
Scalable Concurrency Control for
Massively Collaborative Virtual Environments

Patrick Lange, Rene Weller, Gabriel Zachmann
University of Bremen

Germany
{lange,weller,zach}@cs.uni-bremen.de

ABSTRACT
We present a novel concurrency control mechanism for col-
laborative massively parallel virtual environments that al-
lows an arbitrary amount of components to exchange data
with very little synchronisation overhead. The approach
taken here is to maintain the shared world state of the com-
plete virtual environment in a global key-value pool. Our
novel method does not use any locking mechanism. Instead
it allows wait-free data access for all concurrent components
for both, reading and writing operations. This guarantees
a highly responsive low-latency data access while keeping
a consistent system state for all users and system compo-
nents. Nevertheless, our approach is perfectly scalable even
for massive multi-user scenarios. We provide a number of
benchmarks in this paper, and the results show an almost
constant run-time, independent of the number of concur-
rent users. Moreover, our approach outperforms previous
concurrency control systems significantly by more than an
order of magnitude.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Parallel pro-
gramming

General Terms
Algorithms, Performance

Keywords
VR system architecture, wait-free, real-time, memory man-
agement, concurrency control

1. INTRODUCTION
Collaborative Virtual Environments (CVE) like massively

multi-player or serious games, large-scale virtual cities or
open space military training, have increased in popularity
tremendously over the past years. All of these applications
have in common that a large number of users interact simul-
taneously and in real-time in a shared virtual world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MMVE’15, March 18-20 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3354-2/15/03...$15.00
http://dx.doi.org/10.1145/2723695.2723699.

Interaction usually means that the user can manipulate
objects in the virtual environment. In order to maintain a
common and consistent state of the CVE for all users, in-
teractions made by one user have to be made visible to all
other users immediately. This requires a high responsiveness
of the system, i.e. system changes have to be distributed
with low-latency. Actually, experiments have shown that a
bad responsiveness (high-latency) can lead to frustrated par-
ticipant experience [5] and even to users completely losing
interest in the application [1].

However, distributing shared data with low-latency is not
enough to keep a shared virtual environment plausible and
fair. A second challenge is the consistency of the system.
This challenge is essential if several users are allowed to ma-
nipulate the same object simultaneously, e.g. in a serious
multi-player game, when a group of users jointly solve tasks,
or in collaborative virtual sculpting tools. Here, interactions
of one user directly influence the simultaneous interactions
of the other users. Finally, the demand for larger CVEs,
i.e. virtual environments that allow a higher number of par-
ticipants, more AI components, or more interactive objects,
increased significantly during the past years. Consequently,
modern CVEs should allow a high scalability in order to be
prepared for today but also future applications. Obviously,
these three key requirements of each CVE – responsiveness,
consistency and scalability – are not independent of each
other. For instance, low-latency is the prerequisite for the
consistency while higher scalability is often contradictory
to high responsiveness. Usually, this functionality of han-
dling all simultaneous user interactions and allowing access
to the common parts of the shared virtual environment is
called concurrency control management (CCM). This CCM
enables and maintains parallel, dynamic behaviour of the
CVEs shared world state. A perfect CCM should fulfill all
three partly conflicting requirements. Most current CCMs
use a simple locking mechanism for simultaneous access to
shared objects: if a user wants to manipulate an object, he
locks the object, manipulates it, and when he has finished
his manipulation, he releases it. This mechanism guaran-
tees a consistent system and avoids race conditions; but if
many users try to access the same object, it results in a bad
responsiveness because other users have to wait until they
gain access to the object, and it limits the scalability. Ac-
tually, locking mechanisms serialize concurrent user access,
hence, they are only limited CCMs.

In this paper, we introduce a new concurrency control
mechanism that fulfils all today’s needs in massively shared
data handling: our data structure is able to handle an ar-
bitrary number of components accessing the shared world
state, it achieves high responsiveness and a high scalability
even for massively multi-user CVEs and it guarantees a fair
and consistent access to shared objects in the virtual world.

In detail, our contributions are
• a novel wait-free data structure that guarantees simul-

taneous read operations without the need of locking
the resources during read access

• a novel wait-free write mechanism that allows even si-
multaneous write operations, given some mild condi-
tions that are often met in CVEs. For instance, it can
be performed for all linear functions.

These contributions lead to a novel generic CCM for mas-
sively parallel CVEs with arbitrary applications which sat-
isfies scalability, consistency and responsiveness.

The basic approach is a global key-value pool that main-
tains the world state of all shared objects. Our data struc-
ture is easy to implement and it supports insertion and re-
moval of new resources — e.g. objects, users, AI components,
etc. — during run-time while requiring only little memory.
Our results show that our new CCM outperforms classic ap-
proaches significantly by more than an order of magnitude.

2. RELATED WORK
A distinctive characterization of CCMs is whether they

are locking or non-locking. Locking approaches allocate re-
sources exclusively by using various well-studied techniques
such as mutexes, semaphores or condition variables. A main
advantage of locking CCMs is that they avoid race condi-
tions and naturally guarantee consistency of the system.

Most classic CCMs like [3] relied directly on standard
locking approaches. Unfortunately, [17] reported that the
locking approach scales only to at most ten peers on a lo-
cal area network. This is mainly because of the problem
that concurrent threads have to wait until a resource has
been released. This may result in a loss of efficiency be-
cause problems like thread starvation or deadlocks can oc-
cur. Consequently, more modern CCMs like [8], [13] and [15]
tried to avoid this problem by extending the basic locking
mechanism. [15] used a simple first-come-first-serve locking,
in which a central server granted manipulating access to a
user on request. All other participants could only work on
a local copy. But their local changes were not transmitted
to the server site. Hence, only one user of the CVE could
really interact whereas all other users could only observe the
changes. [8] further presents a lock-based approach for the
special case of collaborative sculpting. They split a mesh
into different regions. For each region, a lock could be ac-
quired. This allowed several users to work in parallel on the
same mesh but at different parts. However, only one user
could modify a region at the same time, multiple access was
again not possible due to the lack of an suitable algorithm
which could solve for parallel access. Additionally, the ap-
proach does not scale well with the number of users because
the lock acquirement is slow. Filtering approaches basically
offer a more general approach such as [10] [6]. The main idea
is to reduce the acquirement latency by restricting the num-
ber of users which can request a lock. To do that, constraints
have to be defined that are used to filter the requests. Even
if the basic idea is generic, the constraints have to be ad-

Concurrency Control
Mechanisms

Locking Non-Locking

Standard Filtered Lock-Free Wait-Free
[2]
[8]

[15]
[6]

[10]
[13] [14]

Consumer

Consumer

Producer AccessLock

Wait Access Wait

Lock Access Lock

Lock Access Lock

Consumer

Consumer

Producer AccessWait

Wait Access Wait

Access

Access

Consumer

Consumer

Producer Access

Wait Access Wait

Access

Access

Figure 1: Classification of CCMs. Left: traditional lock-

ing approaches; threads can be arbitrarily delayed. Mid-

dle: lock-free approaches that only delay the producer.

Right: our novel wait-free approach that does not delay

other threads at all.

justed for each individual application. Moreover, defining
constraints which can be not met by all users simultane-
ously is challenging if not impossible in CVEs. Therefore,
these filtering constraints are not generally valid for all kind
of CVE applications. They also also do not solve the inher-
ent problem of lock acquirement latency. Other approaches
for collaboration in virtual environments or generic virtual
reality system architectures (such as [2], [5], [7] or [16]) ne-
glect the problem of efficient data access to an shared world
state.

Non-locking approaches avoid this exclusive allocation of
resources by introducing new data structures, mostly us-
ing a few atomic operations [4], [12], [11]. Non-locking ap-
proaches can be further classified into lock-free and wait-free
methods. Both approaches avoid locks when solving concur-
rent access. Lock-free approaches guarantee progress of at
least one of the threads accessing the shared data struc-
ture. All other threads can be arbitrarily delayed. In most
approaches, all reading operations can happen in wait-free
manner whereas all writers are delayed. Unfortunately, this
can lead to thread starvation of the writers. Wait-free ap-
proaches guarantee access to the shared data structure in a
finite number of steps for each thread, regardless of other
threads accessing the shared data structure [9]. Unfortu-
nately, most of them are restricted to a single writer [14]. In
CVEs, simultaneous writing operations are essential, e.g. the
calculation of users health points in games which are concur-
rently modified by several components of the system (such as
enemy damage, healing or item buffs). Additionally, most
wait-free approaches support only built-in primitive types
and none of them was ever applied to CVEs, except [14].

Our new data structure presented here is based on this
data structure. We extend it to support also multiple simul-
taneous wait-free write operations. Moreover, we present
technical extensions that improve the performance signifi-
cantly. We will start with a short recap.

3. RECAP: THE KV-POOL
The basis of our novel CCM is the wait-free approach

presented in [14]. The core is a global dictionary, called
key-value pool (KVPool), a centralized data storage that
maintains the complete shared world state of the virtual
environment.

Each component that wants to share data to other compo-
nents in the CVE registers this shared data to the KVPool.
Examples for such shared data are the life points of each
player or AI in a game, meshes that can be modified by
several users simultaneously, or transformations from sim-
ulation data. Registering shared data means the creation
of a key-value pair (KVPair) in the global KVPool with a
unique key which is required for fast identification. If com-
ponents want access to the data, they simply have to pass
this key to the KVPool. Each KVPair can be composed of
arbitrary content, such as vectors, matrices, arbitrary nu-
merics or mesh data. Consequently, one KVPair can have
an arbitrary amount of member data which makes a KVPair
universally usable. Each KVPair can either be accessed for
writing or reading. We call components that modify the
data, i.e. components that need writing access, the produc-
ers and those components that only read the produced data,
consumers. In order to guarantee a wait-free reading access,
we use a copy-on-write mechanism for data access: each KV-
Pair maintains two copies of the data, a producer reference
and a consumer reference (more precisely, the producer ref-
erence is allocated on the fly when a component requests
writing access). If one or more consumers want to read data
simultaneously, they simply pass the key to the KVPool and
it returns a pointer to the consumer reference. Consequently,
this guarantees wait-free reading access.

Producers get a pointer to the producer reference. When
they finished their writing operations, they release the refer-
ence and it will become the new consumer reference, i.e. new
consumer queries will directly routed to the updated data
in the new consumer reference. However, this may result
in race conditions if a consumer has not finished its read-
ing of the old consumer reference (or if a KVPair is deleted
completely).

Consequently, we introduced a guard mechanism to avoid
this problem: the KVPool generates a hazard pointer that
indicates an ongoing reading operation every time a con-
sumer accesses a KVPair. When the consumer has finished
its reading, the hazard pointer is released and the old con-
sumer copy can be safely deleted. All hazard pointer are
managed globally by the KVPool. These hazards are no
locks, they are just pointers to a memory address of a con-
sumer copy which should not be deleted.

The KVPool allows wait-free concurrent access. This re-
sults in a dramatic speed-up of several orders of magni-
tude compared to traditional lock-based approaches (see [14]
for detailed timings), while avoiding all their problems like
deadlocks or thread starvation. Moreover, it overcomes the
many-to-many interface problem of standard VR system ar-
chitecture approaches by introducing a centralized dictio-
nary. Finally, it works completely asynchronous, no global
main loop to synchronize concurrent access to the data is
required.

However, the approach has two major drawbacks: first, it
is restricted to a single producer for each KVPair. Hence,
it can be hardly applied to simultaneous modifications of
shared data that often appears in CVEs, like the aforemen-

tioned collaborative sculpting or game applications. Obvi-
ously, the approach can be easily combined with traditional
locking-based mechanisms for parallel write operations for
the same KVPair. However, this would partly neglect its
advantages and inject their problems. Therefore, we pro-
pose a different solution. The second drawback is the global
hazard pointer management. In the original implementa-
tion, we used a STL container to store the hazards. However
the attachment and the deletion of hazards takes more time
the more hazards have already been generated and stored.
A filter-based approach to this hazard pointer management
would help to optimize the approach.

4. OUR APPROACH
In this section, we present our new concurrency control

mechanism that overcomes the limitations of the original
KVPool. Namely, we present a novel method that avoids the
slow global hazard pointer management, and we present a
mechanism that also allows wait-free write access for several
concurrent producers. Moreover, we give an overview on the
implementation details.

4.1 Local Markers
In the original implementation of the KVPool, we used

hazard pointers to avoid race conditions. If a consumer
wants to read a consumer copy, it generates a hazard pointer
that will be destroyed when the reading operation has been
finished. All hazard pointers are stored in a global list of the
KVPool. We used a wait-free list with atomic operations to
organize the global hazard list. The main problem with this
implementation are the relatively large amount of memory
– each reading operation requires a pointer – and the time
that is needed to release the pointers – we have to walk
through the list to find the pointer before we can release it.
Moreover, after each hazard release, we have to search the
list if there are more hazards pointing to the same consumer
copy in order to decide whether to delete the copy or not.

The main idea to avoid this problem is to use local markers
instead of global hazard pointers. Basically, a local marker
is a single integer value stored with each consumer copy. If a
consumer wants to read the copy, it simply increments this
local marker with an atomic operation. When it has finished
the reading, it decrements the marker. Obviously, the local
copy can be deleted if and only if the marker equals zero,
because in this case, no reader is reading it any more.

The advantage is that we need only one single atomic in-
teger for each consumer copy and not a hazard pointer for
each consumer that access the copy. Moreover, the time con-
suming search for other hazards accessing the same copy can
be omitted and we do not need complicated data structures
like the wait-free list.

4.2 Wait-Free Concurrent Write Access
The original implementation allows only a single producer

like most other wait-free data structures. In this section we
present an extension of our KVPool also to multiple concur-
rent producers. The basic idea is to keep the copy-on-write
mechanism but to allow several producer copies.

In detail, if a producer wants to modify data in a KV-
Pair, the KVPool sends it a copy of the current data. Each
concurrent producer gets its individual copy and all copies
are labeled with a time code. Obviously, concurrent read-
ing copies will get the same time code. After finishing the

modification, the producers informs the KVPool by writing
back the data. Now, two possible cases may happen: first
case, both the current consumer copy and the new producer
copy have the same time code. In this case, we can simply
replace the consumer copy and assign the current time code
to it.

The second case is more interesting: the time code of the
consumer copy and the producer copy are different. This
means, the consumer copy has been already replaced by an-
other producer. In this case, we combine the data of both
copies to a new consumer copy. In order to combine both
copies, the creator of the KVPair has to define an individ-
ual merge function which is used by the KVPool to solve the
conflict.

This function allows a high flexibility and it covers almost
all cases that usually happen in CVEs. For instance, it can
simply overwrite all values, take the maximum or minimum
of both values, in case of life points in computer games it
can summarize points or in case of collaborative sculpting
it can perform a linear interpolation between the modified
vertices. Obviously, as a special case, it can implement the
first-come-first-serve strategy of [15] by simply keeping the
first change and throwing away all others, but also the local
lock mechanism described by [8].

Several producers are allowed to write back their copies
simultaneously. Because of this, we have to buffer this back-
writing with a wait-free queue for each KVPair. Copies
that are put into the queue are merged sequentially by the
KVPool, outside the producers and consumers thread scope,
using the merge function. Consequently, this sequential
merging does neither influence the wait-free read, nor the
wait-free write capability of our data structure. All compo-
nents can still access all KVPairs for reading and writing.

4.3 Implementation Details
Figure 2 illustrates the above stated local marker concept

as well as the relationship of producers and consumer with
respect to the KVPairs stored in the KVPool. In the follow-
ing, we will describe the KVPool and KVPair functionalities
in more detail.

The KVPool, implemented as a hash map, offers only two
access functions for the components: put and get. If con-
sumer wants to read a value, it calls the get function and
the KVPool returns the current consumer copy. Moreover,
it increments the local marker (See Algorithm 1). If the
consumer has finished reading, a release function will be
called that decrements the local marker again. Additionally,
it checks whether the local marker is zero and, probably, al-
lows the deletion of the consumer copy if no other consumers
still reads it.

Algorithm 1 KVPool::get(key,access)

1: if key not in map then
2: return empty
3: else
4: pair(KVDataPair) slot = map.getValue(key)
5: if access is producer then
6: return slot.producerreference.clone
7: else
8: slot.consumerreference.localMarkerIncrement
9: return slot.consumerreference

10: end if
11: end if

KVPool

KVPair

Producer
Reference

Consumer
Reference

ConsumersProducers

k

m

1

1

Local Markers

KVPool

get(Key, Access): KVPair
put(Key, KVPair): KVPair
release(KVPair)
mergeCheck()

KVPair

clone()
queue(KVPair)
dequeue()
merge()

m n

Figure 2: Relationships between key-value pool

(KVPool), key-value pairs (KVPair), markers, produc-

ers and consumers.

Writing access also begins with a call of the get function.
However, in this case, the KVPool returns a clone of the
producer copy. When the producer has finished writing, it
calls the put function (See Algorithm 2). The put function
ensures the above stated wait-free reading access: it either
replaces the old consumer copy by the new value or it col-
lects those KVPairs that need to be merged as shown line 9.
Actually, the compare of the time code has to be performed
atomically in order to avoid race conditions during concur-
rent writes. Collected KVPairs are put in a queue that the
KVPool maintains for each entry individually.

Additionally, the put function allows the insertion of new
KVPairs to the KVPool. Moreover, it returns the old con-
sumer reference as retired. This allows the deletion of this
pair by the release function.

Algorithm 2 KVPool::put(key,value)

1: KVPair retired
2: if key in map then
3: pair(KVPair) slot = map.getValue(key)
4: if value.timecode = slot.producerreference.timecode

then
5: slot.producerreference = value
6: KVPair retired = slot.consumerreference
7: slot.consumerreference = value.clone
8: else
9: slot.producerreference.queue(value)

10: retired = slot.consumerreference
11: pool.notify
12: end if
13: else
14: map.insert(pair(key,value))
15: end if
16: return retired

If the put function recognizes concurrent writes, i.e. a
queue for a KVPair is not empty, the KVPool calls a
mergeCheck function (See Algorithm 3) that processes the
merges of those KVPairs.

Algorithm 3 KVPool::mergeCheck()

1: while slots are being marked do
2: for all marked slots of map do
3: slot.producerreference.dequeue
4: slot.consumerreference = slot.producerreference.clone
5: end for
6: end while

Each KVPair can store arbitrary data, hence, the merge
function can have arbitrary composition. In the current im-
plementation of our CCM, we provide six generic basic func-
tions which can be used: min, max, average, addition, sub-
traction and replace. Each function operates on the defined
member variables of the KVPair which should be merged.
Obviously, the users can implemented their own functions
to provide the required merge for their KVPair. As an ex-
ample, Algorithm 4 shows an arithmetic mean merge.

Algorithm 4 merge-mean(KVPair a, KVPair b)

for annotated KVPair member variables mv of a and b do
a.mv = a.mv+b.mv

2
end for

5. RESULTS
We have implemented our new CCM in C++. We per-

formed experiments on a machine with an Intel Core i7 4-
core processor with enabled Hyperthreading, operated by
Windows 7 64 bit and 4GB of RAM.

The KVPool contained 50.000 KVPairs, each representing
a virtual object. We performed 20,000 read- and write oper-
ations for each test. Each test was additionally repeated 50
times and we averaged the resulting timings. The access to
the KVPool was modelled with different numbers of concur-
rent components, ranging from 4 to 512. We applied two test
scenarios. In the first scenario the components were equally
divided into producers and consumers of the KVPairs. The
second scenario involved more producers, namely twice as
much as consumers. To prevent caching, we inserted for
each test run the KVPairs at random positions. The key
size was set to 12 Bytes.

We compared the performance of our new approach to four
different existing methods, which we adopted to the KVPool
scheme. The first competitor was a standard locking scheme
based on the boost locking library. The second approach was
a typical filtered concurrency locking implementation based
on [8]. The third competitor was an optimistic concurrency
locking implementation which simply recomputes the val-
ues in case of a concurrent write based on [6]. Finally, we
compared our approach to the original approach from [14].

Figures 3 and 4 show a comparison of the performance
with respect to read and write access. In this test, producers
read and write while consumers only read random KVPairs.

Our novel approach outperforms all other competitors.
Obviously, the speed-up of our approach increases with an
increasing number of components accessing the KVPool.
Our approach is almost independent of the number of con-
current components. Additionally, our approach outper-
forms also the original approach from [14]. For less than
approximately 28 components that concurrently access the
KVPool, the filter-based approach performs almost identi-
cally to our approach. However, if more than 30 components

access the KVPool, our approach, and even the original ap-
proach [14], easily outperform the filter-based approach.

Figure 5 shows a comparison of the memory usage with
respect to a distributed KVPair with 128 Byte size. Sur-
prisingly, our approach uses less memory than the origi-
nal KVPool implementation, though using multiple copy-
on-write clones for the concurrent write operations. Con-
sequently, we expected a higher memory usage. However,
our new improved KVPool performs much better due to the
local markers. This results in a faster release of retired KV-
Pairs and benefits therefore the overall memory demand of
our new approach.

Figure 6 shows the performance gain of our approach with
respect to the local marker concept by comparing the tim-
ings of hazard pointer acquisition and marker usage for the
above stated test cases. In average, the local marker concept
performs nearly twice as fast as the original hazard pointer
approach. Overall, the local marking concept makes approx-
imately 16% of the overall performance gain. The multiple
wait-free writing constitutes 84% of the overall performance
boost.

With respect to the overall performance, we can conclude
that our approach outperforms the competitors (in average
between a factor of 2 and 35) while using less memory than
the original approach (on average 74%).

0

20

40

60

80

100

120

140

160

4 20 36 52 80 144 256 512

A
cc

e
ss

lt
im

e
lin

lm
s

Numberloflcomponentslaccessinglthelkey-valuelpool

OurlApproach

Lock-BasedlApproach

Wait-FreelApproach

OptimisticlApproach

FilteredlApproach

Figure 3: Timings for a combined read and write oper-

ation with an equal producer consumer distribution.

0

100

200

300

400

500

600

4 20 36 52 80 144 256 512

A
cc

e
ss

lt
im

e
lin

lm
s

Numberloflcomponentslaccessinglthelkey-valuelpool

OurlApproach

Lock-BasedlApproach

Wait-FreelApproach

OptimisticlApproach

FilteredlApproach

Figure 4: Timings for a combined read and write oper-

ation with twice as much producers as consumers.

0

1000

2000

3000

4000

5000

6000

4 20 36 52 80 144 256 512

M
e

m
o

ry
vc

o
n

su
m

p
ti

o
n

vin
vB

yt
e

Numbervofvcomponentsvaccessingvthevkey-valuevpool

OurvApproach

Wait-FreevApproach

Figure 5: Memory consumption of our and original wait-

free approach.

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

A
c
q

u
is

it
io

n
pt

im
e

pi
n

pm
s

Numberpofpkey-valueppairspinpthousands

OurpApproach

Wait-FreepApproach

Figure 6: Performance gain of our approach with re-

spect to the original wait-free approach.

6. CONCLUSIONS
We have presented a novel concurrency control mecha-

nism for massively-parallel CVE applications. Our approach
allows all concurrent threads complete wait-free access for
reading and writing operations and it requires no locks like
most other approaches reported in the literature. Our new
CCM is easy to implement and supports arbitrarily com-
plex data types and the memory overhead is small. Adding
or removing new concurrent components is very simple and
straight forward, even during run-time.

Our benchmark shows that our approach outperforms other
CCMs known from the literature significantly, especially in
massive parallel scenarios with a large number of concurrent
components.

However, our synthetic benchmark was restricted to a sin-
gle PC, but we are confident that our approach scales well
for distributed applications like massive multi-player games
or other distributed CVEs. In a distributed CVE applica-
tion, the KVPool would serve as a central time synchronising
host, which updates the timestamps of the KVPairs. Typi-
cal distributed CVE problems such as network delays would
not affect read or write operations. Delayed write opera-
tions would be merged and delayed read operations would
still retrieve the newest data from the KVPool. However, a
fast network interface of the central host would be needed
to avoid possible bottlenecks when introducing such a cen-
tralized server solution. Additionally, it would be desirable
to define a theoretic basis for generic merge functions. Until

now, we just used functions that we needed in our appli-
cations, like min, max or linear combinations. Defining a
general valid merge for arbitrary data would be more chal-
lenging, if general possible. In addition to that, a concur-
rent quality measure for data could define the boundaries
and constraints for arbitrary data for the merge. Finally,
it would be desirable to remove also the last remaining “se-
quential” step on processor execution level, the atomic op-
erations. Probably, this could be done with unique prime
identifiers for the components. These identifiers could be
used for unique data access determination instead of using
atomic markers. This could happen in parallel, in separation
of the actual KVPair read and write operation.

7. ACKNOWLEDGMENTS
This research is based upon work funded by the German

BMWi under grant 50NA1318.

8. REFERENCES
[1] R. A. A. Boukerche, N. J. McGraw. A grid-filtered region-based

approach to support synchronization in large-scale distributed
interactive virtual environments. International Conference on
Parallel Processing Workshops, pages 525–530, 2005.

[2] C. V. L. Arthur Valadares, Thomas Debeauvais. Evolution of
scalability with synchronized state in virtual environments.
International Workshop on Haptic Audio Visual
Environments and Games, pages 142–147, 2012.

[3] O. H. Christer Carlsson. Dive - a multi-user virtual reality
system. Virtual Reality Annual International Symposium,
pages 394–400, 1993.

[4] G. L. S. David L. Detlefs, Paul A. Martin. Lock-free reference
counting. ACM Symposium on Principles of Distributed
Computing, pages 190–199, 2001.

[5] R. W. David Roberts. Controlling consistency within
collaborative virtual environments. International Symposium
on Distributed Simulation and Real-Time Applications, pages
46–52, 2004.

[6] S. H. Dongman Lee, Mingyu Lim. Atlas - a scalable network
framework for distributed virtual environments. Presence,
16:125–156, 2007.

[7] K. H. Frank Steinicke, Timo Ropinski. A generic virtual reality
software system’s architecture and application. ICAT
Proceedings International Conference on Augmented
Tele-Existence, pages 220–227, 2005.

[8] F. F. N. Frederick W.B. Li, Rynson W.H. Lau. Vsculpt: A
distributed virtual sculpting environment for collaborative
design. IEEE Transaction on Multimedia, 5:570–580, 2003.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, pages 206–209, 1991.

[10] D. L. Jeonghwa Yang. Scalable prediction based concurrency
control for distributed virtual environments. Virtual Reality,
pages 151–158, 2000.

[11] M. M. Maurice Herlihy, Victor Luchangco. Nonblocking
memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems, 23,
2005.

[12] M. M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Transactions on Parallel and
Distributed Systems, 16, 2004.

[13] S. O. Olarn Wongwirat. Performance evaluation of
compromised synchronization control mechanism for
distributed virtual environment. Virtual Reality, 9:1–16, 2006.

[14] G. Z. Patrick Lange, Rene Weller. A framework for wait-free
data exchange in massively threaded vr systems. Journal of
WSCG 2014, 22:383–390, 2014.

[15] B. H. Pietro Buttolo, Roberto Oboe. Architectures for shared
haptic virtual environments. Computers & Graphics: Haptic
Displays in Virtual Environments and Computer Graphics in
Korea, 21:421–429, 1997.

[16] M. K. Tom Feldmann. Vair: System architecture of a generic
virtual reality engine. Computational Intelligence for
Modelling, Control and Automation - International
Conference on Intelligent Agents, Web Technologies and
Internet Commerce, 2:501–506, 2005.

[17] K.-Y. W. Un-Jae Sung, Jae-Heon Yang. Concurrency control in
ciao. IEEE Proceedings Virtual Reality, pages 22–28, 1999.

