

Realistic Haptic Feedback for Material Removal in Medical Simulations

Maximilian Kaluschke¹ Rene Weller¹ Niels Hammer^{3,4,5} Luigi Pelliccia² Mario Lorenz^{2,3} Gabriel Zachmann¹

Contact: mxkl@uni-bremen.de

¹University of Bremen, Institute for Computer Graphics and Virtual Reality

²Chemnitz University of Technology, Professorship Machine Tool Design and Forming Technology

³University Hospital Leipzig, Department of Orthopedics

⁴Fraunhofer Institute for Machine Tools and Forming Technology IWU

⁵Medical University of Graz, Department of Macroscopic and Clinical Anatomy

Motivation

- Aging society
 - Joint-related disease
- Orthopedic Surgery
 - Knee replacement
 - Hip replacement

Motivation

- Experience-based learning
 - Training only possible by practice
- Traditional methods
 - Plastic dummies
 - Cadaver donors
- VR simulation
 - Low cost
 - High realism
 - Haptic feedback

Challenge

- Requirements
 - High simulation frequency (1 kHz)
 - Volumetric representation
 - Stable & continuous 6-DOF sim.
- Traditional solution
 - Penalty-based methods
 - Often implemented with VPS
 - Force instability & discontinuity

[McNeely et al., 1999]

Motivation Challenge Our Method Results Conclusion

Our Method – Object Representation

Challenge Our Method Results Conclusion Motivation

Our Method – Simulation Algorithm

- Iterative multi-pass algorithm
 - Three algorithm passes
- Two tool instances
 - 1. Free moving
 - 2. God-object
- Coulomb friction model

Algorithm passes

- **Surface Contact**
 - New god-obj. position
 - Force

- 2. Surface Estimation
 - Contact point
 - Contact normal
 - Contact density
 - Contact friction coeff.
- 3. Material Cutting
 - Modify spheres
 - New god-obj. position

Motivation Challenge Our Method Results Conclusion

Results

- Game engine plugin
 - Unity
 - Unreal
- Application: Hip Surgery
 - Acetabular Reaming
 - Industrial Robot (139 N)
 - Head-Mounted Display

Results

- Acetabulum material parameters
 - Optimization against experimental data
 - Density distribution affects simulation
 - Mean error 0.9 N (0.4%)
- Performance
 - ≤ 1 ms for ~ 300.000 spheres

Conclusion

- New haptic simulation method
 - Multiple use-cases
 - Heterogeneous density
 - Material removal
 - Coulomb friction
 - Less force discontinuities
 - Parallelized on GPU (1 kHz sim. rate)
- Optimization of material parameters (0.4% error)

Motivation Challenge Our Method Results Conclusion

Thank You

Please read our paper for details!

Contact: mxkl@uni-bremen.de

Motivation Challenge Our Method Results Conclusion