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Abstract— We present a novel data structure for SIMD
optimized simultaneous bounding volume hierarchy (BVH)
traversals like they appear for instance in collision detection
tasks. In contrast to all previous approaches, we consider
both the traversal algorithm and the construction of the BVH.
The main idea is to increase the branching factor of the
BVH according to the available SIMD registers and parallelize
the simultaneous BVH traversal using SIMD operations. This
requires a novel BVH construction method because traditional
BVHs for collision detection usually are simple binary trees.
To do that, we present a new BVH construction method based
on a clustering algorithm, Batch Neural Gas, that is able to
build efficient n-ary tree structures along with SIMD optimized
simultaneous BVH traversal. Our results show that our new
data structure outperforms binary trees significantly.

I. INTRODUCTION

Collision detection (CD) algorithms are essential for
sampling-based motion planning algorithms. They are used
to test whether a sampled configuration is in collision with
the workspace obstacles. In most sampling-based motion
planning algorithms, the collision computation is the com-
putational bottleneck that requires up to 90% of computation
time [1].

For most CD algorithms that work with polyhedral mod-
els, Bounding Volume Hierarchies (BVHs) are the com-
mon technique used to accelerate the intersection queries.
The basic idea is simple: instead of calculating slow and
complex geometric intersection tests between all geometric
primitives, we wrap them recursively into simple bounding
volumes (BVs) such as spheres, axis-aligned bounding boxes
(AABB), oriented bounding boxes (OBB) or discrete oriented
polytopes (k-DOP), that allow faster intersection tests. This
generates a tree data structure with a single large BV at
the root position that encloses all geometric primitives.
Obviously, the geometric primitives are the leaves of such
a BVH.

As for the traversal, we usually have two BVHs that
we want to check for intersection, one for each object.
We start with the root nodes and simultaneously traverse
recursively the children in case of intersection of the BVs
(see Algorithm 1 and Figure 1).

Following the trend of acceleration by parallelization it
is obvious to apply this idea also to BVH traversals. Un-
fortunately, the parallelization of the simultaneous traversal
for collision detection is not obvious. Actually, due to their
recursive nature, BVHs are not very well suited for massively
parallel acceleration on the GPU. Moreover, especially for
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Algorithm 1: BVHtraversal( BV a, BV b )

if a and b are both leaves then
checkPrimitives(a, b)

else if a is leaf then
forall children bi of b do

if a and bi intersect then
BVHtraversal(a, bi)

else if b is leaf then
forall children ai of a do

if ai and b intersect then
BVHtraversal(ai, b)

else
forall children ai of a and bi of b do

if ai and bi intersect then
BVHtraversal(ai, bi)
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Fig. 1: The simultaneous recursive traversal of two binary
BVHs during the collision check results in a bounding
volume test tree.

online planning, robots are often not equipped with powerful
GPUs.

However, the simultaneous traversal required in BVH-
based collision detection can still benefit from the SIMD
instruction sets of modern CPUs.

To take advantage from this parallel operations, we can:
1) simply switch on a compiler option and hope that the

compiler will do the optimization,
2) optimize the traversal function manually, depending

on the chosen BVH,
3) or adapt the complete BVH structure which addition-

ally requires a redesign of the BVH construction.
In this paper we have implemented and tested all of

these three methods. There is only one suitable function
in Algorithm 1 to optimize the traversal without changing
the tree structure: the test for intersection of a pair of BVs.
Hence, the benefit of SIMD optimization relies heavily on the



type of the BV. For two spheres, we simply have to compute
the distance of two points and compare it to the sum of the
spheres’ radii. This is not very well suited for the for SIMD
parallelization because of the length of current AVX512
registers that are able to store 16 floating point values. As
a consequence, the intersection test for two spheres can
be hardly optimized for SIMD. Similarly, the intersection
test for AABBs requires four comparisons. Modern AVX
registers compare 16 float value in a single instruction and
this number will increase with upcoming CPU generations.
Hence, these BVs could benefit only from the third method,
an optimized BVH, but hardly from a simple optimization
of the traversal. Consequently, we decided to use a BV that
naturally supports all three methods: the k-DOP. Basically,
k-DOPs are an extension of AABBs to arbitrary orientations
[2]. They offer a natural trade-off between tightness of the
BV and computation time for the intersection test. They show
comparable performance to other kinds of bounding volumes
[3]. By choosing the number of orientations k according to
the SIMD instruction set, it is straightforward to adapt this
BV-type to further SIMD developments.

However, this simple SIMD-parallelization still tests only
two BVs in one instruction (see Figure 2a). Hence, it
can be applied to almost all existing k-DOP-based BVHs
that typically rely on a binary tree. However, we can also
parallelize it in a way that one BV of the first BVH is
tested simultaneously against all children of the other BVH
(see Figure 2a). This is exactly the idea of our new data
structure that we call SIMDop. In order to take full advantage
of SIMD in this case we additionally have to change the
branching factor of the tree. This is non trivial because
traditional BVH construction methods, like the surface area
heuristic (SAH), median-, or mid point-split, that assign
the primitives into the sub-trees are not suitable for higher
branching factors. Consequently, we have developed new
BVH construction methods, this includes simple heuristics
but also a new method that is based on Batch Neural Gas
clustering. The advantage of such n-ary trees is not only
the SIMD accelerated traversal. Additionally, we get less
children than with binary trees and the children are also
smaller. We have implemented our novel SIMDop BVH and
the results show that it outperforms traditional binary trees
by an order of magnitude.

II. PREVIOUS WORK

In many fields of computer science, BVHs has been used
widely to accelerate intersection computation. Usual BVs for
the BVHs are spheres [4], AABBs [5] and their memory
optimized derivative called BoxTree [6] that is closely related
to kd-Trees, k-DOPs [7], [2], a generalization of AABBs,
OBBs [8] or convex hull trees [9]. Additionally, a wide
variety of special BVs for special applications has been
developed. For instance spherical shells [10], swept spheres
[11], spheres that are cut by two parallel planes called
slab cut balls [12], quantised orientation slabs with primary
orientations (QuOSPO) trees [13] that combine OBBs with
k-DOPs, or combinations of spherical shells with OBBs that
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Fig. 2: Different strategy to compute intersections of the child
nodes in the simultaneous traversal algorithm: (a) classic
collision query tests only one pair of nodes. With SIMD,
assuming 16 registers, we can (b) test one node of the left
BVH against 16 nodes of the right BVH simultaneously in
the case of a branching factor of 16 or (c), in case of a
branching factor of 4, test all nodes from same level at one
time.

was proposed by [14] for objects that are modelled by Bezier
patches.

In sampling-based motion planning, AABB-based BVHs
are widely used to calculate collision between candidate
trajectories in workspace [15]. The Flexible Collision Library
(FCL) [16] also supports several BVs for its BVH such as
AABB, OBB, rectangle swept spheres (RSS) and k-DOPs.
Another approach using a hierarchical three-stage sequence
of BVs namely AABB, Sphere, and OBBs [17].

Usually, a BVH is constructed in a pre-processing step that
can be computationally more or less expensive. Basically,
there exist two major strategies to build BVHs: bottom-up
and top-down. The bottom-up approach starts with elemen-
tary BVs of leaf nodes and merges them recursively together
until the root BV is reached. A very simple merging heuristic
is to visit all nearest neighbours and minimize the size of the
combined parent nodes in the same level [18]. Less greedy
strategies combine BVs by using tilings [19].

However, the most popular method is the top-down ap-
proach. The general idea is to start with the complete set
of elementary BVs, then split that into some parts and
create a BVH for each part recursively. The main problem
is to choose a good splitting criterion. A classical splitting
criterion is to simply pick the longest axis and split it in
the middle of this axis. Another simple heuristic is to split
along the median of the elementary bounding boxes along
the longest axis. However, it is easy to construct worst case
scenarios for these simple heuristics. SAH tries to avoid these
worst cases by optimizing the surface area and the number of
geometric primitives over all possible split plane candidates
[20]. Originally developed for ray tracing, it is today also
used for collision detection. The computational costs can be
reduced to O(n log n) [21], [22] and there exists parallel
algorithms for the fast construction on the GPU [23]. Many
other splitting criteria were compared in [24].



The influence of the trees’ branching factor is widely
neglected in the literature. Usually, most authors simply use
binary trees for collision detection. According to Zachmann
and Langetepe [25], the optimum branching factor can be
larger. Mezger et al. [26] stated that, especially for de-
formable objects, 4-ary trees or 8-ary could improve the
performance. This is mainly due to fewer BV updates. To
our knowledge, there does not exist any work that investi-
gates the influence of the branching factor of the BVH for
simultaneous traversal tasks.

III. SIMD RECAP

Originally, SIMD instruction sets had been introduced to
support integer computation for intensive multimedia appli-
cations, but later they have been extended to support floating
point computation which extends the usefulness also for
scientific computations. The idea is that a single instruction
operates on different input data values (e.g. 8 or 16 floating
point values) simultaneously. Several slightly different SIMD
instruction sets are available for various CPUs; e.g. NEON
for Arm based CPUs and SSE/AVX for both Intel and AMD
CPUs (see Table I for a list of available SIMD instruction
sets and the supported data types). The most current AVX512
instruction set supports computation of 16 single precision-
float in parallel. In this paper, we focus on mainly AVX512,
however the idea can be easily implemented on other SIMD
instruction sets such as SSE, AVX, and NEON. Moreover,
we included measurements for AVX in our results and we are
confident, that more powerful AVX registers will be available
for the other platforms soon.

Name Width Types supported CPUs

NEON 128 bits 4x single
2x double∗

Armv7-A/R and above
∗only available for Armv8-A

SSE 128 bits 4x single Intel Pentium III and above
AMD Athlon XP and above

SSE2
SSE3
SSE4

128 bits 4x single
2x double

Intel Pentium 4 and above
AMD Athlon XP and above

AVX
AVX2 256 bits 8x single

4x double
Intel Sandy Bridge and above
AMD Bulldozer and above

AVX512 512 bits 16x single
8x double Intel Skylake-X and above

TABLE I: Floating point support for various SIMD Instruc-
tion Sets

IV. OUR SIMDOP DATA STRUCTURE

The main idea of our SIMDop data structure is to construct
BVHs with higher branching factor that can be later used
during run-time in a SIMD optimized traversal algorithm.
Hence, the core is the construction that is typically done
in a pre-processing step. We propose different methods to
construct such n-ary BVHs.

A. BVH Construction

We decided to use a top-down approach for the hierarchy
construction. The general idea is to start with the complete
set of elementary BVs, then split that into some parts and
create a BVH for each part recursively. Moreover, we use

a wrapped hierarchy according to the notion of Agarwal et
al. [27], where inner nodes are tight BVs for all their leaves,
but they do not necessarily bound their direct children.
Compared to layered hierarchies, the big advantage is that the
inner BVs are tighter. The main challenge is to choose a good
splitting criterion especially, because traditional splitting
criteria like SAH do not work for n-ary trees. We propose
several splitting criteria for higher branching factors that we
will shortly sketch in the following sections.

1) Longest Axis Split: A classical splitting criterion for
binary trees is to sort the primitives along all coord axis and
simply pick the longest axis and split this sorted list in the
middle of this axis. Obviously, we can easily extend this
two n-ary trees by not splitting in the middle, but split the
number of BVs into n equal parts. However, this leads to
fairly well balanced trees (see Figure 3).

2) Extended Longest Axis Split: This is an extension to
the longest axis split for n-ary trees where n is preferably
in the power of two. We do not simply split along one axis
but perform in the first stage a binary longest axis split and
than recursively split the primitive sets again until we reach
n. In other words, we perform a traditional binary tree split
but remove the not needed nodes: instead, we can directly
mount all children to the parent node.

3) Batch Neural Gas Clustering: Clustering algorithms,
especially BNG, have shown to be very efficient for BVH
constructions of 4-ary trees [28]. A nice property of BNG
is that it exhibits very robust behavior with respect to the
initial cluster center position in contrast to other clustering
algorithms like k-means. However, in the original work, the
authors used spheres as basic primitives instead of more
usual polygonal representations. We simply used the centers
of the polygons instead of the spheres’ centers reported in
the original work in our polygonal implementation. We did
not use magnification control, which additionally considers
the size of the spheres to produce better clustering results.
However, this can be easily added in the future to our
polygon-based BNG.

Figure 3 shows the first hierarchy level for all our splitting
criteria and different branching factors.

B. BVH Traversal

The key part to optimize the traversal in Algorithm 1 is
the test for intersection of the child bounding volumes. For
binary trees, the four possible combinations of child pairs are
usually traversed sequentially. SIMD enables us to accelerate
this intersection test in several ways:

• We can use a SIMD instructions to replace a single
test of a pair of BVs (see Figure 2a). This would leave
the for-loop untouched and just replace the intersection
method.

• We can also remove the first part of the for-loop and
test one BV of the first BVH simultaneously against all
children of the other BVH (see Figure 2b). For AVX512
this results in a 1 vs 16 check. Accordingly, we call our
BVH using this approach 1vs16-SIMDop.
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Fig. 3: The results of our hierarchy construction algorithms
showing the color coded first level of the hierarchy: (a)
longest axis, (b) extended longest axis, and (c) Batch Neural
Gas. The trees have degree four on the left side, degree eight
in the center, and sixteen on the right side.

• Finally, we can remove all for-loops and test all nodes
from the same level at one time (see Figure 2c). With
AVX512 this results in a 4 vs 4 test and we call the
respective BVH 4vs4-SIMDop.

An implementation of the first idea is straight forward, it
requires a simple replacement of the comparison inside the
intersection function.

Algorithm 2 shows the naive implementation for the
1vs16-SIMDop, i.e. the removal of the inner for-loop by
testing one BV of object A against n BVs of object B,
using the current AVX512 instruction set looks as follows,
assuming that we are using DOPs with k orientations for the
BVs1.

Removing both loops for the 4vs4-SIMDop, i.e. testing all
n child BVs of object A against all n child BVs of object B
for a pair of nodes requires just a slightly different ordering
of the Dop values which results in the AVX512 code that is
shown in Algorithm 3.

There are some drawbacks of these SIMD implementa-
tions: first, we have to copy all the values of the DOPs to
AVX registers. Second, we have to combine the temporal
results using or-instructions to compile the end result. A non-
parallel version to check two DOPs for overlap would simply

1Variables of the type mm512 are AVX512 variables with a length of
512 Bit. Intrinsic AVX512 instructions usually start with the prefix mm512
followed by the particular operation and end with a suffix that indicates the
data type: e.g. mm512 cmp ps compares the two input variables of 512 Bit
width of the type single precision floating point ( ps), following the rule
defined in the third parameter and returns the result as a 512 Bit vector.
mm512 kor defines a bitwise logical OR comparison using masks.

Algorithm 2: m512 intersect( DOP a, DOP b1,...,b16)

mm512 endResult
for i=0; i¡k/2; i++ do

mm512 oriAL = mm512 set1 ps(a[i])
mm512 oriBL = mm512 set ps(b1[i],...,b16[i])
mm512 resL = mm512 cmp ps(oriAL, oriBL,
CMP LT OS)

mm512 oriAH = mm512 set1 ps(a[k/2+i])
mm512 oriBH = mm512 set ps(b1[k/2+i],...,b16[k/2+i])
mm512 resH = mm512 cmp ps(oriAH, oriBH,
CMP GT OS)

mm512 tempRes = mm512 kor(resL,resH)
endResult = mm512 kor(endResult, tempRes)
if endRes == 65535 then

break
return endResult

Algorithm 3: m512 intersect( DOP a1,..,a4, DOP b1,..,b4)

mm512 endResult
/ for i=0; i¡k/2; i++ do

mm512 oriAL = mm512 set ps(a1[k/2+i],...,a4[k/2+i])
mm512 oriBL = mm512 set ps(b1[i],...,b4[i])
mm512 resL = mm512 cmp ps(oriAL, oriBL,
CMP LT OS)

mm512 oriAH = mm512 set ps(a1[i],...,a4[i])
mm512 oriBH = mm512 set ps(b1[k/2+i],...,b4[k/2+i])
mm512 resH = mm512 cmp ps(oriAH, oriBH,
CMP GT OS)

mm512 tempRes = mm512 kor(resL,resH)
endResult = mm512 kor(endResult, tempRes)
if endResult == 65535 then

break
return endResult

compare two values and use one boolean operation. Hence,
in these naive implementations we would need 9 AVX in-
structions vs. 3 instructions in the non-AVX implementation
to compare one orientation of the DOP. Moreover, the non-
AVX version could escape the loop earlier for some of the
16 children whereas in the SIMD cases we have to iterate
the loop k/2-times if only one of the 16 children overlaps
the other DOP. Hence, we could assume an acceleration of
at most 3×16

9 , because we test 16 children simultaneously,
not considering the faster loop escapes and the smaller BVs
of the SIMDop structure.

C. Optimization

Our benchmarks have shown that actually, our naive im-
plementations for Algorithms 2 and 3 perform worse than the
non-AVX version. The main reason is that the mm512 set ps
and mm512 set1 ps instructions that load the data into the
AVX registers require more time than the other instructions.
For the 1vs16-SIMDop we can easily solve this by directly
storing the values into a proper AVX format. This would
lead to a theoretical benefit of 3×16

5 because we only need 5
instructions per orientation, not considering the smaller BVs.
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Fig. 4: Permutation of the values for the for DOPs a1, ..., a4
of an object A and the four DOPs b1, ..., b4 of an object B
to produce a single 512 Bit AVX register for comparing all
4× 4 possible combinations in Algorithm 3.

(a) (b)

(c) (d) (e)

Fig. 5: The objects we used in our timings: (a) ATST walker
robot, (b) female robot, (c) quadripod robot, (d) dog robot,
and (e) Nao.

Moreover, we tested to use prefetching to improve the
cache performance. Unfortunately, the size of a cache line
in CPUs supporting AVX512 is exactly 512 Bit, so we
did not see any acceleration. However, we were able to
reduce the memory bandwidth by storing the DOP values
as half floats. Since the 3rd generation of Intel R© CoreTM

processors, the conversion of 16-bit half floats back to 32-
bit float values is supported by the vcvtps2ph instruction
without computational overhead. The resulting increase of
false positives for the BVH traversal was neglectable.

Obviously, we could also store the data for the 4vs4-
SIMDop into an appropriate AVX512 variable. However,
this would increase the memory footprint by a factor of
4 because we would have to copy each DOP value four
times. In order to avoid this waste of memory and to
further improve cache performance, we decided to use a
different strategy for the 4vs4-SIMDop: AVX512 supports
the function mm512 castps128 ps512 that casts 128 Bit
SSE data to AVX512 data with zero latency. Hence, we
store 4 floating point values per DOP orientation and use
the permutation function mm512 permutexvar ps to shuffle
the values to their correct positions (see Figure 4). This
requires one more AVX instruction, leading to a theoretical
benefit of 3×16

6 compared to the sequential binary tree, but
it significantly improves cache performance.

V. RESULTS

We have implemented our algorithms using C++ and Intel
Intrinsics functions using Visual Studio 2017. We focused
our implementation on the most recent AVX512 instruction

(a)

(b)

Fig. 6: Average collision query time for the different splitting
criteria for the quadripod robot using (a) the 4vs4-SIMDop
and (b) the 1vs16-SIMDop with respect to the polygon count.
The results are very similar for all objects.

sets. All tests were performed on a system with an Intel
I7 7800X CPU, 64GB of main memory and a NVIDIA
Geforce GTX 980 GPU with 4GB of memory. We used
the standardized benchmarking suite proposed by Trenkel
et al. [3]. Figure 5 shows some of the used models with
different shapes and resolutions in our timings: in particular,
a ATST walker robot, a female android, a quadripod and a
robotic dog. According to Trenkel et al. [3], we present all
results in this section for the most time consuming distance
preset, i.e. a distance of zero. For the best performance of
the hand optimized traversal function of the binary tree, k
should be divisible by 16. We set the number of orientations
of the DOPs to k = 32 where not other mentioned because
it performs better than k = 16 for all methods.

First, we evaluated the influence of the splitting criterion
described in Section IV-A. The BNG clustering outperforms
the other heuristics significantly in all our test cases, indepen-
dent of the objects’ shapes and polygon count (see Figure 6).
The benefit of the clustering increases with and increasing
number of branches in the tree. In term of BVH construction
time, the BNG clustering-based SIMDop for both degree of
4 and 16 can be constructed almost as fast BVH constructed
using V-COLLIDE and binary DOP tree (see Figure 7).

Moreover, we compared the performance of our two
SIMDop variants to the other methods 1 and 2, i.e. the binary
tree-based data structures with the compiler flag SIMD
optimization and the manually SIMD-optimized traversal
algorithm. The compiler flag optimized binary DOP tree



Fig. 7: A comparison of BVH construction time of our
SIMDop based on BNG clustering algorithm compared with
V-COLLIDE and binary DOP tree for the ATST walker
robot.

(a)

(b)

Fig. 8: A comparison of our SIMDop with V-COLLIDE
library for (a) female robot, and (b) quadripod. The results
show that our 4vs4-SIMDop performs best and faster than
V-COLLIDE by up to eight times for (a) female robot and
thirteen times for (b) quadripod.

and the manually AVX optimized DOP tree traversal have
very similar running times. This gives a hint that compiler
optimization seems to work very well. However, our two
SIMD optimized SIMDop versions, the 4vs4-SIMDop and
1vs16-SIMDop both outperform both binary DOP trees by at
least factor of 8 for the Nao (see Figure 9a), a factor of 13 for
the ATST walker robot (see Figure 9b). In all cases this factor
increases with an increasing polygon count. This is slightly
higher than the theoretical factor of 3×16

5 we expected from
the number of instructions for the intersection function. This
indicates that the decreased size of the BVs due to the higher

branching factor and the reduced number of overall BVs in a
tree with higher branching factor compensate the increasing
number of iterations required for the SIMD loop.

We also compared our SIMDop to the V-COLLIDE library
that is often used for sample-based path planning tasks.
An experimental comparative analysis has shown that V-
COLLIDE outperforms other CD libraries like PQP [29].
Figure 8 shows that our 4vs4-SIMDop is able to outperform
V-COLLIDE by a factor of up to 13 for the quadropod.

(a)

(b)

Fig. 9: Average collision query times for the compiler opti-
mized binary DOP tree (method 1), the manually optimized
binary DOP tree (method 2) and the two SIMD optimized
Dop tree versions, the 1vs16-SIMDop and the 4vs4-SIMDop
(method 3) with respect to the number of polygons in the (a)
Nao and (b) ATST walker robot. The results show that our
SIMDop are up to eight and thirteen times faster than both
binary DOP trees and the 4vs4-SIMDop performs best.

We also investigated the influence of the actual SIMD
version on the performance of our SIMDop. Figure 10 shows
the results measured for an AVX version and an AVX512
implementation. The AVX512 implementation is twice as
fast as the AVX due to the width of the AVX512 registers.

And finally, we evaluated the performance gain using
SIMD optimized version of simultaneous BVH traversal
compared with non-optimized version (see Figure 11). We
roughly get a speedup around 2 for both 4vs4-SIMDop and
1vs16-SIMDop version, which is below our expectation since
the AVX512 register can process 16 data at one time.

Hence, we investigated further by using a profiling tool
Intel R© VTuneTM to profile the actual collision query timing.
Table II shows profiling result for object Nao using 4vs4-



Fig. 10: Average collision query times for AVX implemen-
tation of our SIMDop in comparison with AVX512.

SIMDop. According to VTune, our 4vs4-SIMDop is able
to vectorize 72.70% floating point instructions with the full
vector capacity, which should theoretically give us a speedup
of 72.7×16

100 , however the gain is bound by memory, which
took around 40.3% of computing time (whereas 33.40% of
the time is stalled by main memory access). And also, our
4vs4-SIMDop has to test more orientations as much as three
times more on average compared with non-optimized version
(see Figure 12). In the end, we get roughly a speedup of 2
for the SIMD optimized version compared with the non-
optimized version.

Fig. 11: Average collision query times using object Nao for
our SIMDop with and without SIMD optimized simultaneous
traversal.

Fig. 12: Average orientations tested for a single bounding
volume test of our SIMDop with and without SIMD opti-
mited simultaneous traversal.

SIMDop w/ degree of 4 SIMDop 4vs4
L1 Bound 3.00% 2.00%
L2 Bound 1.20% 1.60%
L3 Bound 2.70% 3.30%

DRAM Bound 21.10% 33.40%
Floating Point Vectorization 0% 72.70%

TABLE II: A performance analysis of our 4vs4-SIMDop
using Intel R© VTune

TM
for Nao.

VI. CONCLUSIONS AND FUTURE WORK

We have presented two versions for a SIMD optimized
bounding volume hierarchy for simultaneous BVH traversal.
The main idea is to use higher n-ary trees instead of classical
binary trees. We have presented several new heuristics for
the top-down construction of such tree data structures with
higher branching factor.

The BNG-based method performs best. Even if we tested
only up to 16-ary trees, the clustering-based construction
is already prepared to support higher branching factors
following future SIMD developments. Our results show that,
depending on the object, our SIMDop BVHs outperform
traditional BVHs by more than an order of magnitude.

Our approach also opens up several directions for future
work. For instance, we would like to include magnification
control to the BNG construction algorithm. Moreover, other
clustering algorithms than BNG could be considered. In
this work, we relied on DOPs as BVs because of a fair
comparison with the manual optimized traversal scheme.
However, we would like to investigate also other BV types
that do not have the problem of the later escape of the for-
loop. Also the influence of the number of orientations for
the DOPs requires further investigations. Finally, probably
other applications using BVHs like ray tracing or occlusion
computations could benefit from our SIMDop BVHs, too.
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