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= Low-quality data from earth observation

= Radar

= Telescope

= Virtual testbed simulations

= Time and cost efficient

= Autonomous operation

- Long distance scheduling latency
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Y Challenges .

= How to generate diverse but
similar asteroid surfaces (i.e.
virtual testbed) for simulation?

= How to reuse the data from
previous space missions?

Ground truth model

Low-poly models
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Previous Work

Procedural hydrology terrain
[Génevaux 2013]

= Underlying hydrographic network

= User defined terrain features (mountain, ...)

Procedural terrain with real-world data
[Parberry 2014]

= Design terrain with real elevation data

= Terrain details with value noise

Sparse representation of terrain
[Guérin 2016]

= Procedural landform features (primitives)

= Sparse construction tree
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Y Our Contribution

= Automatic asteroid model generation

= Given a predefined similarity distance to generate a variety of asteroid
models from the given model

= Add terrain features on the surface easily
= High performance
= Parallel GPU implementation

= Arbitrary Resolution

= Implicit representation of a given model

Motivation Approach Results Conclusion

i



Bremen

Y Approach — Overview

= Parameter training

— — Implicit Representation
Training Pipeline S = {(z,y,2)|F(x,y,2) =T}

Prototype Mesh

Surface detalil
parameters

= Surface detail transfer
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Y Approach — Training Pipeline

Step 1: Rough Shape Step 2: Surface Details
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= Define a series equation F and compute for
each grid point P

= Implicit surface

...““Vd.’dlﬁ.ﬁ.ﬁ

NAVAVAVAVAVAY,

{(-’L’,y, z)|F($vya Z) - T}

- T is the isovalue of the implicit surface

- Implicit surface S

= Change the parameters in F to generate an

= Optimization

infinite number of shapes

= Particle swarm optimization [Samal 2007]

with a fitness function leads to target result

Conclusion

Approach Results

Motivation



Bremen

Y Step 1: Metaball Modelling

= Prototype surface

= Metaballs define the isosurface (implicit surface S with isovalue T, )
to approximate the prototype surface

= Skeleton of spheres (Sphere Packing [Weller 2010])
= Potential field
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Step 1: Optimization

= Protosphere

= n is the number of spheres in the
prototype shape

= Potential function f(r,)
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= ais the tension factor

= b is the softness factor

" Blend function for each metaball

1

flrp) = (" (rpa) + " (rpp)) ™

= m is the overlapping factor
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Y ' Step 2: Fractal Noise — Perlin & Simplex "«

" Fractal terrain

= 3D Perlin noise

- Fractal (summation of noises on different
octaves)

- Self-similarity
= 3D Simplex noise

- Less directional artifacts
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Y Step 2: Fractal Noise — Worley

= Primitive - Craters

= 3D Worley noise
- Points for a distance field
- Randomly distribute feature points X in space

- Noise value is the distance to the-closest point x& X
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Step 2: Optimization — Surface Details

= Optimization parameters

Number of Parameters Perlin Simplex Worley Gradient

Weight 1 1 1 1
Frequency 1 1 1 0
Octave 1 1 1 0
Amplitude 1 1 1 0
Coords_w 3 3 3 0
Coords_b 3 3 3 0 Z = 3]
octave
T =Ty + weight - E amplitude - perlin((2°'x,2'y,2'z) - f - W + b))
i=0
octave octave

+ Z simplex(...) + Z worley(...)
i=0 i=0

= Fitness function
= Compute histograms [Li 201 7] for all models

= Minimize the histogram’s Euclidean distance
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Y Results — Itokawa
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Model from photogrammetry “Flat” surface (1,986k vertices)
(Source 1,780k vertices)

“Medium” surface (2,173k vertices) “Steep” surface (2,335k vertices)
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Y Results — Transformed Low-Poly Asteroids

Asteroid Lutetia Asteroid Ceres Asteroid Stein
(710k vertices) (1,063k vertices) (778k vertices)
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Conclusions

= Optimization-based generation of 3D asteroid look-alikes
= Major contributions:

= Create infinite numbers of asteroid shapes similar to prototype shape

= Users control the similarity/dissimilarity distance to generate different
shapes

= Create arbitrarily high resolution from low-poly models

= Can be easily implemented on the GPU
= Limitations:

= The randomness of noise make it hard to control and generate
particular patterns
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Future Work

" More naturalness

= AstroGen integrated with physically-based noise such as flow noise
and curl noise

= |Incorporate with reinforcement learning or other optimization
algorithm to improve the result

= Different similarity measurements can be compared
= More applications

= AstroGen in virtual testbed to verify vehicle design

= Mascon based gravity computing
= Better mesh quality

= Enhance the visual fidelity by using dual marching cubes

Motivation Approach Results Conclusion
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