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Abstract
Bistatic radar (BSR) is a well-established technology to probe surfaces of planets and also small bodies like asteroids
and comets. The radio subsystem onboard the spacecraft serves as the transmitter and the ground station on Earth as
the receiver of the radio signal in the bistatic radar configuration. A part of the reflected signal is scattered towards the
receiver which records both the right-hand circular polarized (RHCP) and left-hand circular polarized (LHCP) echo
components. From the measurement of those, geophysical properties like surface roughness and dielectric constant
can be derived. Such observations aim at extracting the radar reflectivity coefficient of the surface, which is also called
the radar-cross section. This coefficient depends on the physical properties of the surface.
We developed a bistatic radar simulation tool that utilizes hardware acceleration and massively-parallel programming
paradigms available on modern GPUs. It is based on the Shooting and Bouncing Rays (SBR) method (sometimes also
called Ray-Launching Geometrical Optics), which we have adapted for the GPU and implemented using hardware-
accelerated raytracing. This provides high-performance estimation of the scattering of electromagnetic waves from
surfaces, which is highly desirable since surfaces can become very large relative to the surface features that need to be
resolved by the simulation method.
Our method can, for example, deal with the asteroids 1 Ceres and 4 Vesta, which have mean diameters of around 974
km and 529 km, resp., which are very large surfaces relative to the sizes of the surface features. But even smaller
objects can require a large number of rays for sampling the surface with a density large enough for accurate results.
In this paper, we present our new, very efficient simulation method, its application to several examples with various
shapes and surface properties, and examine limits of the detectability of water ice on small bodies.
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1 Introduction

One of several methods to study the properties of plane-
tary surfaces with the help of a spacecraft is the so-called
bistatic radar technique. In contrast to monostatic radar,
the transmitter and receiver are spatially separated. First
downlink BSR observations, in which the spacecraft acts
as the transmitter and the ground station on Earth as the
receiver, have been carried out on the moon [1], followed
by Venus, Mars [2], Titan [3], and even on Pluto [4] and
the comet 67P/Churyumov-Gerasimenko [5].

With bistatic radar, a combination of the physical struc-
ture and electrical properties of the body of interest can be
studied. From these observations, information of the sur-
face roughness, i.e., root-mean-square (RMS) slopes (¢),
near-surface dielectric constant (¢) and density (p) can be
obtained. This information can be interesting for the se-
lection of landing sites for planetary landers and rovers
and also to detect water ice.

The radar equation which gives echo power from the sur-
face includes among others the radar cross section. It
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can only be derived analytically for simple objects. For
complex bodies, a numerical approach is needed. The
software package presented in the following was devel-
oped as part of the KaNaRiA mission (cognition-based
autonomous navigation using the example of resource
mining in space) [6] for which the reference scenario is
an "asteroid mining mission" in the main asteroid belt be-
tween Mars and Jupiter.

In the next section, an overview of the bistatic radar tech-
nique is given and the corresponding equations are pro-
vided on how to derive the dielectric properties from mea-
surements. In section 3, our Shooting and Bouncing Rays
implementation is described in detail and explains how
the software was validated against test cases. Section 6
shows the different models for the shape of the central
body on which we applied our Shooting and Bouncing
Rays method and gives an overview of the results for the
radar cross section. Section 7 summarizes and concludes
the paper.
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2 Bistatic Radar

The incremental echo power dPr from a small surface
element d.S is given by the radar equation [7] as
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where
e Pr is the transmitted power,

o G is the transmitting antenna gain in the direction
of the surface element,

¢ R is the distance from the transmitter to the surface
element,

e Ap is the effective area of the receiving antenna
aperture (which may, like G, be directional),

¢ Rp is the distance from the surface element to the
receiver,

* and o(¢, €) the specific radar cross section (RCS).

The radar cross section ¢ is a measure of the efficiency
in transmitting energy from the transmitter to the receiver
and is defined as the ratio of the scattered field strength
Es and the incident field strength at target F; with R as
the distance between transmitter and target
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For many quasi-specular planetary surfaces, the expres-
sion derived by Hagfors ([8], [9]) has become widely
used in planetary radar surveys because it provides good
agreement with measured data in many cases.

e
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with

 ~ the facet tilt angle at the specular point at the sur-
face

¢ (' aparameter interpreted as the inverse squared sur-
face roughness in radians,

* p; are the Fresnel reflection coefficients for the dif-
ferent polarization’s.
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with ¢ the incident angle at the specular point and ¢ the
dielectric constant. The same (SC) and opposite (OC)
sense of circular polarization can be expressed as
Ry + Ry
Rsc=——F— (6)
Ry — Ry

Roc=——F— (N

i.e. if RHCP is the transmitted circular polarization then
Rgsc gives the amplitude of the reflected wave and Roc
the LHCP echo amplitude. For more information see for
example [10], [2], [7].

Only for simple objects like a sphere the radar cross sec-
tion o can be derived in an analytical way. For more com-
plex objects the RCS can only be derived numerically.
One method which can be applied to derive the RCS nu-
merically is described in the next section.

3 Shooting and Bouncing Rays

3.1 Implementation

The Shooting and Bouncing Rays (SBR) method de-
scribed in this paper is based on [11], with the gener-
alization of [12] to arbitrary objects. The SBR method
represents an incident plane wave by a dense grid of rays
(see Figure 1). The electromagnetic wave is assumed to
be planar near the target for which the scattering is to be
computed.

Target

Plane Wave
LTI

Figure 1: Plane wave approaching a target.

As the electromagnetic wave is planar we can represent
it as a rectangle so that the plane wave can easily be ex-
pressed by a grid of rectangular ray tubes, where each ray
tube covers a small area of the plane wave. This ray tube
grid should be large enough so that the plane wave cov-
ers all relevant parts of the target that are visible from the
direction of the incoming plane wave. Every ray tube rep-
resents a small part of the electromagnetic wave, which
can be individually calculated and traced into the scene
with the target object. The SBR method is divided into
three main parts according to [11]:

1. Ray tracing,
2. Amplitude tracking, and
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3. Physical optics.

In the first part, rays are sent into the scene and the hit
points of the ray with the target are recorded. The second
step calculates the electromagnetic field of each ray while
it bounces/reflects from the objects in the environment
until no more intersection points can be found. The last
part calculates the scattered field in the direction of the
observation; it is based on the approximations of physi-
cal optics. After calculating the contribution of each ray,
we can accumulate the individual contributions to esti-
mate the scattering of the electromagnetic wave from the
target. In the following, the three parts are described in
more detail.

3.2 Step 1. Ray Tracing

For the first step, we find the intersection points of the ray
with the surface of a target object and calculate reflected
rays until no more intersection points with the surface can
be found. The origins of the initial rays which are used
for representing the plane wave lie inside the rectangle
which makes up the incident plane wave and the initial
direction of those rays equals the propagation direction
of the electromagnetic wave at that point. Because the
wave is assumed to be plane here they all have the same
initial direction. The reflected rays are calculated such
that they satisfy the following rules:

1. The reflected ray lies in the plane of incidence
2. The angle of reflection equals the angle of incidence

The plane of incidence (figure 2) is the plane that contains
the direction vector of the incoming ray and the normal
vector of the surface at the intersection point.

Plane of Incidence

Figure 2: Plane of Incidence

When the surface normal n and the direction of the in-
coming ray d; is given we can calculate the direction of
the reflected ray d, using the following equation:

d, =d; — 2(d; -n)n 8)
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The reflected ray can be constructed by setting the origin
of the ray to the intersection point between the incoming
ray and the surface and setting the direction to d,.. This
can be repeated until no more intersection point for the
reflected ray can be found or the number of intersection
points of a ray exceeds some previously set threshold.

3.3 Step 2. Amplitude Tracking

The second part of the SBR method uses the calculated
intersection points of each ray to determine the electro-
magnetic field of each ray tube at the exit aperture using
geometrical optics. There are different choices for the
exit aperture[13] which is used in the last part of the SBR
method to determine the final field which is scattered into
the observation direction by using physical optics. Here
the object itself is used as the exit aperture as proposed
by [12]. This way we only need to trace the rays until no
more intersection points can be found and no intersection
with a special exit aperture surface/object must be deter-
mined. In [11] two different types of rays for calculating
the electromagnetic field are used. The two types of rays
have different objectives and are 1. corner rays and 2.
central rays. The corner rays of each ray tube are used
to calculate the shape and the size of the electromagnetic
wave represented by the ray tube at the exit aperture and
the central rays are used to actually track the electromag-
netic field of the ray tube from the plane wave to the exit
aperture. With this approach, each ray tube consists of
5 rays. However neighboring ray tubes can share corner
rays. Sharing the corner rays reduces the total number
of rays that need to be calculated. Figure 3 shows a sin-
gle ray tube which consists of the four corner rays cy,
c1,C2,c3 and a single central ray r.

The only relevant information

for the corner rays is the inter- c1
section point at the exit aper- A
ture. Because of this, we ,/ |
can trace the corner rays as C?IL) 3
shown previously in step 1 and ! |
just store the last intersection Ly
point. However, the central ! r !
ray must track the electromag- | —
netic field from the initial start- I "o
ing point inside the plane wave l’_>

to the last intersection point at Cy
the exit aperture. This means
that there is some more work
to be done for each intersec-
tion point. Given the intersec-
tion points which are calculated in the previous step, we
can calculate the electromagnetic field at the exit aper-
ture using geometrical optics. The incident plane wave
(similar to the formulation by [11]) is given by

Figure 3: Single Ray
Tube
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where I is the amplitude of the vertical polarization, I is
the amplitude of the horizontal polarization, k’ is the ob-
servation direction and r is some point in space. qAS and
0 are the spherical unit vectors[13] and can be calculated
from the observation direction (r, 6, ¢). Based on the in-
coming electromagnetic field at some intersection point
we can calculate the reflected electromagnetic field by
geometrical optics using the following equation for each
intersection point[11]:

E, = (DF); -T; - E; - ¢~(Phase) (10)
Here E, represents the reflected field at the intersection
point, DF; is the divergence factor which represents the
spreading of the ray tube while traveling through space,
T'; represents the reflection coefficients of the material at
the intersection point, E; represents the incoming electro-
magnetic field at the intersection point and the last term
incorporates the phase of the electromagnetic wave. A
detailed description of the divergence factor is given by
Ling et. al[11]. However for triangle based meshes this
factor can be ignored because in general the divergence
factor is restricted to an analytic representation of sur-
faces where the information of the curvature at the inter-
section point is available[14]. Because the focus here is
on triangle meshes we ignore the divergence factor when
calculating the reflected field. The (phase) part of the
last term is just the distance between the origin of the
incoming ray and current intersection point and can be
calculated for the origin o and the reflection point r; as

(phase) = ||o — r;| (11)
To apply the reflection coefficients I'; we need to decom-
pose the incident field E; into its TE (transverse electric)
and TM (transverse magnetic) components[11]. Follow-
ing [15] the reflected field at each intersection point can
be calculated from the incident field E; and the reflection
coefficients I'j| and " as follows:

E| _ (T 0 E[il
E7 0 Tyi||EY,
The matrix consisting of T’ and I", represents the T';

term. The incident field can be decomposed into its TE
and TM components using the following equations:

12)

Ef =¢-E; (13)

E| =eé, -E;

(14)
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Let k' be the propagation direction of the electromagnetic
field (the propagation direction of the geometrical optics
ray) before the intersection, K" the propagation direction
after the intersection and 1 be the normal of the surface at
the intersection point. Than €| and € can be calculated
as follows:

&= =t (15)
[k x e, ||
ki s
6 =~ (16)
|[k? x nl|

After calculating the decomposed electromagnetic field
for the reflected ray we need to reconstruct the electro-
magnetic field from the decomposed parts. This can be
done using the following equation:

ET:éT‘~Eﬁ+éL-Ei a7n
The vector éﬂ can be calculated from & as:
K" x é
&= b (18)
[k x é.||

I')and '} are the reflection coefficients of the surface at
the intersection point. For perfectly electric conducting
objects, they can be set to —1 [16]. There are different
ways to calculate the reflection coefficients for the given
surface depending on the material or other properties like
roughness. One way is to use the fresnel reflection coef-
ficients[17]

3.4 Step 3. Physical Optics

The third and last step is used to calculated the contri-
bution of each triangle-based on the Physical Optics ap-
proach. Using the electromagnetic field calculated at the
exit aperture using geometrical optics we can now calcu-
late the contribution of this ray tube given an observation
point (7,0, ). At such an observation point in the far
field the contribution of the ray tube can be expressed
as[12]

—jkr

E(r,0,6) ~ “———(0Ag + $A,) (19)

r

where Ag and A4 can be calculated by

[ﬁﬂ B (gi) //mbe e]k'”{ [_éﬂ X Bap(r) fet

Zy L‘Z] X Hap(r)fh} - ndxdy
(20)
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with E,,(r) and H,,(r) representing the electric and
magnetic field of a ray tube at the exit aperture for point
r (the last intersection point calculated with geometrical
optics). k represents the wave vector of the electromag-
netic wave and can be calculated by

k = k((cos(¢")x + sin(¢")y)sin(6") + cos(0%)z) (21)

Assuming that the ray tubes are small enough the follow-
ing approximation can be used:

2 (22)

Ag| _ |Bo| Jk jker
[ qu N [ij I%( A &)™ (0, 6)
A detailed description of the physical optics approach and
how to calculate By and By can be found in the Physical
Optics section in [18]. The description there is based on
[12].

4 Implementation

The previous part discussed the fundamentals necessary
to implement the SBR method. Especially how to calcu-
late the electromagnetic field based on geometric optics
and physical optics for a given ray. The following sec-
tion will describe and discuss the implementation details
and decisions that we made for implementing the differ-
ent versions of the SBR method. This also includes the
ray model that we chose to implement the ray tracing part
of the SBR method.

4.1 GPU Implementation

The core part of our CUDA implementation is given in
Algorithm 1. The plane wave is split into a number of
smaller rectangular tiles, because the targets can be very
large. The size of a tile can be adjusted so that either
more but smaller tiles, or fewer but larger tiles are cre-
ated. Our current implementation uses a maximum tile
size of 2048 x 2048 for both the GPU and the CPU ver-
sions. However, in CUDA we also use thread blocks with
a size of 16 x 16 threads. This means that if a tile is
smaller than 2048 rays in some direction, then the CUDA
implementation uses padding so that the tile fits exactly
into the thread blocks.

First, the program loops over all observations. Each ob-
servation represents a pair of directions, one for the in-
coming plane wave, and one for the outgoing one (in the
direction of the receiver). The observation also stores the
direction of the electric field for the horizontal and ver-
tical polarization, which is used to initialize the electric
field for each ray at the plane wave. In order to calcu-
late the actual RCS, we iterate over all tiles of the plane
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foreach observation do
setup observation

foreach tile in R do

foreach tile in U do
calculate ray contributions on the GPU

sum ray contribution
end
end
calculate RCS from ray contributions

end

Algorithm 1: Main loop of the implementation of our al-
gorithm in CUDA on the GPU.

wave and calculate the rays of this tile on the GPU; we
also accumulate the results of the tile on the GPU. The
directions R and U are two directions orthogonal to the
propagation direction of the wave and are used to specify
the orientation of the rectangular plane.

4.1.1 CUDA

Our CUDA implementation covers the ray tracing part
of the SBR method. We use a bounding volume hierar-
chy (BVH) in order to speed up the ray-geometry inter-
section calculations. This, and the ensuing ray-triangle
intersection are implemented directly inside a CUDA ker-
nel. The BVH is constructed on the CPU and then copied
to GPU memory using a compact representation based on
a linear array of nodes. The algorithm for building such
a BVH, the traversal algorithm, and the layout to store
it on the GPU can be found in [19]. A CUDA kernel
is launched for each tile and a thread for each ray. Each
ray’s contribution to the RCS of the target object is stored
in global memory. To accumulate all contributions of all
rays we use a reduction operation provided in the thrust
library [20].

4.2 Discrete Rays vs. Ray Tubes

One decision that needs to be made is to choose between
discrete rays or ray tubes. For example, [21] success-
fully used discrete rays instead of ray tubes consisting of
four corner rays. One advantage of discrete rays is that it
reduces the number of rays that need to be traced when
calculating the RCS of a given object. It also reduces
the need for synchronization when calculating the RCS
on the Graphics Processing Unit (GPU). For instance,
when each thread calculates the path of a single ray, we
would need to wait for all corner rays plus the central
ray to finish before the final aperture integration can be
done for the electromagnetic field. It is possible to calcu-
late all rays in a single thread, but this would drastically
increase the work which needs to be done as the corner
rays of neighboring ray tubes aren’t shared anymore be-
tween the ray tubes. So the same corner ray would need
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to be calculated multiple times in different threads. This
would further increase the time needed to trace all nec-
essary rays. Another reason for discrete rays instead of
ray tubes is that when using ray tubes we have to deal
with potentially highly divergent ray tubes. This could
happen, for example, when two corner rays hit different
triangles with very different normal vectors. This could
lead to four corner rays where the last intersection points
are at vastly different positions on the target object. In
such cases it could be problematic to use such corner rays
to represent the shape of the ray tube (e.g. the shape rep-
resented by the corner rays might not coincide with the
surface of the target object).

Also, this could lead to corner rays which wouldn’t nec-
essarily lie in a common plane when we use four corner
rays for a ray tube. In the case of a triangle-based repre-
sentation, this could only be guaranteed if the last inter-
section point of all corner rays is inside the same triangle.
Using a triangular ray tube we could always create a plane
where all three corner rays lie inside a common plane.
However, there is still the problem of a highly divergent
ray tube. One solution was proposed by [15] where they
only accept ray tubes for calculating the physical optics
approximation at the exit aperture when all corner rays
hit the same triangle. This also ensures that each point
inside the ray tube lies in a common plane. However, this
approach would exclude some parts of the target shape
from the RCS calculation because ray tubes at the edges
between two triangles would be ignored. In the case of a
mesh with a high density of triangles, a lot of ray tubes
would be ignored. Therefore, a discrete ray approach was
finally chosen.

5 Verification

We tested our SBR implementation with a set of different
objects: a sphere, a cylinder, a dihedral corner reflector,
and two different versions of trihedral corner reflectors.
The first two objects are represented by a function that
directly allows for the calculation of the intersection point
with a geometrical optics ray. Here the results for the
dihedral corner reflector are reported.

The material of the test objects is assumed to be a perfect
electrical conductor which should have reflection coef-
ficients of -1 for both polarization cases as noted previ-
ously [22]. However, the tests revealed that these values
don’t seem to apply to the implementations of the ge-
ometrical optics calculation used here based on the ap-
proach presented by [15]. Comparing the results with
the reflection calculations based on [23] for this special
case of total reflection seems to indicate that the values
-1 and 1 need to be used. This might be due to the way
the reflected vectors are calculated by [15]. Overall these
values lead to correct results for multiple reflections and
reflection directions which are more in line with the re-
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flection calculations presented by [23]. But this should
be taken into account when extending the process to di-
electric materials.

For the test, we use a di-
hedral corner reflector with a
side length of Im for both
plates. The frequency for the
RCS calculations is 1GHz and
the observation is done for

z

a fixed § = 90° and for Y
¢ from 0° to 90°. Again r

the observation points lie in

the xy-plane. The increment Figure 4: Dihedral

is 1° which again leads to
90 observation points. Here
we report the results for both
HH-polarization(horizontal to horizontal) and VV-
polarization(vertical to vertical). Figure 5 shows the
result for the observation points at 1GHz for HH-
polarization.

Corner Reflector

Results for both settings were reported by [23]. Here we
compare both results from 0° to 45° with the reported
results because the results are mirrored at ¢ = 45°.
When comparing the results we can see that overall they
agree very well at most points. However, they report a
minimum RCS for the HH-polarization of around 3dbsm
while the implementation shown here has a minimum
RCS which goes further down to around O for the HH-
polarization case. Also, the first local maximum after the
minimum is reported to be around 15-16 while it only
goes up to 13-14 for the current implementation. How-
ever, the next local maximum at around 20° agrees well
with the results reported by [23]. Also the global max-
imum at ¢ = 45° near 25dbsm agrees well with the
reported results by [23]. Overall the HH-polarization
case shows some deviations around 10° and 80° where
the minimum RCS is reached. The reported RCS here
is smaller than would be expected from the results re-
ported by [23]. A similar effect can be seen for the VV-
polarization case but reversed. The reported results have
a minimum RCS of 10dbsm around 10° and 80° while
the results from this implementation have a minimum of
around 13dbsm at these observation angles.
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Figure 5: HH-polarization result for § = 90° at IGHz
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Figure 6: VV-polarization result for § = 90° at IGHz

However, the following local maximum at around 15°
of ~ 17dbsm agrees well with the reported results by
[23]. Overall we can see that the implementation seems
to have some deviations at the first minimum point for
both polarization cases. The implementation shown here
reports lower values for the first minimum when calcu-
lating the HH-polarization and higher values for the VV-
polarization case. However, the results after this first min-
imum agree very well with the results reported by [23].
The reason for this deviation might be that we use a dis-
crete ray that doesn’t track the shape of the ray tube at the
exit aperture very well. When the observation point is at
¢ =~ 10° some rays reflect from the plate in the yz-plane
onto the plate in the zz-plane and reflect from this plate
back to the receiver. However, the angle at the second
reflection between the surface normal and the ray direc-
tion should be relatively high and around 80°. It seems
that for such cases there is some deviation between the re-
ported results and the calculated RCS using our approach.
The reported results for ¢ = 45° again agree very well
with the reported results from [23].

6 Results

The following scenario is defined to be representative
of a small body mission with the following parameters:
Transmitter and receiver are placed in a circular orbit of
about 1 km from the surface of the central body for sim-
plicity. In the monostatic case, the transmitter and re-
ceiver are at the same location. In the bistatic case, the
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location of the transmitter and receiver is separated by the
incidence angle ¢. The dielectric constant € on the sur-
face is handed over as color coding in the shape model
to the software package. In order to reduce complexity,
the dimensions of the scenario have been scaled down by
a factor of 25. The next section shows the results for a
spherical shape of the central body.

6.1 Sphere

A spherical shape of the central body with a radius of 50
m (see figure 7) with a constant dielectric constant € = 3
and with variations of the dielectric constant € (see figure
10) is assumed.

6.1.1 Monostatic case sphere

In the monostatic configuration, the transmitter and re-
ceiver are located at the same position, i.e. the selected
circular orbit of both are identical. Due to the symmetric
geometry and if a constant dielectric constant € is used for
the entire surface of the sphere the RCS shall be constant
over the orbit. For the simulation a dielectric constant € =
3 is assumed and in figure 8 both the radar cross section
of the same RC'Sg¢ and opposite RC'So¢ sense of cir-
cular polarization is shown. As expected the RC'Sg¢ is
constant over the entire track and the RCSp¢ vanishes
in the monostatic case, i.e. the incident angle ¢ = 0°.

Figure 7: The central body is represented by a sphere
with a diameter of 50 m and a dielectric constant € = 3.
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Figure 8: RCS of a sphere with a diameter of 50 m and
dielectric constant € = 3 in the monostatic case

In figure 10 the same configuration can be seen but with a
sphere where each hemisphere has a different € of 2 and
4, respectively. The resulting RCS decreases with lower
¢ in the center between around 45° and 135° as it can be
seen in figure 9. The RC'Soc vanishes as expected but
shows also very small numerical noise and the transfer
regions between the two different hemispheres.
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Figure 9: RCS of a sphere with a radius of 50 m and
dielectric constant € = 2,4 in the monostatic case
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Figure 10: The central body is represented by a sphere
with a radius of 50 m. The sphere is subdivided into two
parts with a dielectric constant € = 2, 4

6.1.2 Bistatic case sphere

In the bistatic case, the position of the transmitter and re-
ceiver are separated by the incident angle ¢. An incident
angle larger than 0° (monostatic case) results in an in-
creasing radar cross section of the opposite polarisation
RCSo¢ as it can found in figure 11, where it is shown
for ¢ = 65° and a constant € = 3.

—— RCSg¢
0,4 1 —RCSq¢

Normalized RCS [m?]

T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 11: RCS of a sphere with dielectric constant € = 3
in the bistatic case incident angle ¢ = 65°

The same is true if the dielectric constant is changing on
the surface of the sphere as in figure 10 where to each
hemisphere a different € of 2 and 4 is assigned. A smaller
¢ increases the RCS of the opposite polarization RC'Soc
and decreases the RCS of the same polarization RC'Ss¢
(see figure 12).
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Normalized RCS [m?]
o
©

——RCS¢¢
——RCSq¢
0,0 A 4
T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 12: RCS of a sphere with dielectric constant € =
2.4 in the bistatic case at incident angle ¢ = 65°

6.2 Ellipsoid

Here, the spherical central body is replaced with an el-
lipsoid (50 x 44 x 35 m), but the circular orbit of the
transmitter and receiver is kept the same as in the section
before.

Figure 13: The central body is represented by an ellipsoid
with the semi-major axis 50 x 44 x 35 m. The ellipsoid
has a dielectric constant € = 3.

TIAC-22,A3,4B,7,x70326

Figure 14: The central body is represented by an ellipsoid
with the semi-major axis 50 x 44 x 35 m. The ellipsoid

is subdivided into two parts with a dielectric constant € =
2,4.

6.2.1 Monostatic case ellipsoid

Here, the circular orbit of the transmitter and receiver are
again identical. The distance to the surface is changing
because of the ellipsoidal shape of the central body (see
figure 13) and the circular orbit. For the simulation, a di-
electric constant € = 3 is used (see figure 15). Due to the
changing geometry, the radar cross section is no longer
constant and is changing with the varying distance to the
surface of the ellipsoid. The resulting curve of theRCS
of the same polarization RC'Sgsc shows a sinusoidal be-
havior. The two peaks correspond to the closest approach
distance between the transmitter/receiver and the surface
of the ellipsoid.

Normalized RCS [m?]

T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 15: RCS of an ellipsoid (50 x 44 x 35 m) with
dielectric constant € = 3 in the monostatic case

If the dielectric constant ¢ varies as is the case and also
the distance to the central body varies the resulting RCS
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of the same polarization RC'Sgc shows again a sinu-
soidal shape but the two peaks no longer have the same
amplitude (figure 16). This is because with a lower ¢ also
the RCS decreases.

Normalized RCS [m?]

T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 16: RCS of an ellipsoid (50 x 44 x 35 m) with
dielectric constant € = 2,4 in the monostatic case

6.2.2 Bistatic case ellipsoid

As is normal in the bistatic case, the position of the trans-
mitter and receiver are separated by the incident angle ¢.
An incident angle larger than 0° (monostatic case) results
in an increasing radar cross section of the opposite polar-
isation RC'Sp¢ as it can be seen in figure 17, where is
shown for ¢ = 65° and a constant € = 3. Both, RC'Spc
and RCSgc, show a sinusoidal shape that is caused by
the changing distance between transmitter/receiver and
surface but with different amplitudes.

T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 17: RCS of an ellipsoid with dielectric constant £
= 3 in the bistatic case incident angle ¢ = 65°

If the dielectric constant is changing on the surface, each
hemisphere has a different € of 2 and 4 (figure 10), both

TIAC-22,A3,4B,7,x70326

RCSoc and RCSg¢, having again a sinusoidal curva-
ture, but due to the difference in ¢ the amplitude of the
peaks are differing as shown in figure 18. In contrast to
the monostatic case the difference in the amplitude of the
peaks in each polarization is smaller in the bistatic case.

— T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 18: RCS of an ellipsoid with dielectric constant &
= 2.4 in the bistatic case at incident angle ¢ = 65°

6.3 Ellipsoid with crater

In order to see the effect of topographic features in the
radar cross section the central body is again an ellipsoid
(50 x 44 x 35 m), but with a crater on the surface with a
diameter of 12.5 m and depth of 22.5 m (figure 19). The
crater is located in the = — y plane at around 45 longitude.
The circular orbit of the transmitter and receiver is the
same as in the simulations before.

Figure 19: The central body is represented by an ellipsoid
with the semi-major axis (50 x 44 x 35 m). The ellipsoid
has a crater with a diameter of 12.5 m and a depth of 22.5
m. The area inside the crater is assigned with different
values for the dielectric constant €
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6.3.1 Monostatic case ellipsoid with crater

The comparison of the RCS for an ellipsoid alone (figure
15) and an ellipsoid with crater (figure 20) shows that the
overall shape is similar in the monostatic case, but a small
peak at 45 of the RCS in figure 20 shows the influence of
the small crater on the radar cross section of the same
polarization RC'Ss¢. But it can also be observed that the
numerical noise increased for both the same and opposite
polarization.

Normalized RCS [m?]

T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 20: RCS of an ellipsoid with crater and an overall
dielectric constant € = 3 in the monostatic case.

If the crater bottom is assigned with a dielectric constant
e = 3.2 (water ice) which is different to the surrounding
surface with ¢ = 3 (rock) the impact of the different di-
electric constant disappears in the noise as it is shown in
figure 21. The shape of the RCS is clearly dominated by
the shape and distance variation.

Normalized RCS [m?]

T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 21: RCS of an ellipsoid with a crater and dielectric
constant € = 3.2 in the crater and € = 3 outside in the
monostatic case

TIAC-22,A3,4B,7,x70326

6.3.2 Bistatic case ellipsoid with crater

In the bistatic case, the opposite polarisation RC'Sp¢ be-
comes more prominent with increasing incident angle ¢.
This also means that surface features like a crater have
an impact on both the opposite polarization RC'So¢ and
the same polarization RC'Sg¢ radar cross section, re-
spectively. In figure 22 no impact at 45 can be observed
in compared to the crater-free ellipsoid in figure 17 but
again and increase of numerical noise in the RCS can be
observed.

—T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300 330 360
Longitude [°]

Figure 22: RCS of an ellipsoid with a crater on the sur-
face and an overall dielectric constant € = 3 in the bistatic
case incident angle ¢ = 65°

Taking into account in the bistatic case a difference be-
tween the crater bottom (¢ = 3.2) and the outside surface
(e = 3) both RC'Ssc and RC' Soc (see figure 23) should
deviate from the case in which the same dielectric con-
stant ¢ for the entire surface was used (see figure 17).
Since Ac is small also the difference in RCS seems to
disappear in the numerical noise, i.e. the overall shape is
dominated by the variation in distance and by the incident
angle ¢.
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Figure 23: RCS of an ellipsoid with a crater on the sur-
face and a dielectric constant € = 3.2 in the crater and € =
3 outside in the bistatic case at an incident angle ¢ = 65°

6.4 Performance

We tested the performance of our CUDA implementation
of the Shooting and Bouncing Rays algorithm against
a OptiX implementation currently in development that
makes use of RT Cores by applying it to a body with a
complex structure; here, we chose the asteroid Vesta (see
Figure 24). The shape model we used is from [24] and
consists of 256 000 triangles. The original size of Vesta
[25] provided by the shape model was scaled down to the
dimensions 576m x 556m x 467m, so that the observa-
tion points can be calculated in a reasonable time.

Figure 24: Shape model of Vesta taken from [24].

The test is performed with an RTX 2080 Super GPU from
NVIDIA with 48 RT Cores and takes into account 90 ob-
servation points for ¢ from 0° to 90° and a fixed § = 90°
using a frequency of SGHz. For the Vesta model, we can
see that the OptiX implementation which can leverage
hardware-accelerated ray tracing, is approximately twice

TIAC-22,A3,4B,7,x70326

as fast when comparing it to the current CUDA imple-
mentation. The OptiX implementation also seems to be
less effected when different parts of the object are ob-
served. The CUDA implementation shows some visible
differences regarding the run-time for some incidence an-
gles as shown in Figure 25. The observations between
¢ = 10° and ¢ = 60° need a bit more time than the
observations after ¢ = 80°. This doesn’t seem to ef-
fect the OptiX implementation to the same degree. Tak-
ing a close look at the run-time of the OptiX implemen-
tation allows us to see some small differences but they
don’t seem to have a comparable magnitude in compar-
ison to the CUDA version. Overall the results seem to
indicate that the OptiX implementation has better perfor-
mance characteristics when comparing it to the CUDA
implementation. Here the OptiX version can be consid-
ered a higher-performance implementation.

15000 A
14000 A

13000 A

12000 A
—— CUDA SBR

11000 A —=-- OptiX SBR

Time in ms

10000 -
9000 -

8000 -

___________________ NP

7000 L T T T T T T T T
0 10 20 30 40 50 60 70 80
Incident angle (degree)

Figure 25: Performance of the CUDA implementationan
of our Shooting and Bouncing Rays algorithm for Vesta.

7 Conclusions and discussions

The paper presents a very fast and efficient implementa-
tion of SBR method on the GPU, in order to better con-
strain the RCS of small bodies like asteroids and comets.
First preliminary results are obtained by the simulation
of a transmitter and receiver orbiting a central body with
spherical and ellipsoidal shapes and computing from this
configuration the radar cross section of the body. Also, a
small crater is added to the ellipsoidal shape with differ-
ent dielectric constants.

Consequently, the shape of the radar cross section curve
is dominated by the varying distance between the trans-
mitter/receiver and the surface of the central body when
comparing the RCS of a sphere with an ellipsoid, as-
suming a circular orbit for the transmitter and receiver.
Also, the incident angle ¢ influences the amplitude of
the same polarization RC'Ss¢ and the opposite polariza-
tion RC'Soc. Small topographic features like a crater or
a changing dielectric constant € therefore also appear in
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both polarizations, if ¢ # 0, but as a minor contribution.
Therefore, in order to detect these small changes in the
radar cross section for example caused by water ice in a
small crater, the larger contributions need to be modeled
and subtracted to detect these small contributions. With
the simulation tool described here, which utilizes hard-
ware acceleration available on modern GPUs, this con-
tribution can be modeled. However the current calcula-
tions indicate that there might be some noise in the calcu-
lated RCS results. Currently work is done to investigate
how such noise in the implementation can be reduced.
For example different distributions (e.g. using Poisson
sampling) of rays on the rectangular representation of the
plane wave instead of the regular grid are to be consid-
ered. This could potentially reduce unwanted interactions
that might arise between the triangle-based mesh used to
represent the target and the regular-grid based distribu-
tion of the rays on the plane wave. Additionally switch-
ing from the current CUDA implementation to the OptiX
version should also allow for faster RCS predictions.

Abbreviations

BSR bistatic radar

BVH bounding volume hierarchy

GPU Graphics Processing Unit

LHCP left-hand circular polarized

RCS radar cross section

RHCP right-hand circular polarized

SBR Shooting and Bouncing Rays

BVH bounding volume hierarchy
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