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Abstract— Physics simulations are crucial for domains like
animation and robotics, yet they are limited to deterministic
simulations with precise knowledge of initial conditions. We
introduce a surrogate model for simulating rigid bodies with
positional uncertainty (Gaussian) and use a non-uniform sphere
hierarchy for object approximation. Our model outperforms
traditional sampling-based methods by several orders of mag-
nitude in efficiency while achieving similar outcomes.

I. INTRODUCTION

Physics simulations are pivotal in predicting complex sce-
narios yet often fail to mirror real-world unpredictability, re-
sulting in a ”reality gap.” This gap stems from computational
models’ inability to capture every nuance of physics and
material properties, compounded by deterministic simulators
that yield identical, precise outcomes. Sampling introduces
variability by allowing simulations to account for uncertain
parameters, thus enhancing realism across applications like
animation and robotics. For instance, software like Blender
and SideFX Houdini utilize sampling to refine visuals
for greater aesthetic and physical fidelity in animation. In
robotics, sampling enables robots to foresee and adapt to
dynamic environments, optimizing their actions for better
decision-making [1].

A simulator can be divided into two modules: collision
detection and simulation. The simulations receive and re-
solve the collisions provided by the collision detection and
predict the next position of simulated objects. Physics-based
animation methods can be categorized into penalty-, impulse-
and constraint-based methods. The penalty-based methods
use a spring-damper system to penalize penetrations [2].
It is generally usable for deformable and rigid objects [3].
On the other hand, impulse-based simulators apply collision
impulses to simulate physical interactions.

Uncertainty can be propagated analytically when the func-
tion is linear. For non-linear functions, uncertainty can only
be approximated. Monte Carlo sampling approximates the
true distribution with an increasing number of samples. Other
approximation methods include linearizing the function or
using a surrogate model [4].
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Fig. 1: Geometric approximation of the uncertainty of the
contact normal (a). Dependent on the combined radii of
both spheres rAB and the convoluted uncertainty of both
spheres σAB (right triangle). Approximation applied for two
colliding spheres and compared to sampling (1k spheres) (b).
Three-sigma-hull for positional uncertainty in light red.

II. PROBABILISTIC RIGID BODY SIMULATION

A. Collision Detection

We approximate polygonal rigid bodies using non-uniform
spheres, leveraging their low computational cost for intersec-
tion tests and independence from polygonal resolution. We
employ an Apollonian sphere packing algorithm—adapted
from [5] for arbitrary 3D objects—that uses a greedy ap-
proach favoring larger spheres to achieve space-filling pack-
ing without overlaps within the 3D object. Subsequently,
each sphere packing is organized into a bounding volume
hierarchy, enabling rapid intersection detection for complex
3D objects.

B. Simulation

The state vector of a rigid body is defined within SE(3).
We currently model the state’s uncertainty only in linear
motion, and the uncertainty is constrained to be isotropic.

When a collision occurs, we resolve it with either our
penalty or the impulse approach. The penalty method models
a spring, where the force scales with the penetration volume.
We go through each contact point and accumulate the penalty
force. The impulse approach models the physical interaction
using collision impulses. We sequentially compute and apply
the impulse for each contact point, taking into account the
velocities, masses, and normals involved in the contact. Our
surrogate model approximates the deviation from the contact
normal as a cone angle geometrically (see Fig. 1). This angle
is then used to compute the tangential component of velocity
or force. However, we combine the uncertainty in direction
by accumulating each contact’s angle and clamping it to
90 degrees as an upper bound. The kinematic uncertainty
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propagation is physically motivated. We use the symplectic
Euler, known for its stability and simplicity. Additionally, we
clamp the uncertainty in velocity σv by the mean velocity v
magnitude. Clamping resulted in more reasonable growth of
uncertainty in general. As a second method, we computed
the first-order Jacobi of the non-linear collision resolution
function and propagated the uncertainty similarly, as the Ex-
tended Kalman Filter does. Here, we use auto-differentiation.

III. EVALUATION

In the following, we evaluate our approach in terms of
performance and quality. We have simulated a collision
between three 3D models—Armadillo, Bunny, and Cup. A
pair of objects approaches with an uncertain initial position
and certain velocity. There is no gravity or other collision,
i.e., with a floor involved. However, a linear damping for the
velocity is applied. We simulated 5 s with a ∆t = 0.01, s. We
varied the number of spheres, method, and positional sigma
during the experiments. The models are scaled to fit inside
a unit-sphere so the objects are similarly sized, and an equal
absolute sigma is credible. We examine scenarios with 10n

spheres and samples, where n = 1, 2, 3, 4, 5, corresponding
up to 100k spheres and samples. The maximum sigma is
10% of the max extent (0.1) and uniformly divided. This
means each object has the same absolute sigma. We use the
sampling approach for comparison, where 100k samples act
as a ground truth.

A. Performance Analysis

We first grouped the results by object type and number of
spheres to evaluate the performance. Then, we accumulated
the computation time of each frame for each sigma. Fig.
2 shows the performance. In that plot, we can see that the
sampling approach scales linearly in terms of performance
for each number of samples. On the other hand, it stays
constant for each sigma and is therefore independent of it.
However, our approach is up 3-4 orders of magnitude faster.

B. Similarity Analysis

Our final distribution is isotropic Gaussian, and the sam-
pling distribution might not be Gaussian. However, we fit an
isotropic Gaussian for the sampling distribution, as it is the
best solution achievable and comparable to our approach.
To compare two multivariate Gaussians for similarity, we
use the Hellinger distance. Its advantage is that it is metric,
and the resulting distance d is in the interval 0 ≤ d ≤
1. Where zero distance indicates similar distribution and
distance of one indicates no similarity. In Fig. 3 we can see
the average similarity for each sigma where 100k samples
are the reference. With more samples, the similarity to the
ground truth increases, but not linearly. Our surrogate model
achieves moderate similarity and performs better than the
linearization approach. For the linearization approach, we
compute and compare with its largest eigenvalue of the
covariance since it results in a non-isotropic distribution.
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Fig. 2: Computation time over sigma for different methods.
Armadillo with 10k spheres. Our approach: below 10ms.
The following abbreviations are used : (S, Sampling), (U,
UncertainPhysics), (UE, Linearization) (P, Penalty method),
(I, Impulse method). After sampling (S), the number indi-
cates the number of samples.
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Fig. 3: Average similarity to the 100k sampling distribution
over sigma for different objects and number of spheres. Ten
samples have ≈ 0.2 distance. Same abbrv. as in Fig. 2.

IV. CONCLUSION AND FUTURE WORK

This study has presented a novel approach to addressing
computationally intensive sampling-based physics simula-
tions with uncertainty. Our approach helps to reduce the
total number of samples needed (i.e., in an animation or
robotic context). Since we can achieve an enormous speedup,
there is room for further quality improvement by experi-
ments with more computationally intensive approaches, i.e.,
non-isotropic Gaussian, including rotational uncertainty and
multi-modal distributions.
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