

AstroGen - Procedural Generation of Highly Detailed Asteroid Models

X. Z. Li, R. Weller, G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

ICARCV'15th, Nov 19-21 2018, Singapore

Motivation

- Low-quality data from earth observation
 - Radar
 - Telescope
- Virtual testbed simulations
 - Time and cost efficient
 - Autonomous operation
 - Long distance scheduling latency

Challenges

- How to generate diverse but similar asteroid surfaces (i.e. virtual testbed) for simulation?
- How to reuse the data from previous space missions?

Ground truth model

Low-poly models

Previous Work

- Procedural hydrology terrain [Génevaux 2013]
 - Underlying hydrographic network
 - User defined terrain features (mountain, ...)
- Procedural terrain with real-world data [Parberry 2014]
 - Design terrain with real elevation data
 - Terrain details with value noise
- Sparse representation of terrain [Guérin 2016]
 - Procedural landform features (primitives)
 - Sparse construction tree

Our Contribution

- Automatic asteroid model generation
 - Given a predefined similarity distance to generate a variety of asteroid models from the given model
 - Add terrain features on the surface easily
- High performance
 - Parallel GPU implementation
- Arbitrary Resolution
 - Implicit representation of a given model

Approach – Overview

Parameter training

Prototype Mesh

Surface detail transfer

Training Pipeline

Surface detail parameters /

Approach – Training Pipeline

Approach

Implicit surface

- Define a series equation F and compute for each grid point P
 - Implicit surface $S = \{(x, y, z) | F(x, y, z) = T\}$
 - T is the isovalue of the implicit surface

Optimization

- Change the parameters in F to generate an infinite number of shapes
- Particle swarm optimization [Samal 2007]
 with a fitness function leads to target result

Step 1: Metaball Modelling

- Prototype surface
- Metaballs define the isosurface (implicit surface S with isovalue T_0) to approximate the prototype surface
 - Skeleton of spheres (Sphere Packing [Weller 2010])
 - Potential field
 - Blending

Step 1: Optimization

- Protosphere
 - n is the number of spheres in the prototype shape
- Potential function $f(r_p)$

- a is the tension factor
- b is the softness factor
- Blend function for each metaball

$$f(r_p) = (f^m(r_{p_A}) + f^m(r_{p_B}))^{\frac{1}{m}}$$

m is the overlapping factor

Ground truth shape

Rough shape

Step 2: Fractal Noise – Perlin & Simplex

- Fractal terrain
 - 3D Perlin noise
 - Fractal (summation of noises on different octaves)
 - Self-similarity
 - 3D Simplex noise
 - Less directional artifacts

2D Perlin noise 2D Simplex noise

Approach Conclusion 10 Motivation Results

Step 2: Fractal Noise – Worley

- Primitive Craters
 - 3D Worley noise
 - Points for a distance field
 - Randomly distribute feature points X in space
 - Noise value is the distance to the-closest point $x \in X$

2D Worley noise

Step 2: Optimization – Surface Details

Optimization parameters

Number of Parameters	Perlin	Simplex	Worley	Gradient	
Weight	1	1	1	1	
Frequency	1	1	1	0	
Octave	1	1	1	0	
Amplitude	1	1	1	0	
$Coords_w$	3	3	3	0	
Coords_b	3	3	3	0	_

$$T = T_0 + weight \cdot \sum_{i=0}^{betave} amplitude \cdot perlin((2^i x, 2^i y, 2^i z) \cdot f \cdot \vec{w} + \vec{b}))$$

$$+\sum_{i=0}^{octave} simplex(...) + \sum_{i=0}^{octave} worley(...)$$

Fitness function

- Compute histograms [Li 2017] for all models
- Minimize the histogram's Euclidean distance

Results – Itokawa

Model from photogrammetry (Source 1,780k vertices)

"Flat" surface (1,986k vertices)

"Medium" surface (2,173k vertices)

"Steep" surface (2,335k vertices)

Results – Transformed Low-Poly Asteroids

Conclusions

- Optimization-based generation of 3D asteroid look-alikes
- Major contributions:
 - Create infinite numbers of asteroid shapes similar to prototype shape
 - Users control the similarity/dissimilarity distance to generate different shapes
 - Create arbitrarily high resolution from low-poly models
 - Can be easily implemented on the GPU
- Limitations:
 - The randomness of noise make it hard to control and generate particular patterns

Future Work

- More naturalness
 - AstroGen integrated with physically-based noise such as flow noise and curl noise
 - Incorporate with reinforcement learning or other optimization algorithm to improve the result
 - Different similarity measurements can be compared
- More applications
 - AstroGen in virtual testbed to verify vehicle design
 - Mascon based gravity computing
- Better mesh quality
 - Enhance the visual fidelity by using dual marching cubes

Thank you! Q&A

