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Fig. 1: Beyond static scenes, sensory information, and what-, where-questions. Commonsense and especially intuitive physics,
also coined as dark matter of perception, is a key for perception in dynamic and human-centered scenes. Perception as inner
realistic world construction that anticipates and explains the world state as well as observations in an explainable manner,
with reasonable computational resources. We propose a white-box and causal generative model of perception in this paper.

Abstract— Perception in complex environments especially
dynamic and human-centered ones goes beyond classical tasks
such as classification usually known as the what- and where-
object-questions from sensor data, and poses at least three
challenges that are missed by most and not properly addressed
by some actual robot perception systems. Note that sensors
are extrinsically (e.g., clutter, embodiedness-due noise, delayed
processing) and intrinsically (e.g., depth of transparent objects)
very limited, resulting in a lack of or high-entropy data, that
can only be difficultly compressed during learning, difficultly
explained or intensively processed during interpretation. (a)
Therefore, the perception system should rather reason about the
causes that produce such effects (how/why-happen-questions).
(b) It should reason about the consequences (effects) of agent-
object and object-object interactions in order to anticipate
(what-happen-questions) the (e.g., undesired) world state and
then enable successful action on time. (c) Finally, it should
explain its outputs for safety (meta why/how-happen-questions).
This paper introduces a novel white-box and causal generative
model of robot perception (NaivPhys4RP) that emulates human
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perception by capturing the Big Five aspects (FPCIU)1 of
human commonsense, recently established, that invisibly (dark)
drive our observational data and allow us to overcome the
above problems. However, NaivPhys4RP particularly focuses
on the aspect of physics, which ultimately and constructively
determines the world state.

I. INTRODUCTION

Manipulation/action in human-centered environments re-
quires perception systems to inform about the state of the
world. However, the actual perception systems are struggling
against the extreme dynamicity of such environments as
well as the safety required. On the one hand, (a) sensor
information are very limited. With extrinsic and intrinsic
limitations such as occlusion, delayed processing, missing or
poor depth for smooth and glass objects, attempts to solely
rely on these sensory information lead to a situation where
compression while learning, interpretation and processing
speed are no more efficient due to lack of or higher entropy
in the data (e.g., hard pose estimation) [1]. On the other

1Functionality, Physics, Causality, Intention, Utility
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hand, (b) these systems can only difficultly anticipate
(undesired) states of the environment given (a). Imagine
the robot holding a plate containing a bowl and trying to
open the drawer such as depicted by Figure 2.1, despite the
fact that the robot camera is focused on the drawer, it should
still be aware of the state of the bowl. Another scenario is
the case of a robot trying to pour some milk from a bottle
into a mug (see Figure 2.3).

Fig. 2: Physical reasoning for perception in dynamic scenes

Notice that success depends on the robot’s understanding
of the milk’s fluid dynamics and how to control it by manipu-
lating the bottle in order to ensure that the milk will neither
fall out of the mug, the mug will not spill, nor the mug
will be overfilled (Frame 3). On frame 2, the robot should
ensure that the blue milk will not fall after releasing it, which
desired state does not only depend on the table’s physical
relief but also on some bottle’s physical parameters such as
the shape, volume, mass, content and height [10]. Visual
servoing has been an attempt to catch this scene dynamicity,
however it is not only just reactive rather than anticipative but
not robust to sensory limitations mentioned above. Finally,
(c) robotics in human-centered environments should also
ensure safety and a step towards this goal is making the
robots understand what they are perceiving and doing, in
order words our models should not only be explainable
but explainable based on causality rather than associativ-
ity unlike most recent developments on explainability [10].
Though Deep Learning (DL) has shown great prowess on
some perceptual classification tasks, there are more and more
evidence that simply trying to compress huge amount of
data, especially when the data entropy becomes high, fail to
catch understanding. Slight modifications of only few pixels
in images cause radical changes in results or a DL-based
model telling that a train has been detected in the plate [1].
Given these issues, we ask ourselves how biological agents,
at least humans, overcome them. In this regard, there are at
least two observations. Firstly, (1) Physics constructively and
ultimately determines the world state. Secondly, (2) there are
more and more evidences, in contrast to David Marr’s view
of perception, that perception mostly goes from the inside
out, where a mental intuitive physics engine continuously
generates, simulates and maintains models of the world,
which are then updated using sensory information [10, 8,
4]. Such a perception theory is illustrated by Figure 1.

In this paper, we contribute in addressing the three issues
mentioned above (a-c) by:

• proposing a complete, practical, and modular archi-
tecture of perception systems, coined as NaivPhys4RP

(Naive Physics for Robot Perception), that leverages
the physics that manipulated scene objects as well as the
agent’s sensory organs undergo to anticipate and explain
the state and observation of realistic worlds in an explain-
able manner with reasonable computational resources.

• providing a proof of concept for NaivPhys4RP by
demonstrating it on different challenging scenarios, namely
object-related (transparency, occlusion), task-related (i.e.,
pose estimation, stability check) and domain-related
(kitchen, medical laboratory).

• Showing that NaivPhys4RP substantially considers the
Big Fives requirements FPCIU (Functionality, Physics,
Causality, Intent, Utility)[10] for achieving human-level
perception recently established.

II. RELATED WORK

Despite the increasingly intensive research on how biolog-
ical agents, at least humans, do intuitively grasp the phys-
ical laws governing the state of the physical world around
them from limited sensory information and how they apply
such knowledge, commonly referred in the literature to as
commonsense, intuitive, naive or folks physics, to anticipate
the state or interpret observations, the results remain on
the one hand abstract (e.g., higher-level hypotheses/findings)
from the Psychology community [10] and primitive (e.g.,
2D-, simplistic and unrealistic worlds, partial theories (e.g.,
disembodiedness)) from the community for computational
sciences on the other hand [3] . This being said, we will
mostly focus on the core computational theories underlying
these research works as well as the two observations (1-2).

Embodied Simulation. Based on evidences, (Hesslow,
2002) [4] constructed a theory of conscious thought as
embodied mental simulation, where the brain can simulate
an action in an overt manner (i.e., without realization in real
world) and simulate the perception of that action’s effects
usually referred to as Mind Eye, Ear, etc. Depending on
the action’s effects, the agent might decide to simulate the
action in a covert manner, where the action is actually
performed in the physical world. That action’s effects are
then perceived through the physical sensor organ (e.g., eye)
and the cycle restarts. Note that, it is also possible to start
the loop with a simulated perception from the mind eye (i.e.,
imagination). It is argued that the theory provides a way to
the supportive interactions between motor, sensory, cognitive
functions and the internal representations of the world, a way
to anticipation a.k.a. prospection and emphasizes the essence
of anticipation in cognition. (Cassimatis et al., 2004) empha-
sizes the advantages of the simulation theory of cognition
and show how it constitutes a potential solution to many
problems encountered in robotics.

Intuitive Physics. There have been more and more evi-
dences that human cognition, yet at earlier months of life, can
understand the physics governing the behavior of objects in
the physical world and then use this knowledge to anticipate
physical changes (i.e., object fall, object pose), which then
enables successful and smooth action in realtime. Notice
that this happens without prior education in physics or
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knowledge of the physical parameters of the world such as
mass, friction, which are not only intractable and inexplicable
for uneducated people in Physics but would not explain
the smoothness and realtimeness of actions. In this regard,
most research works have been supporting the hypothesis of
a common physics engine that roughly infers the physical
parameters (e.g., friction, mass) of the world from sensory
information and then uses them as inputs to a forward
simulation through the engine in order to anticipate events
and states. Moreover, it has been shown that deviations in
common physical reasoning could go back at least to the
extrinsic (e.g., inaccurate physical parameters) and intrinsic
(e.g., unobservable parameters) uncertainty of the physical
phenomena, which parameters could be refined over time
for more accurate reasoning. Researchers, especially Joshua
Tenenbaum and his colleagues have considerably argued on
how intuitive physics is essential for perception from limited
sensory information (e.g., observing a car moving, and after
it passes behind an occluding wall, we can still predict when
it will appear at the other extremity of the wall) and have
termed it as dark matter of perception in the sense that
it is not directly graspable from sensory information but
significantly contributes in generating these information [10].
However, Davis and his colleagues objected to the simulation
theory for intuitive physics, claiming on the one hand the
intractable computational resources required and on the other
hand the failure of the simulation theory to the conjunction-
fallacy effect. Recently, (Bass et al., 2022)[2] replied to
Davis’s objection with a theory of partial simulation. In
sum, these works on intuitive physics stresses the physical,

probabilistic, partial and emergent nature of the simulation
theory of Hesslow.
Perception as Controlled Hallucination. (Anil Seth, 2018)
[8] argues on the limitations of sensory information and
flaws in David Marr’s standard theory of perception (i.e.,
bottom-up information processing) and regarding this issue
he elaborated a theory of perception based on evidences,
where the brain, so-called bayesian, continuously generates,
simulates expectations of the world state (i.e., hallucinations)
and updates this expectations with the few available sensory
information (i.e., control). This dominant top-down view
of perception was already argued by (Ralf Moeller, 1996),
defining perception as the process of anticipating sensory
consequences of actions .

Imagination-capable Belief State (ICBS). Finally, we
(Mania et al., 2021) [6] recently proposed a very rich inner
representation of the world, also known as semantic digital
twin as it aims at replicating the real world in photo-realistic
and physics-faithful virtual environments (i.e., game engines)
grounded in the world ontology for more semantics. Then,
we showed how such a representation could be used to vali-
date and refine the outputs of a traditional perception system.
In this paper, we continue this work with regard of the above
theories by enlarging the capabilities of these mental world
representations to embodied probabilistic simulations and
provide an architecture of perception systems, intrinsically
based on such simulations and other aspects of commonsense
such as the process context, that can perform physical
reasoning to cope with the problems (a-c).

III. ARCHITECTURE
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Fig. 3: The robot observations Zt and actions Ut−1 are tightly coupled through a sufficiently rich inner model of the world Xt that allows

through a forward simulation and rendering module (FsR) to anticipate the world state Xt+1 (X
(pi)
t+1 ) and its observations Zt+1 (Z

(pi)
t+1 ),

then to explain the world observation Zt+1 (X
( f i)
t+1 ) and its state Xt+1 (X

( f i)
t , U

( f i)
t ) through an inverse simulation module (IS). Xt emerges

overtime through a complementary and white interaction loop between IS and FsR, where IS constructively infers the causes whose
consequences through FsR match the observed or intended consequences.
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A. Problem formalization

In regard to the above theories, we formalize the problem
addressed by NaivPhys4RP in four steps. (i) We model the
world state, as shown by Figure 1, as a Situated (i.e., take
place in a context) Partially-Observable (i.e., only partial
sensor data) Hidden (i.e., not directly accessible information)
Markov Process (i.e., state dependency) (SPOHMP) that
evolves through the physics that scene entities (e.g., objects,
robots, sensors) undergo. (ii) We model the hidden state a.k.a.
belief of the SPOHMP as ICBS described earlier. (iii) Then,
we regard perception as taskable through queries [10, 5]
and these perceptual queries are clustered into anticipatory
(i.e., consequences given causes) and explanatory queries
(i.e., causes given consequences), that are abstracted as
bayesian/markovian inference tasks. However, note that an
actual accurate and rich belief of the world state is the
informational source for answering these questions. Such a
belief is continuously filtered over time through emulation of
the SPOHMP. (iv) Finally, we efficiently implement the four
main operators of the rao-blackwellized particle filter [7],
however modified to five operators, which is a generic, prac-
tical and constructive approach to simultaneously emulate
the SPOHMP and address the bayesian inference tasks just
mentioned (markov-blanketed), through embodied, physics-
faithful, photo-realistic, probabilistic, partial and ontology-
grounded simulations. This formalization is summarized by
the equations (1) below:































XXX∗
t ∼∼∼ PPP(((XXXt |||UUU0:t−1,,,ZZZ0:t ,,,CCC0:t))) , actual belief

XXX∗
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,, [[[CCCt+1]]]))) , state anticipation

XXX∗
t+1,,,UUU

∗
t ∼∼∼ PPP(((XXXt+1,,,UUUt |||UUUt+1,,,CCCt:t+1,,,XXXt ,,,XXXt+2))) , state explanation

ZZZ∗
t+1 ∼∼∼ PPP(((ZZZt+1|||XXXt+1))) , observation anticipation

XXX∗
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,,ZZZt+1,,,CCCt+1))) , observation explanation

(1)

• X , is the world’s hidden state (e.g., a digital twin)
• Z, is the object/world observation (e.g., rgbd images)
• U , is the motion control (e.g., joint values, forces)
• C, is the process context (e.g., object + task knowledge)

Following are the five main operators of the modified rao-
blackwellized particle filter (mRBFP):

• Belief initialization, X
(i)
0 ∼ P(X0|C0)

amortized initialization, X
(i)
0 ∼ P(X0|C0,Z0)

• Belief prediction, X̃
(i)
t+1 ∼ P(X̃t+1|Xt ,Ut)

• Belief augmentation, X
(i)
t+1 ∼ P(Xt+1|X̃t+1,Ct+1)

amortized augmentation, X
(i)
t+1 ∼ P(Xt+1|X̃t+1,Ct+1,Zt+1)

• Belief weighting, W
(i)

t+1 ≈ P(Zt+1|Xt+1)

• Belief filtering, X
(i)
t+1 ∼

W
(i)
t+1

∑W

Note that i, t, [.] and ∼ respectively denote the particle index,
the time index, optional priors and the argmax probabilistic
sampling. Though the variable U is not sampled by the above
operators of a mRBPF, we show how the third equation in (1)
can be solved using the general principles of these operators.
Finally, the architecture on Figure 3 essentially computes
these operators to solve the inference tasks in (1).

B. Ontology-Grounded Physico-Realistic Belief State (Xt)

An Imagination-Capable Belief State (ICBS) goes beyond
usual semantic scene graphs (objects’ description and rela-
tions among objects) and incorporates the scene geometry
(e.g., articulated 3D models), scene physics (e.g., gravity,
friction, mass, forces, viscosity, waves), scene agents (e.g.,
operating robots’ motorics and sensorics), scene ontology
(i.e., semantics). The ontology is a formal description of
fundamental and common truths about task-, agent-, object
and state-related concepts, their properties and relationships
among them in the scene. Depending on the particular scene
under study, the ontology can be enriched with typical
knowledge. It is also worth noting that state-related concepts
that are unusual in most ontology definitions model in Naiv-
Phys4RP a higher-level semantics of the effects of physics
(e.g., through action) on the world. For a possibly lossless
representation and reliable simulation of the belief, the
latter is directly represented in a photo-realistic and physics-
faithful game engine, grounded in a rich scene ontology, and
interfaces are provided to assert, modify, simulate and query
it.

Fig. 4: Belief (left), real world (right), world ontology (top).

C. Forward Simulation - Rendering (FsR)

1) Anticipation: This FsR module, as reported in Figure
3’s caption, is mainly responsible for anticipating the ob-

servations Z
(pi)
t+1 and the states X

(pi)
t+1 as consequences of the

causes X
( f i)
t and U

( f i)
t . Note that the superscripts pi and

f i respectively denote the prediction p and the filtering f

of particle i. Given our realistic mental simulations, these
inference tasks are performed straight-forward as shown by
the resolution equations (2) below:
{

XXX
(pi)
t+1 ≈≈≈ SSSiiimmmuuulllaaatttiiiooonnnλs

(((XXX ( f i)
t ,,,UUU

( f i)
t ))) , state

ZZZ
(pi)
t+1 ≈≈≈ RRReeennndddeeerrriiinnngggλr

(((XXX (pi)
t+1))) , observation

(2)
The accuracy of these operations in (2) lies in the param-

eters λs and λr and we achieve it in two steps: targeting of
realisticness (section III-C.2) and integration of uncertainty
about physics (section III-C.3). For achieving a reasonable
time complexity for the set of particles during inference, we
rely as described below, on many cues such as parallelism,
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neural accelerators, Rao-Blackwellization and Partiality (sec-
tion III-C.4).

2) Embodied Realistic Simulation: In the project RobCog
(Robot Cognition: robcog.org) , as illustrated by Figure
4 and 5, we demonstrated how a photo-realistic and physics-
faithful virtualization of everyday manipulation scenes (e.g.,
kitchens, medical labs) in the game engine Unreal Engine
(UE) can be achieved, grounded in a large scene ontology
(KnowRob-SOMA: knowrob.org) and used to perform
human demonstrations of manipulation activities through
a realistic human avatar so that rich datasets (NEEMs:
Narrative-Enabled Episodic Memories) are automatically
collected for machine learning purposes. The project DAO
(Deep Action Observer)2 extends RobCog by observing
humans in activity and projecting their actions and motions
onto programmable human avatars in the virtual world (see
Figure 5). The project URoboSim (Unreal Robot Simula-
tor: embodied-ai.org/papers/URoboSim.pdf), as
illustrated by Figure 1 and 5, extends RobCog by developing
virtual robot agents with sensing capabilities that can mirror
what a real robot is doing or demonstrate what the real robot
will be doing.

Fig. 5: RobCog (bottom-left), DAO (top-left), URoboSIM
(real world in right and belief in left).

3) Uncertain Physics: Despite our ambition to target a re-
alistic robot belief in appearance and physics, a perfect simu-
lation remains challenging due to uncertainty about physical
parameters like friction, mass, or object position in the world.
In the belief Xt , uncertainty is partially considered in mRBPF
as many belief particles are simulated, weighted, and then
sampled based on their weights. However, this could require
many belief particles to reach the right physical parameters,
especially for continuous physical quantities. Collision and
forces are fundamental in estimating the physical dynamics
of objects in simulations. Therefore, to reduce the number of
particles needed, we propose embedding uncertainty directly
into object geometry, precisely, the underlying acceleration
data structure. Within the scope of this paper, we applied
the idea on top of Inner Sphere Tree (IST) [9]; nevertheless,
it applies to other algorithms as well. As an example (see
Figure 6), imagine the robot in Figure 5 trying to throw a
blue milk bottle in the dustbin. In this case, the input is no
more a single mass value of the object before its free-fall

2dropbox.com/s/60fweieljn9pbky/deep-action- observer.pdf?dl=0

but rather a probabilistic distribution of its mass, friction, or
object position. Likewise, the output will be a probabilistic
distribution of its location when it finishes the fall. This
approach considerably reduces the number of belief particles
representing such distribution.

Fig. 6: (left) Elementary forces during a single simulation
step between thrown bottle (blue) and dustbin (red), and
(right) probabilistic distribution of bottle’s location after
simulation.

4) Temporal Efficiency: In this section, the cues we rely
on to accelerate FsR on the set of belief particles are
presented. (i) Rao-blackwellisation: Uncertain physical simu-
lation is regarded as an emulation of the analytical estimation
of probabilistic distributions of some continuous variables
in Xt , reducing the number of belief particles needed for
emulating the SPOHMP. (ii) Parallel FsR : We demonstrated
in a Master thesis how, thank to cloud computing, FsR could
be parallelized over the set of belief particles as shown
by Figure 7. (iii) Partial simulation: SPOHMP is intrin-

Fig. 7: Accelerating FsR through parallelism.

sically partially-observable and this is taken into account
during the emulation as Xt only get sampled incrementally
through the augmentation operator of mRBPF. (iv) Self-
trained neural accelerators: In [5], we demonstrated how
a perception system can efficiently train on auto-generated
data (e.g., NEEMs) from embodied and situated simulation
to infer advanced semantic graphs of the scene. Instead of
proceeding through procedural operator of the game engine,
neural operators (λs and λr) trained from NEEMs could be
integrated in game engines or operate beside them, as shown
by the violet arrows on Figure 3. (v) Prediction as straight-
forward simulation: Finally, this is another major advantage
of our approach over traditional symbolic and qualitative
approaches which do not only require a huge gymnastics
to sample from multidimensional probabilistic distributions,
but also sample states that are not physically plausible within
a certain context.
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D. FsR-based Inverse Simulation (IS)

1) Explanation: This module is mainly responsible for
processing explanatory questions such as presented in (1), in
a constructive manner based on FsR, that makes it white and
therefore interpretable and explainable, since FsR is eihter.

Intuitively, the goal is to generate states X
( f i)
t+1 that explain

observations Zt+1 and state-action couples (X ( f i)
t ,U

( f i)
t ) that

explain desired states Xt+1 and for achieving this, the remain-
ing four main operators of mRBPF have to be computed.

2) (Amortized) Belief Initialization: It is intractable to
merely sample these particles from the initial space of states.
As humans rely on intuitive physics as a domain of common-
sense to understand the physics that the world surrounding
them undergoes, they do likely leverage commonsense about
their operating scenes also referred to as context to formulate
high-quality expectations about the scene state as far as the
nature of objects and their natural (e.g., spatial) configura-
tions are concerned in order to achieve estimation of the
world state from limited sensory information. We model such
a cognitive function in three core steps.
(i) Context formalization: As you can see from the archi-
tectural figures 3 and 1, the context that conceptually char-
acterizes the scenes the robot operates in is either vaguely
provided to the system under any communication modality
such as text, audio, or even formally provided and directly
stored within a shared memory. In the former case, The
goal of the formalization step will then be to circumscribe a
sufficiently rich field of concepts and relations among those
concepts that underlie the target scene. Let assume that the
most common input modality for context is textual, then our
framework PRAC3 (Probabilistic Action Cores) can be used
to formalize such a vague specification, such as illustrated
by Figure 8.

Fig. 8: Context formalization.

(ii) Context-specific imagination: Once the context has been
formalized, possible states of the world can be imagined.

Fig. 9: Context-specific imagination of world state.

3http://www.actioncores.org/

As shown by Figure 9, we demonstrated in [5] how situ-
ated and embodied datasets for perception systems could be
generated from context-specific imagination. For preparing
the breakfast, there is a need for cereal which is in the cereal
box, a bowl and a spoon which can be and is usually inside
the bowl.
(iii) Amortization: Despite the considerable reduction of the
world state space through context-specific imagination, still
there remains a bit of vagueness for instance in terms of
number of objects and concrete spatial configurations. In
order to amortize this combinatorial explosion, we employ
a greedy direct (unconscious) perception approach of the
scene, neurally trained on imagined datasets, to compress
the state space. Then, the optimistic results of the neural
learner are filtered based on the imagination (e.g., if knife
detected then likely spoon because coffee drinking). We
developed, RobotVQA (Robot Visual Question Answering)
[5] for supporting the taskable and cognitive perception
system RoboSherlock4. Notice that this step is realized by the
direct inversion and filtered imagination modules on Figure
3.

3) (Amortized) Belief Augmentation: Notice that the be-
lief initialization is only based on partial observations and
the initialization is therefore only partial. Then, forward
simulating from such a partial initialization is not enough
to achieve convergence of belief particles towards the world
state. For this reason, a belief augmentation is performed

after each prediction X
(pi)
t+1 where identical operations as in

the initialization step are used based on the actual observation
Zt+1 and context Ct+1, and the results are then aggregated
to the prediction for enriching it. At the belief initialization,
there is no aggregation because the prediction is empty.

4) Belief Weighting: The weights of belief particles are

W
(i)

t+1 computed by the straight-forward operation below:

{

DDD
(i)
t+1 ≈≈≈ DDDiiissstttaaannnccceeeλd

(((ZZZ(pi)
t+1,,,ZZZt+1))) , actual

WWW
(i)
t+1 ≈≈≈ DDD

(i)
t+1 +++WWW

(i)
t , cumulative

(3)

Intuitively, D
(i)
t+1 measures how close to the real partial

observation Zt+1 the observation Z
(pi)
t+1 of the realistic ren-

dering of the predicted belief X
(pi)
t+1 is (see Figure 4). For

all the observations up to t +1 (i.e., total observations), the

cumulative distance is expressed by W
(i)

t+1.
5) Belief Filtering: Finally, the belief particle are filtered

through a random sampling with replacement according to

their weights from the set of belief particles: X
(i)
t+1 ∼

W
(i)
t+1

∑W .
This ensures the convergences of the belief towards the real
world state.

6) State Explanation: We highlighted earlier in this sec-
tion that though the native main operators of a mRBPF do
not support the explanation of states described as XXX∗

t+1,,,UUU
∗
t ∼∼∼

PPP(((XXXt+1,,,UUUt |||UUUt+1,,,CCCt:t+1,,,XXXt ,,,XXXt+2))), their general principles
can be employed to address the problem. Literally, given

4http://robosherlock.org/, https://github.com/robosherlock
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the actual belief Xt , we are looking for an action U∗
t within

a context Ct that would transform Xt into a state Xt+1 within
a context Ct+1 so that by applying the action Ut+1 one could
reach the target state Xt+2 (e.g., how should I hold the milk
bottle so that if I release it on the table, it will not fall). Notice
foremost that this problem can be approximately broken
into three problems according to rao-blackwellization namely

(p1) UUU
(k)
t ∼∼∼ PPP(((UUUt |||CCCt))), (p2) XXX

(k)
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,,CCCt+1)))

and (p3) WWW (k) ≈≈≈ PPP(((XXXt+2|||UUUt+1,,,XXXt+1,,,CCCt+1))). While (p2) and
(p3) have already been solved by the FsR and Distance
functions above, (p1) can be solved by sampling Ut according
to the context Ct and the whole problem by filtering the
U∗

t based on how good they turn Xt into the desired Xt+2.
Notice the steps of a mRBPF except that U is the target
instead of X . And since this work is about physical reason-
ing based on mental embodied simulations for perception,
addressing the estimation of U to know about the state, does
not only considerable goes beyond state estimation (e.g.,
action & motion planning required, U as joint states is not
meaningful), but also emphasizes how perception, motorics
and cognitive functions are strongly intertwined. In order
to sample meaningful control commands U , we rely on
CRAM (Cognitive Robot Abstract Machine)5, an established
cognitive architecture, that samples U from a bag of generic
primitive action plans (see Figure 10), then contextualize it
using the world ontology C and the world state X to finally
produce joint states that can be directly realized by the virtual
robots.

Fig. 10: Underspecified primitive action plans.

7) Temporal Efficiency: We leverage the following cues
in order to achieve a reasonable time complexity for IS. (i)
FsR’s efficiency: IS is either a constructive approach based
on FsR. (ii) Amortization: The use of self-trained neural
accelerators for reducing the number of belief particles has
been presented. (iii) Faster filtering: the belief particles are
filtered based on a straight-forward computation of their
importance weights. (iv) Faster convergence: The belief
particles tend to converge quickly to the real world state since
only few imaginary states are physically plausible before and
after simulating.

IV. NAIVPHYS4RP AND THE BIG FIVES FPCIU

In a recent journal article [10], Tenenbaum and his col-
leagues identified five core aspects (FPCIU) of human com-
monsense, hierarchically organized, namely Functionality,
Physics, Intent, Causality, and Utility to consider in order
to hope human-level perception in Artificial Intelligence.
(i) Causality: As the basis for understanding, it is character-
ized by the elicitation of cause-effect relationships for the

5http://www.cram-system.org/

sake of explaining and anticipating phenomena. On the one
hand, NaivPhys4RP inherently relies on physical simulation
which itself relies on the integration of physical causality
(i.e., laws of physics). Beyond physical causality, the context
C encodes other forms of causality such as the functional
causality (e.g., Milk preparation causes usage of certain
products).
(ii) Physics: NaivPhys4RP obviously achieve commonsense
physics through its ability to track the physical causality.
(iii) Functionality: Most objects in human-centered environ-
ments are functional and these functions are very decisive
in experiencing (e.g., categorizing) the world around us
though not directly observable from sensory information.
NaivPhys4RP achieves this through functional causality.
(iv) Intent: in NaivPhys4RP, the agents’s actions are modeled
by the layer U even if in the current formalization, only
the actions of the operating agent are explicitly represented.
DAO can help in tracking and integrating other agents’ ac-
tions. Moreover, the layer C (see Figure 8) partially captures
the agents’ intentions however can be made more explicit
with an intent layer on top of U .
(v) Utility: humans act rationally by making choices that
maximize their utility function (e.g., survival, travel cost,
operation duration, success). NEEMs collected from Naiv-
Phys4RP can be used for the learning of the agent’s pref-
erences such as scene objects, their spatial dispositions, the
agent poses for grasping and perceiving different objects.

V. EXPERIMENTATION

As a proof of concept, we demonstrate NaivPhys4RP
in the following few challenging scenarios. We provide
more information about the experiments in the demo video
attached to this paper.
(i) 6D-Pose of In-hand Objects: Robots are usually unaware
of the pose of objects they hold, which is critical for
meaningful manipulation.

Fig. 11: NaivPhys4RP estimates in-hand poses.

(ii) 6D-Pose of Transparent & Smooth Objects: Certain
objects exhibit a poor depth from optical depth cameras due
to absorption, retransmission or specular rather than scattered
reflection of emitted light rays. Figure 12 illustrates how
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NaivPhys4RP overcome the issue and estimate the pose of
such objects.

Fig. 12: NaivPhys4RP estimates poses from poor depth.

(iii) Object’s Semantic Stability: How to place the milk
bottle so that it does not fall?

Fig. 13: NaivPhys4RP explains future desired state of world.

(iv) Generalizability: TraceBot:
Finally, we demonstrated how the approach is generaliz-

able and can be applied to more complex, especially mission-
critical applications such as TraceBot, a project that robotizes
the process of medical sterility testing. Figure 14 shows how
NaivPhys4RP can localize subtle tool parts and mirror the
robot failures (www.tracebot.eu).

VI. CONCLUSIONS

We proposed in this paper a practical framework Naiv-
Phys4RP with a proof of concept for scaling robot perception

towards complex environments such as dynamic and human-
centered scenes (i.e., motion, limited sensory information,
safety). To emulate human perception, NaivPhys4RP es-

Fig. 14: NaivPhys4RP in TraceBot.

sentially relies on realistic, embodied, physics-faithful and
partial simulations grounded in the world ontology. In do-
ing this, NaivPhys4RP substantially leverages commonsense
knowledge about the world and foremost intuitive physics.
In the future, we aim at a stable implementation of Naiv-
Phys4RP with a focus on integrating the core components,
but also on a systematic and quantitative evaluation and
finally on an explicit integration of the FPCIU such as
described in section IV.
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