth and sampling rate

detection for the different levels of the hierarchy. Based on
the sphere covering and the implicit function, we have de-
rived a criterion for prioritizing the traversal so as to find in-
tersections more quickly. Finally, we have presented a time-
critical collision detection algorithm that, given a time bud-
get, returns a “best effort” result, so that we can guarantee a
real-time response under all circumstances.

We have also performed several measurements that show
that for all our models the collision queries can be done
within a very short time, and with very little error.

There are many avenues for further work. On the one
hand, performance and accuracy can be increased during the
traversal of the point hierarchies. For instance, a faster con-
vergence in the leaves towards an intersection point could be
found. Also, at inner nodes, the traversal criteria can proba-
bly be improved, for instance, by applying knowledge about
the separation of the eigenvalues.

On the other hand, the point hierarchy and the hierarchical
sphere covering could be improved so as to allow for faster
collision detection. For instance, the sphere covering could
be made tighter, and the definition of the surface itself could
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Figure 11: Timings and difference to polygonal collision detection of artificial models.
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Figure 12: Timings and differences using both the time-critical and non-time-critical algorithms.

be improved. Additionally, our method could be combined
with the one presented by [CBC∗01].
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