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Abstract— The development of autonomous vehicles for ur-
ban driving is widely considered as a challenging task as
it requires intensive interdisciplinary expertise. The present
article presents an overview of the research project OPA3L
(Optimally Assisted, Highly Automated, Autonomous and Co-
operative Vehicle Navigation and Localization). It highlights the
hardware and software architecture as well as the developed
methods. This comprises algorithms for localization, perception,
high- and low-level decision making and path planning, as well
as model predictive control. The research project contributes a
cross-platform holistic approach applicable for a wide range of
real-world scenarios. The developed framework is implemented
and tested on a real research vehicle, miniature vehicles, and
a simulation system.

I. INTRODUCTION

Global road safety statistics show that about 1.35 million
deaths and 50 million injuries yearly result from road traffic
crashes. Traffic accidents are considered the leading cause
of death for children and young adults aged 5-29 years [1].
Moreover, the economic cost of traffic accidents is estimated
at 3% of the gross domestic product of most countries [2].
The main risk factors behind road traffic crashes are human
error, speeding, driving under the influence of alcohol and
other psychoactive substances, distracted driving, and non-
compliance with traffic rules [1].

Against these facts, the development of safer driving
technologies, in which human behavioral risk factors are
eliminated, is inevitable. Autonomous vehicles are widely
seen as a revolutionary technology that not only holds the
promise of safer roads and fewer traffic accidents, but also
less traffic congestion, more effective usage of vehicles and
space, better fuel efficiency and environment friendliness, as
well as an easier life for elderly and disabled people [3].
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Fig. 1. Sensor setup of the research car

The development of autonomous vehicles for urban driv-
ing is widely considered as a challenging mission due to
the highly dynamic nature of such environments. Over the
past years, a considerable progress in developing autonomous
driving systems has been made [4]. This has been realized
by intensive collaborations of expertise from various fields,
such as electronics: sensing and actuating systems [5], com-
puter science and artificial intelligence [6] [7], mathematical
optimization and optimal control systems [4] [8] [9], as well
as law and social sciences [3].

This article presents an overview of the research
project OPA3L (Optimally Assisted, Highly Automated, Au-
tonomous and Cooperative Vehicle Navigation and Local-
ization). It explains the system architecture of the research
vehicle developed within the scope of the project for urban
driving applications, in terms of its hardware and software
architecture. Accordingly, the present article describes the
used methods and algorithms for localization, perception
(based on LiDAR and camera), object tracking, strategic and
tactical decision making, motion planning, and model pre-
dictive control. It is shown how simulated and miniaturized
environments are utilized for the rapid development of the
system. Finally, the article presents a real-world example for
fully autonomous urban driving.

The project contributes a cross-platform holistic approach
that is applicable for a wide range of real-world scenarios.
This is due to its ability to abstract both static and dy-
namic information in the vehicles surroundings in a very
generalized fashion. The planning and control algorithms,
accordingly, are suited to provide an anticipatory guidance
of the vehicle even in unknown situations.

II. SYSTEM OVERVIEW

A. Research Vehicle

The research car is a customized hybrid VW Passat GTE
(Fig. 1). Vehicle specific sensor information (e. g. current
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Fig. 2. Overview of the software architecture.

steering angle or wheel speeds) as well as control commands
(e. g. desired steering angle or acceleration) are transferred
via CAN. A camera in the windshield records the area
in front in high resolution. This is supplemented by four
ValeoVis area view cameras with medium resolution at low
driving speeds (up to 10 km/h). Six Ibeo ScaLa LiDAR
sensors, measuring at 25 Hz, cover the entire surroundings of
the vehicle, with an increased density in direct front and rear.
Two u-blox F9P receivers are used for obtaining Real-time
kinematic (RTK) at 10 Hz. An ADIS 16488 IMU provides
accelerometer and gyroscope measurements at 800 Hz. For
V2X (Vehicle to everything) a Nordsys waveBEE, is used to
communicate with other traffic participants. All computations
are performed on an on-board computer with an Intel Core
i9-9900K CPU and two NVIDIA GeForce RTX 2080 Ti
GPU’s.

B. Sketch of Software Architecture

The proposed software architecture is a successor of the
autonomous driving system presented in [9], where the
framework is divided into three main modules: Multi-Sensor
Fusion (FUS), Decision Making (DM) and Control (CTRL),
as shown in Fig. 2. However, within the scope of OPA3L all
modules were extended by additional functionalities accord-
ing to the urban driving scenarios.

Firstly, an image processing part is added, which enables
the autonomous vehicle to perform road segmentation, object
detection and motion prediction. Secondly, DM is rearranged
into three parts, where the strategic decision making provides
the global routing by planning a route from the current
location of the vehicle to the desired destination. The motion
planning and tactical decision making perform the local
trajectory planning as before. Finally, the CTRL part gener-
ates feasible control signals computed by a nonlinear model
predictive controller (NMPC). The software architecture ben-
efits from a well-structured modular design with a scalable
deployment capability, making it suitable for a variety of
driving platforms.

III. LOCALIZATION

A precise estimate of the vehicle’s state as well as its sur-
roundings is required for safely maneuvering an autonomous
vehicle. While state estimation is described in this section,
perceiving the surroundings and estimation of the state of
other traffic participants is explained in Sect. IV and Sect. V
respectively.

The localization module determines the state of the vehicle
in its environment which is then used directly or indirectly by
most subsequent algorithms. Much research is currently fo-
cused around combining an inertial navigation system (INS)
with information from a global position sattelite system
(GNSS) [10], [11]. While this traditional approach yields
very good results in areas where GNSS signals are strong,
the estimate may jump in areas where the satellites are
occluded or multi-pathing occurs [12]. Such jumps may
produce dangerous behavior in subsequent algorithms that
control the vehicle based on the state estimate.

In order to address this issue, two �-Kalman Filters are
used in parallel. One filter solves the classic INS/GNSS
problem, and produces a global estimate which may contain
jumps where the GNSS signal is erroneous. This filter
achieves lane-accurate localization and is used to make
known information about the environment usable, such as
lane information and street signs, which are stored in global
coordinates. Since the output of this filter is not directly
used for vehicle control, the occuring jumps do not lead to
dangerous behaviour.

The second filter only estimates odometry, without in-
cluding any global information and thus does not inherently
suffer from jumps. The approach is realized by moving the
reference state (towards which the uncertainty is estimated)
forward in time periodically, as described in detail in [12].
This reference is always only a few meters behind the current
state, which bounds the uncertainty in the vehicle pose that
would otherwise grow unbounded without any correction
data. However, due to the lack of any global correction data
this filter will drift over time. Nevertheless, the state estimate
is very precise over short time frames, making the result of
this filter well-suited for vehicle control.

IV. PERCEPTION

An understanding of the surroundings of the vehicle are
of utmost importance for safe and reliable driving. Traffic
participants, obstructions and the areas in which to possibly
drive need to be detected. The vehicles perception is based
on LiDAR and front-area camera data.

A. Visual Perception

To get a semantic understanding of the cars surroundings
two camera based deep learning approaches are used.

The first one facilitates the detection of a local driveable
area based on perceived roads without borders or lane
markings in images from the front area camera. To obtain an
estimate of this area, each camera frame is passed through
a deep convolutional neural network (CNN) that performs
semantic segmentation. The segmentation model architec-
turally is a scaled down variant of the Deeplab network
[13] with a resnet34 backbone [14], specifically tuned to
achieve real time capability on the research vehicle on an
input resolution of 1280x384. With only 23.08M parameters,
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Fig. 3. Deep CNN architecture used for image processing. The upper
part consists of the Resnet34 encoder network as well as the deeplab-style
decoder used for (road-)segmentation. At different depths of the network,
features are passed to the object detection decoder, i. e. the lower path, at
which objects are predicted at five different output layer depths.

this model achieves an mIOU1 of 76.4% on the Cityscapes
[15] validation set with inference speed in excess of 20fps
[16]. On the car, the camera images get passed through
the model, thereby get segmented into the 19 classes of
the Cityscapes training dataset and subsequently transformed
into a top-down view using a simple linear transformation.
Assuming a reasonably flat road around the car, edges of the
pixels segmented into the road class are passed to the DM as
edges of the driveable area via a simple grid map. A more
advanced process of transforming to a top-down view might
be implemented in future work by taking local elevation data
obtained from the LiDAR sensors into account.

A second decoder network performs single shot 2D object
detection similar to FCOS [17] to get an understanding of
other traffic participants. It is trained to detect instances
of other cars, buses, trucks, persons as well as bicycles.
The encoder parameters and features are shared with the
segmentation model, giving an advance in inference speed
by making only one expensive forward pass through the
backbone network per frame necessary, giving us an overall
single-encoder multi-decoder network structure which is
visualized in Fig. 3. Objects are predicted at five different
levels of scale and depth, with prediction feature map sizes
being between 1/8th to 1/128th of the input image resolution.

The joint training procedure consists of 100 epochs on the
finely annotated training images of the Cityscapes dataset
with considerable application of data augmentation (e.g.
scale jittering, random noise, random flips etc.) to improve
generalization to the vehicle camera. Object bounding box
ground truth is generated from the finely annotated instance
segmentation labels of the dataset. To naturally train only
on objects with a reasonable size in the image, any objects
which are too small to have a corresponding feature map
cell contained within them, i.e. by being smaller than 16px
in any dimension, are discarded during training.

1mIOU (mean intersection over union): area of intersection of ground
truth and prediction divided by the area of union of ground truth and
prediction, averaged by detected class.

Fig. 4. Moving the current submap window. The currently active window
is shown as a blue outline in two timesteps. As the vehicle moves, the
submaps behind it are discarded (red crosses), and new ones are allocated
in the direction of travel (green outlines), from [21].

B. Mapping

In addition to camera-based perception, a mapping ap-
proach utilizing the six LiDAR sensors is used. These offer
more robust distance information and are especially useful
for detecting obstacles in the immediate surroundings of the
vehicle. The common mapping representation is the grid
map, which divides the environment into cells. In this work,
evidential grid maps are used [18], which can be seen as a
generalization of the classical probabilistic grid maps [19,
Chap. 9]. Instead of representing only the probability for a
cell to be free or occupied, belief mass can be assigned to any
of the subsets of the set ΘY := {o, f}. This includes mass
on the empty set ∅, representing conflicting information,
as well as mass on the superset ΘY , which represents
no information in that area. Mapping is performed using
mapping with known pose [19, Chap. 9], where the LiDAR
scan is transformed into the map using the current state
estimate, which is obtained as described in Sect. III. The
uncertainty of this state estimate is ignored, as the pose is
assumed to be known. The map is then updated according
to the equations given in [20].

A unique challenge in mapping for autonomous driving
lies in the large areas that can be covered in a single
session. Often these areas can not be fully kept in memory
due to computational hardware constraints. Instead, only
the direct environment of the vehicle is put into focus by
using a periodically updated moving window that is kept
roughly centered around the vehicle. This is implemented
by using a hierarchical map organization, which can be seen
in Fig. 4. The map is split into submaps, which are allocated
or discarded according to the movement of the vehicle. The
equations as well as a performance evaluation for different
underlying datastructures can be found in [21].

V. OBJECT TRACKING

While the map already contains information about the
static parts of the environment, dynamic parts such as other
traffic participants require seperate handling. This is done by
late fusion using multiple �-Kalman Filters, which is similar
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to the one used for state estimate in Sect. III with slightly
modified models, since no intrinsic information is available.
In this approach each traffic participant is tracked by their
own filter.

A. LiDAR-based Object Tracking
There are two different possible approaches for detecting

traffic participants. The first is to obtain the objects directly
from the sensors in the form of precomputed objects contain-
ing a size, pose and velocity vector. These object can then
be used directly as input for the late fusion.

The second is still under development, where objects
are detected in a specialized grid map that represents the
dynamics of the environment. For this, evidential dynamic
maps are used as presented in [22]. These maps are an
extension to the evidential maps presented in Sect. IV, in that
they extend the set of possible states to ΘY = {f, s, d}, with
d representing belief that the corresponding area contains a
dynamic object, and s representing static objects. The state
of each cell is determined using a particle filter, where each
particle is assigned a velocity and occupancy probability,
and only the particles which match the observations over
time remain. This results in a belief for each cell to be
free, dynamically occupied or statically occupied, as well
as their estimated velocity. These cell attributes can then be
used to find clusters of dynamic cells with similar velocities
and directions of travel. Velocity, orientation, position and
size of the resulting cluster can be easily calculated from
its contained cells. Therefore, all required information for a
filter update can be derived directly from the map.

B. Camera-aided Object Tracking
Using the detected objects from Sect. IV, we currently

investigate improving the birth-detection of the tracking
filter. In the LiDAR-based approach a simple clustering
is performed in order to find areas with similar dynamic
properties. However, this method relies on the evidential
dynamic map having detected dynamic properties of the
cells with a reasonable certainty, which may take several
observations of the same object to reach that threshold. Using
the detected objects from the camera, it seems reasonable to
choose a significantly lower threshold for the detection in
areas that are known to belong to an object. This may speed
up the initialization process, which becomes more important
with increasing vehicle velocities.

In addition to the improved birth-detection we are cur-
rently investigating using the detected bounding boxes di-
rectly for correcting the filter. Using the extrinsic and intrin-
sic parameters of the camera, the 3D bounding-box of the
tracked traffic participant in world coordinates is transformed
to a 2D bounding-box in image coordinates. This bounding-
box may be used to correct the width and length of the
tracked object by using the 3D-to-2D transformation as the
measurement function of the Kalman Filter.

VI. PLANNING AND DECISION MAKING

Conceptually three sub-modules are responsible for high-
and low-level planning and decision making. The strategic

decision making computes long-term routes for one or mul-
tiple vehicles, mainly considering static information from
annotated maps and traffic flow data. The tactical decision
making, on the other hand, is responsible for computing
specific short-term maneuvers that follow the specifications
provided by the strategic decision making and at the same
time consider the immediate surroundings of the vehicle.
To compute such maneuvers in arbitrary and dynamic en-
vironments, the tactic module is closely coupled to a motion
planner that constantly computes a series of feasible vehicle
maneuvers based on specific requests from the tactic.

A. Strategic Decision Making

The main task of the strategic decision making is to plan
a route from the current location of the vehicle to one
or several destinations specified by the user. A graphical
user interface for the operation of the onboard system by
the passenger (input of destination) is therefore part of the
module.

The route planning and decision making is based on
mostly static data. This includes a reference map of the
area as well as a map of the street network. The maps are
annotated to include driving lanes and their driving direction,
lane markings like stop lines, as well as traffic lights and
traffic signs. It is planned to take into account information
about the traffic or changes to the map from cooperating cars
or other sources (e.g. about traffic jams or blocked roads).

Planning a route includes selecting the most advantageous
lanes and corresponding desirable speeds, taking into account
traffic and priority rules. Depending on predefined objectives
or user input, the routing algorithm has to optimize for a
given criteria like shortest distance or shortest travel time.
In scenarios with multiple users or multiple cooperating
vehicles this extends to multiple vehicle routing. This module
implements various different existing routing algorithms to
compare their performance when solving these problems.

The strategic decision making module does not issue any
control commands directly. All decisions made are relayed to
the tactical decision making module, which in return provides
constant feedback while the planned route is executed. Based
on the received information the planned route can change at
any time, e. g. in case a road is blocked, when a lane change
is impossible or something else causes the vehicle to diverge
from the planned route.

Depending on the algorithm used, re-routing in real-time
can be accomplished by calculating a number of different
routes at all times instead of solving the optimization prob-
lem for a single route. After possible routes are planned,
characteristics like total distance driven and expected driving
time are calculated and used to rank the different options
according to the specified optimization criteria. All possible
routes are kept as backups and handed to the tactical decision
making module to use in case a chosen route has to be
abandoned suddenly. When an algorithm is used for which
this multi-planning approach is not feasible, the strategic
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Fig. 5. Simulated maneuver generated by the motion planner involving an
inversion of the driving direction and considering the predicted motion of
a moving object (approximated by red circles). The colored points describe
the past trajectories of both vehicles with the colors representing the speed
values at the corresponding time. Data about the vehicle environment is
given in black, the automatically generated free-space polygon is shown in
orange and the (dynamic) Voronoi edges in green accordingly.

decision making module will have to re-plan as soon as a
deviation from the planned route is reported by the tactical
decision making module.

B. Motion Planning

In its core, the motion planning module is based on the
well-known hybrid state A∗ algorithm, which was origi-
nally designed for the computation of feasible paths for an
autonomous car [23]. That method itself, however, cannot
compensate for dynamic environments (like other cars),
needs a post-optimization step to ensure safety to obstacles
and is highly specialized to consider only specific spatial
restrictions. To overcome these drawbacks, this work utilizes
a generic version of the hybrid state A∗ algorithm which is
built on three main features [4].

First, all static spatial restrictions, like lane information
or obstacles generated by the sensor fusion module, are
combined into a unique representation through a free-space
polygon. This not only allows to consider arbitrary types of
constraints without extending the algorithm itself, but most
importantly reduces the complexity of collision checks inside
the planner, especially for large point clouds as generated by
mapping of LiDAR data.

Second, a Voronoi field similar to [23] can be efficiently
computed from the edges of the free-space polygon. For
the approach presented in this work the space occupied by
the anticipated trajectory of moving objects at discrete time
points is also considered. This leads to the definition of a
dynamic Voronoi potential which is then used to compute
costs of explored nodes as well as to perform collision checks
of the corresponding states directly within the hybrid state
A∗ algorithm.

Finally the exploration strategy to generate new nodes
takes information about the vehicle’s speed v into account
by using the kinematic vehicle model(

ẋ, ẏ, ϕ̇, v̇
)>

=
(
v cos(ϕ), v sin(ϕ), v/L tan(δ), a

)>
,

considering the wheel base L and the controls being the
acceleration a and the steering angle δ. The performance of

the resulting motion planner is demonstrated by an example
solution for an intentionally complex maneuver (involving
forward and backward driving as well as dynamic obstacle
avoidance) in Fig. 5.

C. Tactical Decision Making

Utilizing the motion planner from Sect. VI-B, the tactic
module computes a set of trajectories and decides upon the
best solution by considering aspects like safety, strategic
specifications or consistency between consecutive decisions.
Eventually, the resulting trajectory is forwarded to the model
predictive controller for execution, compare Sect. VII.

In order to properly setup the motion planning framework,
the knowledge about the vehicles surroundings is thought-
fully preprocessed. As a key feature, spatial restrictions are
categorized into soft (e. g. lane boundaries) and hard (i. e. ac-
tual obstacles) constraints, both having a separate accessible
area. The dynamic Voronoi potential is computed regarding
the intersection of both. This prevents collisions and at the
same time allows the vehicle to cross lane boundaries if
necessary while otherwise being centered within the lane
which is enforced through the node costs introduced by the
potential. Furthermore, by analyzing the distance of static
and moving obstacles to the Voronoi edges, an adaptive
definition of a current speed target is possible. This does not
only allow to drive slowly in narrow areas but also to detect
and consider the velocity of leading vehicles, effectively
implementing the functionality of an adaptive cruise control
(ACC).

VII. MODEL PREDICTIVE CONTROL

In order to handle the complex situations that arise
during autonomous driving, a most generic controller is
needed. For this, a single, adaptive algorithm that is used
to compute control commands for every occurring maneuver
is implemented. This represents a significant difference to
other approaches, where specialized controllers are used
depending on the given situation. Predestined for such a
generic approach is the formulation of every driving task as
an optimal control problem. In (OCP) the standard problem
formulation of an optimal control problem is shown.

min
z,u,T

J(z, u, T )

s.t. ż(t) = f(z(t), u(t)),

zmin ≤ z(t) ≤ zmax,

umin ≤ u(t) ≤ umax,

Ψ(z(0), z(T )) = 0,

C(z(t), u(t), t) ≤ 0 for all t ∈ [0, T ],

(OCP)

An objective function J which is completely customizable is
minimized giving states z, controls u and the process time T .
The states are subject to the potentially nonlinear dynamics
f . Conditions for start and goal states are formulated in Ψ .
Additionally, general path constraints can be described by
means of C and have to be fulfilled for every time point in
t ∈ [0, T ].
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To describe the dynamic behavior of the car a kinematic
single track model is used. For this the formulation in [4]
is utilized, which includes time delays for the acceleration
and the steering angle. This model is accurate enough since
the driving maneuvers considered within OPA3L are in a low
speed range.

Utilizing the objective J all controls and selected states
are combined and penalized respectively. A proper weighing
is chosen to ensure safe and robust driving and forces the
optimizer to find a optimal solution in a given time range.

The path constraints C are formulated such that the car
maintains a safety distance to both static and dynamic obsta-
cles. For that, the same free-space polygon as introduced in
Sect. VI-B is reused to describe the currently drivable area.

Within a model predictive control (MPC) setting, (OCP)
is solved periodically based on the respective current vehicle
state. For this the software framework TransWORHP [24]
is utilized which applies direct methods to transform the
infinite dimensional problem into a finite one. Afterwards
the software WORHP [25] is used to solve the resulting
nonlinear optimization problem.

Within the setting of (OCP) j and ωδ are used as controls.
Depending on the platform, i. e. research vehicle, model
car or simulator, the actual control signals differ and might
need further processing to be computed (e.g. steering wheel
angle for the research vehicle, power of electric motor for
the model car). The resulting controls are ensured to be
generated in a frequency of 50 Hz.

VIII. RAPID DEVELOPMENT & REMOTE DRIVING

This section introduces two platforms, a simulation and
miniature vehicles, that are used for rapid development,
evaluation and demonstration of the OPA3L system for
autonomous driving. Additionally, a remote driving concept
is presented, which will in the future be utilized as a fallback
to the autonomous system.

A. CARLA Simulator

In order to test and demonstrate complex and dynamic
driving scenarios, the open-source software CARLA [26]
is utilized, which is a simulator developed for autonomous
driving research. The simulated vehicle is equipped with six
LiDAR sensors, similar to the research vehicle described in
Sect. II-A. Based on the artificial LiDAR data and vehicle
state information provided by CARLA, the aforementioned
algorithms perform mapping, planning and control to steer
the simulated car through its environment. In addition, street
networks and lane information from actual testing areas are
considered to increase the realism of the scenarios. This is
further enhanced by a sophisticated modeling of the area as
illustrated in Fig. 6.

B. Miniature Vehicles

A miniaturized 1:8-scale car enables the evaluation of
new algorithms or cooperative maneuvers on a real-world
system. The vehicle is equipped with a simplified yet similar
setup of sensors and computational units. A missing global

Fig. 6. A vehicle steered by the OPA3L software in Borgfeld, a suburb of
Bremen, within the CARLA simulator.

Fig. 7. Test field (left) and autonomous navigation (right) of the miniature
vehicle. The output of the mapping module (black), the road network
(orange) and the trajectory computed by the MPC (cyan) are displayed.

reference system such as GNSS is substituted by visual
markers corresponding to fixed positions in the environment.
Fig. 7 shows how this is used within the software framework
of OPA3L to navigate the vehicle within its test field.

C. Remote Driving Examples

A remote driving functionality is developed as a backup
solution for unexpected scenarios and for monitoring. For
this, sensor and preprocessed data are transferred to a control
center to be visualized on a standard display or in virtual
reality, as shown in Fig. 8. With this an operator will be able
to interact with the vehicle directly (in the form of control
signals) or indirectly (in the form of waypoints for the car
to follow by itself).

IX. DRIVING EXAMPLES

The previously introduced systems form an autonomous
driving stack which is capable of autonomous navigation
in suburban environments. We showcase this in Borgfeld,
a suburb of Bremen, Germany, by driving a route of 1.6 km,
which takes around 5 minutes at maximum speeds of 30 km/h.

Fig. 8. Sensor data displayed in the remote control center. LiDAR scans
are rendered as point clouds, cameras are mapped to planes.
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Fig. 9. c© GeoBasis-DE / Landesamt GeoInformation Bremen 2019. Driven
route (yellow) overlaid with the lanes (red) provided by the strategic decision
making. The route starts in the east and leads to a turning circle to the west.
After passing through it, the route returns to the starting point.

Fig. 10. Example of the evidential dynamic map. Green areas are observed
as free, static cells are marked red, while dynamic cells are blue. Cyan
represents areas with no information in the current scan, where previously
information was available. There are three dynamic objects in the scene,
which are detected and marked with a purple bounding box. Additionally
there are a number of parked vehicles, which are correctly excluded from
the detection.

The major challenges of this scenario include tight roads
with no lane markings, cars parking directly on the street
and sharing the road with pedestrians and cyclists.

Fig. 9 shows the driven route. It was created using the
result of the localization module, or more specifically of the
INS/GNSS fusion. Since the estimate is corrected using RTK,
lane-accurate positioning is achieved, which can be seen in
the image.

Using the estimated odometry state as well as the LiDAR
data, an evidential dynamic map of the surroundings is
computed, which can be seen in Fig. 10. In addition to this
grid map, the figure shows other traffic participants, which
are detected and tracked based on the estimated dynamics in
the map.

Data from the front area camera is fed into the image
processing module and forwarded through the multi-task
neural network to obtain a semantic segmentation of the
image and detected objects. The segmentation is then used
to generate a local description of the road, which is passed
to the motion planner. All stages of the image processing
can be seen in Fig. 11.

Based on the joint information about localization, map-
ping and lanes, short-term maneuvers that comply with the
strategic plan are computed by the tactical decision making.
One of the main requirements of this is to implement an

Fig. 11. Exemplary output of image processing module. The camera image
(lower right) gets transformed in a semantic representation (top right) via
a deep CNN and subsequently mapped into a top down view (bottom left)
from which the road edges (top left, in purple) are inferred and passed on
into the tactical decision module.

Fig. 12. Examples for automatic obstacle handling of the tactical decision
making. The lane information and the result of the mapping module are
displayed in orange and black respectively. The green line represents the
optimized trajectory of the model predictive controller. For lanes that are
only partially blocked by obstacles, the planned movement is automatically
adapted to maintain a safety distance (left). If a lane is actually blocked
on the other hand, the motion planner computes a dedicated lane change
maneuver (right, in pink).

adaptive behavior with respect to unforeseen obstacles along
the route. As shown in Fig. 12, this is either ensured by the
motion planner implicitly (for smaller obstacles) or explicitly
by computing a lane change maneuver in case of a blocked
lane.

In case of slower traffic participants driving in front,
the analysis of the tactical planner leads to an adaption
of the currently driven speed (i. e. an ACC functionality).
Fig. 13 shows an exemplary situation where this is realized
for a leading car providing its state information via V2X
communication. The corresponding speed values of both
vehicles over time are displayed in Fig. 14. It shows that the
cars approach each other, both in position and speed, for the
first 10 seconds. After a phase of driving behind each other
for 14 seconds, the leading car turns, hence allowing the
ego vehicle to accelerate again. Note, that the same principle
can be applied to traffic participants detected by the tracking
module.

X. SUMMARY AND OUTLOOK

We present the holistic approach for an autonomously
driving vehicle for suburban areas developed as part of the
OPA3L project. Therein, a multi-sensor fusion module gener-
ates a representation of the static and dynamic environment
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Fig. 13. Example for the application of an ACC functionality for a slow
driving leading car (displayed in purple).
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Fig. 14. Speeds of the ego vehicle (vego) and leading vehicle (vleading) for
the scenario displayed in Fig. 13.

of the vehicle, utilizing camera, LiDAR, V2X, RTK, IMU
and odometric information. Based on this, algorithms for
long- and short-term decision making build the foundation
to guide the vehicle by strategic as well as tactical decisions.
Finally, all planned maneuvers are executed by a nonlinear
model predictive control approach, making the autonomous
system very robust to even unknown situations. The devel-
oped methods are continuously evaluated in a simulated and a
miniaturized environment, and will in the future be assisted
by a remote driving concept. We show the validity of the
overall approach and the performance of the current state
of the software by a fully autonomous ride of 1.6 km in a
real suburban scenario. Upcoming work will, for instance,
lead to a stronger coupling of semantic information obtained
from cameras and V2X-communication with the LiDAR-
based environment representation. This enhanced basis of
knowledge will further be used to improve the capabilities
of the decision making modules in dynamic situations.
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