Realistic Haptic Feedback for Material Removal in Medical Simulations

Maximilian Kaluschke1 Rene Weller1 Niels Hammer3,4,5
Luigi Pelliccia2 Mario Lorenz2,3 Gabriel Zachmann1

Contact: mxkl@uni-bremen.de

1 University of Bremen, Institute for Computer Graphics and Virtual Reality
2 Chemnitz University of Technology, Professorship Machine Tool Design and Forming Technology
3 University Hospital Leipzig, Department of Orthopedics
4 Fraunhofer Institute for Machine Tools and Forming Technology IWU
5 Medical University of Graz, Department of Macroscopic and Clinical Anatomy
Motivation

- Aging society
 - Joint-related disease
- Orthopedic Surgery
 - Knee replacement
 - Hip replacement
Motivation

- Experience-based learning
 - Training only possible by practice
- Traditional methods
 - Plastic dummies
 - Cadaver donors
- VR simulation
 - Low cost
 - High realism
 - Haptic feedback
Challenge

- Requirements
 - High simulation frequency (1 kHz)
 - Volumetric representation
 - Stable & continuous 6-DOF sim.
- Traditional solution
 - Penalty-based methods
 - Often implemented with VPS
 - Force instability & discontinuity

[McNeely et al., 1999]
Our Method – Object Representation

Motivation | Challenge | Our Method | Results | Conclusion
Our Method – Simulation Algorithm

• Iterative multi-pass algorithm
 • Three algorithm passes

• Two tool instances
 1. Free moving
 2. God-object

• Coulomb friction model

Algorithm passes

1. Surface Contact
 • New god-obj. position
 • Force

2. Surface Estimation
 • Contact point
 • Contact normal
 • Contact density
 • Contact friction coeff.

3. Material Cutting
 • Modify spheres
 • New god-obj. position
Results

• Game engine plugin
 • Unity
 • Unreal
• Application: Hip Surgery
 • Acetabular Reaming
 • Industrial Robot (139 N)
• Head-Mounted Display
Results

• Acetabulum material parameters
 • Optimization against experimental data
 • Density distribution affects simulation
 • Mean error 0.9 N (0.4%)

• Performance
 • ≤1 ms for ~300,000 spheres
Conclusion

• New haptic simulation method
 • Multiple use-cases
 • Heterogeneous density
 • Material removal
 • Coulomb friction
 • Less force discontinuities
 • Parallelized on GPU (1 kHz sim. rate)

• Optimization of material parameters (0.4% error)
Thank You

Please read our paper for details!
Contact: mxkl@uni-bremen.de