

A Shared Haptic Virtual Environment for Dental Surgical Skill Training

Maximilian Kaluschke¹, Myat Su Yin², Peter Haddawy², Natchalee Srimaneekarn³, Pipop Saikaew³, Gabriel Zachmann¹

- ¹ Computer Graphics & Virtual Reality, University of Bremen
- ² Faculty of ICT, Mahidol University
- ³ Faculty of Dentistry, Mahidol University

Contact: mxkl@uni-bremen.de

Introduction

- Dentistry is difficult to learn
 - Training costs \$352,184 [Segal et al., 2017]
 - Training facilities are scarce
- Remote learning is more relevant than ever
 - Currently limited to knowledge & cognitive skills
- Dentistry requires fine motor skills
- VR can help motor skill transfer
 - High immersion, natural interaction
 - Low operating cost
- Our Contribution: Shared VR environment with haptic feedback

Related Work

- Several VR dental simulators exist
- Commerical products
 - Simodont: +haptic feedback, +3D, -no head tracking, -no collaboration
 - VirTeaSy: +haptic feedback, stationary AR, -no 3D, -no collaboration
- Research projects
 - DenTeach: physical teeth, -only video
 - Morris et al.: same force, -no evaluation
 - Rhienmora et al., Su Yin et al.: opposite force, force recording
 - Kuchenbeker et al.: vibrotactile recording

Design – Simulator

Design – Collaboration

Teleteaching Strategies

1. "Same Force" $F_s = F_m$

$$F_{\rm S}=F_{\rm m}$$

- User forces handle near center
- Defines a force
- 2. "Opposite Force" $F_s = -F_m$
 - Same user behaviour

3. "Delta Force"

$$F_{\rm S}=(p_m-p_{\rm S})k$$

- User gives in to force
- Defines a position

Methods – Simulation

- Sphere packing volumetric representation [Weller et al.]
 - Constraint-based haptic feedback @ 1 kHz
 - Drilling simulation @ 1 kHz

Original mesh

Sphere packing

Runtime generated mesh

Methods – Visualization

- Dynamic material visualization
 - At interactive rates
 - Vertex colors to visualize cariousity
- CPU+GPU algorithm with 3 stages:
 - 1. Distance- & Normal Field Generation (CPU)
 - 2. Bilateral Smoothing Kernel (GPU)
 - 3. Marching Cubes (GPU)
- runs @ 10 Hz (resolution 200³)

Methods – Scoring

- Metric to compare drilling results
- Ideal result as reference for comparison
 - Easy to determine: remove caries
 - Root canal treatment reference done by expert
- Set comparison metric: DICE coefficient

$$s = \frac{2*TP}{2*TP + FP + FN}$$

- True Positive TP: unremoved non-carious tissue
- False Negative *FN*: unremoved carious tissue
- False Positive FP: removed non-carious tissue

Evaluation

Conclusion

- Novel collaborative system for motor skill training
- 3 strategies for teleteaching of drill force & trajectory
- Simulation design tailored for application domain
 - General enough for multiple use-cases
- Several optimizations
 - High fidelity haptic rendering @ 1000 Hz
 - Interactive drillable material @ 10 Hz
- Completely planned out evaluation

Future Work

- Complete the evaluation
- Replicate with 6DOF haptic devices
- Experiment with new teleteaching strategies
- Further optimization of visualization
 - Field generation on GPU (currently on CPU)
 - Data hazard needs to be resolved

Thank you for your attention!

