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Abstract

We present a novel selection technique for VR called LenSelect. The main idea is to
decrease the Index of Difficulty (ID) according to Fitts’ Law by dynamically increasing the
size of the potentially selectable objects. This facilitates the selection process especially in
cases of small, distant or partly occluded objects, but also for moving targets. In order to
evaluate our method, we have defined a set of test scenarios that covers a broad range of
use cases, in contrast to often used simpler scenes. Our test scenarios include practically
relevant scenarios with realistic objects but also synthetic scenes, all of which are available
for download. We have evaluated our method in a user study and compared the results to
two state-of-the-art selection techniques and the standard ray-based selection. Our
results show that LenSelect performs similar to the fastest method, which is ray-based
selection, while significantly reducing the error rate by 44%.
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design, user interface

1 INTRODUCTION

Selection (a.k.a. target acquisition) of virtual objects in 3D is one of the four universal interaction
tasks identified by Bowman et al. (2004). Arguably, a well designed selection technique is one of the
most important design aspects of VR experiences (Mine, 1995). This should take into account
intuitiveness and seamless usage of the technique, the average number of errors and users’ potential
frustration, and potential fatigue, all of which can lead to loss of productivity or user acceptance.

In contrast to 2D environments, selection in 3D is more difficult. From a user interface
perspective, one of the reasons is the larger number of degrees of freedom (DOFs) inherent in
the task. Thus, not only does the user have to control more DOFs, but the mapping between control
space and display space can be more complex in the case of non-isomorphic techniques. In addition,
lack of precision and fatigue can be an issue, in particular in cluttered environments or with moving
targets.

While there are many fundamentally different ways to select objects in virtual environments [see,
for instance, Steed (2006) for a taxonomy and Teather and Stuerzlinger (2013), Bacim et al. (2013) as
examples], we focus our discussion on selection paradigms that utilize some kind of a 6 DOF pointing
device and that use some kind of a single-phase, ray-based paradigm. Reasons are that current
consumer VR hardware includes such devices and that ray-based selection techniques are considered
very intuitive; also, they do not break the feeling of presence. Moreover, there is evidence that ray-
based metaphors yield better user performance than, for instance, image-plane techniques (Bowman
et al., 1999).
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However, one challenge of ray-based selection techniques
in VR is that the effective target width of 3D objects decreases
as the distance from the user increases, similar to the effect of
perspective foreshortening. This is because the target width as
well as its “distance”—which are the essential parameters in
Fitts’ law (MacKenzie, 1992; MacKenzie and Buxton, 1992;
Kopper et al., 2010)—have to be measured in angular space,
since users usually keep the position of the input device in
place. Thus, the index of difficulty does not only depend on
the rotational distance and width in motor space, but also on
the object’s depth in display space. Of course, this is not only
an issue for distant objects, but also for small objects, heavily
cluttered scenes with occluded objects, and for moving
objects.

We present a novel ray-based selection method called
LenSelect with a focus on such difficult scenarios. A
comparison between our technique and standard ray-based
selection can be seen in Figure 1. The main idea of our new
ray-based selection method LenSelect is inspired by focus +
context methods. In order to achieve a seamless and intuitive
integration into the virtual environment, we define a non-linear
transformation of the geometry that looks to the user like a lens
distortion. This could be easily implemented in a shader on the
GPU such that only very small changes in the architecture of the
VR system are required. Using this lens effect, LenSelect
circumvents Fitts’ law by increasing the effective target width
without affecting the user’s spatial presence too much.

In order to evaluate our method, we recognized that there is a
lack of standardized evaluation scenarios that would allow to
compare the wide variety of selection techniques presented so far.
Research has shown that there is no superior selection technique
for all situations. Requirements on the task can vary greatly and
the conditions for a selection technique can change depending on
the layout of the environment, the specific task, and preferences
of the user (Wingrave et al. 2005a; Wingrave et al., 2005b;
Cashion et al., 2012).

Consequently, we have defined a set of interesting scenarios to
investigate ray-based selection methods with a special focus on
realistic, dense, and dynamic environments. This comprises the
definition of nine test scenes, including a realistic scene with a
cluttered distribution of objects in several sizes, but also several
artificial scenes, and sets of dynamically moving objects. We have
created our test scenes in a widely used, open source game engine,
the Unreal Engine, and we will make them available online at
blindedforreview, so that other researchers can use them in order

to compare more selection techniques. Of course, extraction or
re-implementation of the scenes in other VR systems is straight-
forward, too.

Using our test scenes, we performed a quantitative and
qualitative comparison of several state-of-the-art ray-based
selection methods in a user study considering typical
parameters such as task completion time, selection errors, and
Index of Difficulty. In our user study, we included a traditional
raycast implementation (referred to as RaySelection henceforth),
IntenSelect by de Haan et al. (2005), Expand by Cashion et al.
(2012), as well as two different variants of LenSelect. We have
included quantitative measures like completion time and error
rates but also measure the user experience by using an
appropriate questionnaire based on QUESI (Hurtienne and
Naumann, 2010).

The results show that RaySelection and LenSelect are the
fastest and most intuitive methods in most scenarios; however,
LenSelect has significantly less selection errors, similar to Expand,
particularly with challenging scenes. There is only one test scene,
a scene with fast moving objects, where IntenSelect performs best,
but at the cost of significantly worse performance in many others.

2 RELATED WORK

The problem of target acquisition (“selection”) in both immersive
and non-immersive interactive graphical systems has arisen since
the beginning of virtual environments, leading to a huge body of
literature. Bowman et al. (2004) presented a taxonomy and a
treatize of a number of well-known techniques. In addition,
Argelaguet et al. (2008) provide a summary of the classical
ray/cone based techniques and an extension thereof.

The ray is a very intuitive metaphor for 3D selection.
Consequently, many researchers have looked at methods to
improve precision in cluttered environments, in large working
volumes, or for hybrid interfaces. One idea is to increase the width
of the pointer (Zhai et al., 1994), thus increasing the effective
target width (Kabbash and Buxton, 1995). However, more
sophisticated techniques are needed to disambiguate the
selection, so a number of methods have been proposed, e.g.
(Wingrave et al., 2001; Olwal et al., 2003; de Haan et al., 2005;
Steed, 2006). Another approach is to change the control-display
(C/D) ratio, thus changing the effective target width (Andujar and
Argelaguet, 2006; Andujar and Argelaguet, 2007; de Haan et al.,
2006). IntenSelect de Haan et al. (2005) relies on a cone-based

FIGURE 1 | LenSelect in action (middle and right) compared to Ray Selection (left).
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technique with a disambiguation mechanism based on a scoring
function depending on the objects’ positions inside the cone.
Since it is not always obvious to the user exactly how the
disambiguation works, appropriate feedback to the user should
be given during the selection. One common practice is to use bent
rays (de Haan et al., 2005; Olwal and Feiner, 2003; Riege et al.,
2006; Andujar and Argelaguet, 2006; Andujar and Argelaguet,
2007; de Haan et al., 2006).

Another approach is to decompose space, conceptually, into
Voronoi regions, with the objects providing the sites. Thus, the
regions determine the effective targets widths, which has been
proposed with the Bubble Cursor technique (Vanacken et al.,
2007). Lu et al. (2020) presented an improved Bubble Cursor
technique for selection in 3D environments, with a different
definition of the target closest to the ray and different user
feedback (including a disk visualizing the bubble and a bent
ray). This technique proved to be competitive compared to the
older version and seems to be preferred by users (Lu et al., 2020).
Our method is different to the Bubble Cursor in that it
dynamically increases the objects’ actual width; the actual
target in Bubble cursor does not have the shape of the object
but that of a static convex polyhedron (i.e., the Voronoi region).

Other approaches are to decompose the task, either by
dimensions (Pierce et al., 1997; Wyss et al., 2006; Benko and
Feiner, 2007), or by successively reducing the set of feasible
objects as proposed, e.g., with the SQUAD technique (Kopper
et al., 2011). Similarly, Expand (Cashion et al., 2012) improves
upon the iterative SQUAD selection technique. With these
approaches, objects are often taken out of their original scene
context at some point and presented to the user differently (e.g.,
on an extra grid layer), which could potentially break the feeling
of presence.

A few researchers have investigated the efficacy of target
expansion during target acquisition (Sarkar and Brown, 1992;
Zhai et al., 2003; Hornbæk and Hertzum, 2007; Shoemaker and
Gutwin, 2007). The Go-Go technique (Bowman and Hodges,
1997a), and its extension Stretch Go-Go (Bowman and Hodges,
1997a), try to bring objects closer to the user by non-linearly
scaling the radial distance of the user’s virtual hand from the
user’s body, while still maintaining the isomorphic scaling of the
user’s hand in the tangential directions. PRECIOUS works the
other way round, teleporting the user close to the target for target
acquisition, then sending them back to their initial location
(Mendes et al., 2017).

In 2008 Argelaguet and Andujar (2008) presented a similar
idea to ours. However, they mainly concentrated on a similar
approach to what we call “Same-Screen-Size” scaling and they do
not investigate other types of lenses. We will detail the differences
to our approach in Section 3.3. In contrast to our approach, the
authors used a CPU implementation and they had to maintain a
graph data structure during runtime which further increases the
run time. Moreover, they tested their approach with a limited
number of non-standardized test scenes and they did not include
dynamic scenes. This makes the results hard to compare.
Especially, because their experiments were performed in a
Cave instead of HMDs, which are much more common today.
Finally, the authors did not include the measurement of the index

of difficulty for comparison. Actually, the occlusion avoidance
they proposed could result in an increasing index of difficulty.
However, the results were similar to our approach; both methods
have a similar selection time compared to RaySelection but they
both reduce selection errors.

Our approach could be seen as an evolution of that idea. In this
paper we test multiple approaches as to how to scale the object in
the form of four scaling functions.

Other researchers combined different techniques, thus trying
to combine the advantages of each to gain additional
performance. Techniques can be combined “one after the
other” (Grossman and Balakrishnan, 2006), or by using one
main technique while the other is acting as a refinement for
certain conditions (de Araujo e Silva, 2015).

Most selection methods are computed on the CPU using
traditional ray-scene intersection acceleration techniques
known from ray-tracing; on the GPU, standard techniques
involve usually an extra pass over the scene using a (very thin)
frustum defined by the ray. A more recent approach proposes a
number of passes implementing successive filtering on the objects
and triangles by several occlusion queries (Zhao et al., 2009).

In the area of 3DUI, several techniques have been proposed that
are somewhat related to ours. One such technique proposes to
manage occlusions in dense 3D scenes by shifting and moving
objects “out of the way”, where the center of focus is determined by a
3D cursor, hence the name BalloonProbe (Elmqvist and Tudoreanu,
2007; Elmqvist and Tudoreanu, 2006). This technique is different
from ours because it does not scale objects in place and the authors
have not applied it to perform 3D selection tasks.

3 OVERVIEW OF LENSELECT

In this section we present the design, implementation, and
theoretical considerations behind LenSelect in detail. Our
method’s fundamental idea is rooted in the observation of
Fitts’ Law that a bigger target width leads to lower selection
times and fewer selection errors (MacKenzie, 2018).

The basic formulation of Fitts’ Law provides a model for the
average selection time MT :

MT � a + b · ID (1)

Here a, the intercept, and b, the slope, are empirically
determined constants, depending on many factors, for instance
the type of device. Following this formulation, the Index of
Difficulty, ID, can be defined as:

ID � log2(AW + 1) (2)

The ID provides a simple measure of the difficulty of a
selection task (MacKenzie, 2013). It depends on the distance,
A, between the pointer and the object, as well as the target’s width,
W, in the movement direction of the pointer. Fitts describes W
also as themovement tolerance, i.e., the error the user is allowed to
make while still being able to select the object (MacKenzie, 2018).
LenSelect increases this movement tolerance by enlarging the
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object’s effective width in an intuitive way. While the original
formulation was derived for one-dimensional target acquisition
by Fitts, it is commonly used for 2D and 3D target acquisition,
too. In 3D, the target width is usually defined as the angle
subtended by an object seen from the user’s viewpoint
(Kopper et al., 2010).

LenSelect is an extension of the standard ray selection
technique. In ray selection, a ray is emitted from the pointing
device along the pointing direction. The first object that intersects
with the ray is selected when the user triggers the selection button.
Ray selection is a very intuitive technique, but can be quite difficult
in cluttered scenes or with targets at a distance. The main idea of
LenSelect is to modify the effective size of the potential target
objects thus, consequently, reducing the ID according to Fitts’ law.
This is done by including kind of a lens effect that magnifies objects
within a cone, the tip of which is at the pointing device, and the
cone’s axis is given by the pointing ray.

In general, there are two main parameters in LenSelect: the
opening angle of the cone, α, that defines which objects in the
scene are affected by the lens effect and, second, the equation by
which the final scale is derived. In theory the form of the lens
could also be experimented with, however a cone quickly proofed
to be the most efficient.

An actual optical lens would scale the whole scene inside it,
LenSelect on the other hand scales only individual objects
with respect to the distance to the ray. This means we can
further reduce overlap between objects, by selectively scaling
them. In order to make the scaling and the transitions smooth,
we magnify objects the more the closer they are to the center
axis of the cone, i.e., the actual ray. Also, those objects are
more likely to be selected by the user. To do so, we simply
compute the minimum distance, d, between each object’s
surface (its mesh) and the cone’s axis, i.e., we calculate the
point on the object’s surface closest to the axis and then take
that distance.

In the following, we further normalize the distance so that a
point on the ray (i.e., cone axis) has distance zero and a point on
the edge of the lens has distance one:

dn � d
r

(3)

where d is the minimal distance between emitted ray and the
object’s surface and r is the radius of the cone at that distance (see
Figure 2). This facilitates the definition and presentation of actual
scaling functions. In the following, we propose a range of scaling
functions, but many more could be defined. For our user study, we
selected those two methods performing best in a pre-study.
Additionally two hyper-parameters were also evaluated: visibility
of the lens and opening angle. According to our pre-study the lens
should stay visible (we chose an opacity of 0.1 for increased
visibility of the objects) and the opening angle of the lens is 15°.

3.1 Linear Scaling
The simplest method is to scale the object’s size linearly with
respect to the distance to the cone’s border dn:

s � 1 + (1 − dn) · (sm − 1) (4)

The final object scaling factor, s, depends linearly on a user-
defined maximum scaling factor sm > 1. Where 1 − dn describes
how much of sm is applied to the final scale.

3.2 Root Scaling
A disadvantage of the simple linear scaling of the whole object is
that it may lead to interpenetrations and occlusions of the scaled
objects. In order to reduce this unwanted effect, we propose a
method to reduce the scaling factor of objects that are closer to the
border of the selection cone. This can be easily achieved by
choosing a non-linear scaling factor with respect to the distance.
Actually, we decided to choose the root-function that worked well
in our pre-tests.

The idea of Root Scaling is to emphasize the scaling of objects
that are closer to the center of the lens. Again, like with Linear
Scaling, we increase the original object’s scale up to a maximum
scaling factor sm.

s � 1 + (1 − ��
dn

4
√ ) · (sm − 1) (5)

We tested several root functions and chose the fourth root, as
the scaling falls rapidly for the first 10% of the distance, but still
keeps objects at a reasonable size if they fall outside the initial 10%
interval.

3.3 Same-Screen-Size Scaling
Perspective projection has the property that objects appear
smaller with an increasing distance to the viewer. If we do not
consider this property in LenSelect, it becomes harder to select
objects with an increasing distance. When using orthographic
projection, on the other hand, objects maintain their size
independent of the distance, hence, we could simply use this
kind of projection as a lens type. However, perspective projection
typically looks better, especially when using stereoscopic displays,
because it resembles our normal viewing perception.
Consequently, we define a lens type that combines the
distance independence of the orthographic projection with
properties of perspective projection. Obviously, like the
previous lens types, it affects only objects inside the selection
cone of LenSelect.

FIGURE 2 | LenSelect scales objects depending on their distance d to
the selection ray. Distance d is normalized by the cone’s radius r at distance u
from the pointing device.

Frontiers in Virtual Reality | www.frontiersin.org June 2021 | Volume 2 | Article 6846774

Weller et al. LenSelect

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


Themain idea is to define a scaling factor in world-space of the
affected objects in the cone with respect to the distance. For this
purpose the focus depth n is introduced. Objects that have a
distance of n to the camera keep their original scale. From there
we need to consider the ratio between the extents of the view
frustum at the focus depth fn and the extent of the frustum at the
distance of the object to the camera fu.

sp � fu
fn

(6)

This way objects that are further away than n will be scaled up,
while objects that are closer than n will be scaled down. The latter
might be desirable for reducing overlap in dense scenes that are
close to the user. The actual extents fu, fn can be trivially calculated
through simple trigonometry. See also Figure 3 for a visual
overview of the procedure.

In addition, we introduce a nonlinear factor such that smaller
objects benefit more from the Same-Screen-Size Scaling, i.e., they
tend to appear bigger on the screen than objects that are already
large. To do so, we introduce the additional factor 1 + 1

e, where e is
the extent of the object in world space. As a simple approximation,
we use the average of the three extents of its bounding box (OBB).

Overall the final scale for this lens type is:

ss � fu
fn
(1 + 1

e
) (7)

In our pre-study, however, Same-Screen-Size Scaling
performed worse than simple Root Scaling. The reason is that
objects disruptively “popped” to a different size as soon as they
enter LenSelect’s cone. Also, once inside, they never change size
irrespective of the pointing direction. This turned out to be a

distraction for users in our pre-study. Hence, we did not include it
directly in our user study reported below.

Additionally this equation shows some similarity to the scaling
factor proposed by Argelaguet and Andujar (2008), but there are
differences. Firstly, their equation will never reduce the objects
size, while ours does. This has advantages in cluttered
environments because the reduced size of objects that are
away from the selection ray will also reduce overlap and
therefor facilitate object selection. Secondly, in case of a long,
narrow object, this object would need to grow into incredible size
and therefore create high visual disruption and overlap to satisfy
the condition presented by Argelaguet and Andujar (2008). With
our equation the scaling factor is only dependent on the distance
of the object in relation to a target distance; objects with the same
distance to the user will receive the same scaling (if we ignore the
additional scaling applied due to target size).

3.4 Combined Scaling
While Same-Screen-Size Scaling assures that far-away objects are
not “dominated” by near objects, it introduces a discontinuity in
that objects. However, this lens type proofed to be especially
useful for the selection of far away objects. In order to maintain
this property, we simply combined it with Root Scaling.

This leads to a total scaling factor of:

s � 1 + (1 − ��
dn

4
√ )(ss − 1) (8)

the equation is analogous to 5. Only the constant maximum
factor sm is replaced by the distance dependent scaling factor ss,
retrieved from Same-Screen-Size Scaling. Thus, the minimum
scale of an object is 1 close to the border of the cone, while the
maximum scale is ss in the center of the cone.

FIGURE 3 | Same-Screen-Size Scaling adjusts the object’s size in world spaceWo so that the projection on the screen has the same width Ws regardless of the
distance u to the camera. It uses the ratio between the frustums width at distance u and the frustums width at distance n to decide the objects scale. Where n is a user
defined value, that describes the distance at which the object keeps its original scale. The left picture shows an enlarged object in comparison to the original scale the
object would have at distance n in the right picture.
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4 METHODOLOGY

In the section, we describe our evaluationmethodology, including
the test scenes we have chosen, our method to calculate the ID,
and the questionnaire.

4.1 Evaluation of Selection Techniques
Research in selection techniques in the field of human-computer
interaction has a long history and there already have been some
efforts to standardize test scenarios. For instance, Bowman et al.
(1999) propose testbeds to evaluate selection techniques based on
taxonomies, performance metrics, and outside factors. Poupyrev
et al. (1997) identify a list of different factors, called task
parameters, that should be considered in the measurement of
a selection technique’s performance. These parameters can
depend on the user, the devices, the interaction technique, the
application, and even the task.

However, to our knowledge, there are no standard test
scenarios publicly available for 6-DOF selection methods in
virtual environments, especially when complex, dense, or
realistic scenes should be considered. Often, only simple
objects like cubes and spheres are used for the selection.
Sometimes, more complex objects are used to simulate an
actual use case or a more natural environment, like fruits in a
fruit stand.

We propose a new evaluation test bed, which we will make
publicly available to the research community. It consists of a set of
static and dynamic test scenes with well defined parameters, some
resembling rather realistic application scenarios, some rather
artificial testing specific characteristics. Our test scenes are best
evaluated with our accompanying questionnaire that is based on
QUESI (Hurtienne and Naumann, 2010). The questionnaire used
(reduced to one selection technique) can be found in the
Supplementary Appendix??. Finally, we propose methods to
calculate width and distance of targets more accurately,
especially in dynamic and cluttered scenes, so that the ID in
Fitts’ law can be computed more accurately.

4.2 Test Scenes
The most challenging selection tasks, especially in real world
applications, are cluttered environments. Hence, we focused with
high priority on these kinds of scenes. Other challenges that are
often not mentioned in test cases are dynamically moving objects.
We have designed our test scenes by considering the most
important factors proposed by Poupyrev et al. (1997). The test
scenarios used by Cashion et al. (2012) served as a basis for our
design, but were reworked and adjusted to better conform to the
task parameters in set forth Poupyrev et al. (1997). For example,
moving cubes were changed to spheres, as the ID remains more
consistent that way. We also felt the fruit textures could be
distracting, or skew the results in some way, and so chose to
eliminate such potentially biasing factors. Each scene was
designed to test a specific condition, we felt a high variance in
object shapes might have obfuscated valid results. That’s why
most scenes contain the same objects, with the exception of the
Miscellaneous scene, which was designed to test performance with
objects of differing shapes and sizes specifically.

In order to keep the number of selection tasks manageable for
the participants of our user study, we limited the number of test
scenes to nine. Most of our scenes were designed to test different
aspects of the performance of selection techniques, such as, for
instance, different amounts of occlusion or movement in the
scene. The “Miscellaneous” test scene bears concrete resemblance
to a real world scenario, in an effort to include evaluation “in the
wild”. Overall, we think our test scenes cover a wide variety of
interesting and practically relevant cases.

We hope to provide a set of scenarios that is suitable for future
evaluations of selection techniques to come, since comparing
different selection techniques can be difficult with the currently
wildly differing design of selection tasks. The following lists our
test scenes, including our rationale for their design; images of all
scenarios can be found in Figure 4.

• Propane Tanks close: this scenario evaluates the influence of
the user’s distance as the main influence factor in a realistic
scenario. It consists of two rows of propane tanks with only
little occlusion; three tanks are in the front row and two in
the back. We test this scenario for two different distances.

• Propane Tanks far: is exactly like Propane Tanks close,
except at a far distance.

• Miscellaneous: this evaluates the influence of the object’s
size on the selection technique. It consists of different
realistic objects of varying sizes and shapes that are
slightly cluttered.

• Stacked Cubes: this scenario is closely related to traditional
2D selection tasks and thus, evaluates the performance for
such easy, almost two-dimensional tasks. A number of
cubes are stacked in three rows in front of participants.

• Densely Placed Cans: this scenario evaluates the influence of
heavy occlusion on selection performance; three rows of
cans are closely placed behind each other.

• Fast Moving Single Sphere: in order to evaluate the
performance on fast moving objects with unpredictable
trajectories, we include this scene where a single sphere
moves around randomly in the scene.

• Erratically Moving Spheres: this scenario covers the test
cases with unpredictable moving objects with slight
occlusion: ten spheres move around in an erratic fashion.
They move slowly, but also randomly change direction.

• Floating Spheres: this scenario also tests 2D selection tasks,
i.e., it does not have occlusions, but in contrast to Stacked
Cubes, it focuses on moving objects with a predictable
trajectory. Twelve spheres are placed at a certain distance
from the user. They slowly rotate around a center, similar to
a wheel.

• Rotating Cans: the ultimate challenge are highly occluded
small objects in motion. Hence, like above we placed small
cans on a table in close proximity but now, additionally on a
rotating table.

In order to establish a well-defined timing for the task
completion and a well-defined (angular) distance to the object
to be selected, the user has to touch a sphere that sits at the top
center of the whole scene before each selection trial. As soon as
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the user touches this start sphere, the timing for the selection
task begins and the target object is highlighted in the scene.
This ensures that the recorded time does not include time
needed for searching the target object. It also ensures that
every participant has a similar distance to cover to reach the
target object. Of course, all users were positioned at the same
place in the virtual environment and were not allowed to walk
closer.

4.3 Index of Difficulty Calculation
Computing the difficulty of a selection task can be generally done
by using Fitts’ law, as mentioned above. However, computing the
distance and, especially, the width of objects can be challenging
for complex object shapes, or for occluded, or even moving
objects. In the following, we propose a method how to
evaluate the ID in such challenging scenarios.

In general, the actual distance and width, needed for the ID,
can be calculated by taking a screenshot from the camera’s view
and counting the pixels from the pointer’s original position to its
final position during selection (see Figure 5). We have
implemented our test scenes in the Unreal Engine. The
Unreal Engine’s custom stencil buffer was used to identify
the affiliation of each pixel, which allows to identify objects by
their respective identifier stored in the stencil buffer’s pixel. In
addition, a custom color can be applied when the buffer is
retrieved. In our case, occluding objects are colored cyan, the
target object is colored yellow, everything else is colored black.
Consequently, given the intersection points between the
selection ray and the image plane, we can just trace the
path between those points and count the pixels; these
numbers can be converted into (angular) width and
distance and plugged into Eq 2 in order to determine the
ID of each trial. One should keep in mind that only selectable
parts of an object are counted as it’s width. Holes in objects are
not included, refer to Figure 5, where red pixels signify the
width of the object for a given selection.

For Expand and IntenSelect, we calculated the actual ID’s
slightly different, this is because the standard approach does not
work in these cases.

For Expand the object’s width remains the same, while the
distance consists of two parts. The first is the distance from the
starting position of the pointer to the position where the user
decides which objects are of interest to them (which objects will
be selectable in the grid). The second part covers the movement
from the first rough selection to the selection of the target object
in the grid. Basically we consider the actual path of the pointer
before it can select the target object.

For IntenSelect the user does not need to directly point at the
object, therefore we have to compute the target region. The target
region describes all pixels which would lead to selection of the
target object. This is done by calculating the cone’s radius at the
object’s depth in world-space and projecting the resulting circle
onto a canvas, so that its center is aligned with the projected
center of the object. Then the score for each pixel inside this circle
is computed and the pixel colored appropriately. After that the ID
can be calculated as usual with the techniques described above.

FIGURE 4 | Our nine different test scenarios we propose and that were used in this study (the top left, Propane tanks, stands for two scenes Propane tanks close
and Propane tanks far. The top row contains the static scenes, while the bottom row contains that dynamic scenes. Both the static and the dynamic subsets of scenes
contain more as well as less cluttered environments.

FIGURE 5 | Screenshot visualizing our ID calculation using the stencil
buffer. The blue part of the line shows the distance to the target, while the red
part(s) show the width of the target. The target object is represented by yellow
pixels.
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For moving objects, the Index of Difficulty must be defined
somewhat differently to account for the target’s velocity relative
to the user. Even though research into this specific problem is
rather old (Jagacinski et al., 1980), resources are scarce. Using a
first order control system, Hoffmann (1990) derived an equation
close to Fitts’ original ID:

ID � log2(A + V
K

W
2 − V

K

) (9)

A describes the distance to the target, while W describes the
targets width, same as in Equation 1, where V is the velocity of the
target, where an approaching target is defined to have negative
velocity. K serves to determine the critical speed Vcrit at which
deliberate target acquisition is no longer possible:

Vcrit � W · K
2

(10)

The value of K is difficult to measure; Hoffman proposed two
methods: first, by regression analysis and, second, by observing
the critical speed at the “threshold” to loss of target acquisition
(50% of unsuccessful trials). Hajri et al. (2011) derived an
equation similar to that of Hoffman by modeling target
acquisition time.

We chose Hoffman’s equation for calculating ID’s of moving
objects. We (more or less arbitrarily) chose K � 100 after some
experimentation to derive IDs that were in the same order of
magnitude of those of stationary objects.

For the stationary ID calculation, we rely on Eq 2 that is often
used for 2D target acquisition. Several modifications, such as
accounting for gravity (Murata and Iwase, 2001; Grossman and
Balakrishnan, 2004), where proposed to adapt the calculations to
specific scenarios in 3D. Shoemaker et al. (2012) described further
limitations with regards to different levels of control-display gain.
They propose a two-part formulation for selection techniques with
non-isomorphic mappings. All selection techniques used in our
study use an isomorphic mapping, hence we do not consider it.

4.4 Questionnaire
Beyond pure quantitative measures like task completion time,
error rate, etc, the user experience is essential for judging
interaction methods. This is usually measured by a
questionnaire. We propose an extension of the QUESI
questionnaire to adapt it to the special requirements of
selection tasks in 3D environments. Usually, the QUESI
questionnaire is used to measure the subjective criteria of
intuitive use and user satisfaction (Naumann and Hurtienne,
2010). It connects intuitive use with effective interaction by the
user, hence it offers a good basis on the user’s acceptance of a
selection technique. QUESI consists of 14 questions, each
corresponds to one of the following five scales: cognitive load,
perceived achievement of objectives, perceived learning effort,
familiarity/pre-knowledge, and perceived error rate. The mean
value of the corresponding questions, measured typically on a
five-point Likert scale, constitutes the score for each scale. The
mean of all the scales defines a single total QUESI number, which
can be used for overall comparison.

According to Poupyrev et al. (1997) it is essential to maintain
the sense of presence during selection tasks in 3D VR
environments. Hence, it is useful to include this important
measure in the user evaluation. QUESI is missing this scale,
but the INTUI questionnaire includes it under the term “Magic
Experience” (Ullrich and Diefenbach, 2010). According to
INTUI, four items correspond to this scale but one of the
questions is very direct and includes the term “Magic
Experience”. Definition and interpretation of this term is
vague, therefore we removed this question and incorporated
the other three question into our extended QUESI
questionnaire. Consequently, our modified QUESI is based on
six scales instead of five. Hence, the direct total QUESI number
cannot be directly compared to results in prior work, but we hope
that in the future more researchers will rely on our testing method
and the corresponding questionnaire.

Additionally, we added two items to measure the complexity
and the fun factor of an interaction method by directly asking:
“How complex did you find the selection technique?” and “Using
the selection technique is fun”. All questions rely on a five-point
Likert scale.

In our user study described in the next section, we also asked
the participants at the end to rank all selection techniques by their
preferences, and we included a short pre-questionnaire asking for
demographic data like prior experience with VR and video games,
especially first-person shooters. Also, we added an open post
question asking if a participant had problems with the study itself
or the system used to conduct the study.

5 USER STUDY

In this section, we will describe our study design as well as the
details of the three selection techniques we compare our work
against. In total, we compare five different selection techniques
(two of our own) using the nine test scenes described in
Section 4.2.

5.1 Study Procedure
The study uses a within-subjects design where all 20 participants
evaluated all five techniques. We recorded quantitative data, like
task completion time, selection errors, and the Index of Difficulty
(ID) as defined in Section 4.3. For static scenes, we calculate the
physical ID in addition to the effective ID. The physical ID is the
ID without any scaling applied by the selection method, whereas
the effective ID takes the target scaling into account. Additionally,
all subjects filled out the questionnaire after using each technique
(so, in total, each participant had to fill out five questionnaires).

Participants entered a designated spot in the virtual
environment to assure equal distance to the test scenes. For
each selection technique, participants first entered a practice
mode without a time limit. When feeling comfortable,
participants entered the actual study. They had to make
multiple selections for each scene: 10 when selecting the
propane tanks, 20 in the miscellaneous scene, and five in all
other environments. Every selection technique was evaluated on
all scenes, as described in Section 4.2. To avoid learning effects
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between techniques, we randomized the order of the selection
techniques and scenes according to a latin square.

We felt different numbers of trials were appropriate in order to
reduce potential learning effects in scenes with a small number of
target objects. Otherwise, muscle memory might skew the results
of successive repetitions of rounds. This was less of a problem in
scenes like the Miscellaneous environment, since here every
selection targeted a different object, at a different location,
with a different size and form. Another reason was that we
did not want to strain participants’ patience too much, so as
not to induce fatigue or boredom (they were not compensated for
their participation).

In the following, we give a short recap of two competing state-
of-the-art selection techniques we included in our user study.
First, we chose IntenSelect because of it’s basic premise is similar
to that of LenSelect. Second, Expand was chosen because it is a
well-known member of the family of progressive, multi-stage
selection techniques, which tend to be slower, but less prone to
selection errors. Last, we included the classic ray-based selection,
as kind of a baseline.

5.2 Competitors
5.2.1 Expand
Expand is an evolution of the SQUAD selection technique; both
are multi-stage approaches to object selection. Expand tries to
alleviate the problem of losing the original context of the objects,
especially useful with similarly looking objects. Instead of
iteratively arranging the candidate objects into screen-space
quadrants, Expand aligns copies of the objects in a screen-
space grid. This grid is dynamically generated depending on
the number of objects that need to be placed such that it
maximizes screen space. In the second stage, the user selects
the target from the grid (Cashion et al., 2012). See the right hand
side of Figure 6 for a screenshot of this second stage in our
implementation.

Expand is not without problems, however. For example, the
arrangement of objects in the grid is not ordered according to an
intuitive criterion. Also, objects completely occluded in 3D show
up in the grid as well, which may or may not be confusing
to users.

Expand’s main purpose in our study is to serve as a
comparison for selection errors. As a two-stage selection
technique, the possibility for errors should be lower than
the other single-stage techniques, thus providing kind of a
baseline with respect to this performance metric. We think it is
important to include a representative of the family of multi-
stage selection techniques, even though we don’t expect it to
outperform any of the single-stage techniques in terms of task
completion time.

5.2.2 IntenSelect
IntenSelect was designed to tackle three aspects of selection:
accuracy, ambiguity, and complexity de Haan et al. (2005).
IntenSelect is a cone-based technique with a disambiguation
mechanism. It uses a bending ray emanating from the device
in the pointing direction and bending toward the currently
selected object. In addition, it renders a second, straight ray

pointing in the device’s direction (but this could be omitted).
See the left hand side of Figure 6 for a screenshot of our
implementation.

IntenSelect proposes a scoring mechanism for objects that is
based on the angle subtended by the object’s center with the cone

center line. This angle is given by arctan dperp
dproj

, where dperp is the

object’s distance from the cone’s center line, and dproj is the
distance along that line. The authors further introduce a
parameter k to “narrow” the scoring with depth, such that the
final, momentary score is

scontrib(t) � 1 −
arctan dperp(t)

(dproj(t))k
β

(11)

where β is a parameter defining the opening angle of the cone.
In order to avoid fast-switching behavior between targets, they
introduce kind of a temporal hysteresis, thus arriving at the final
score

stotal(t) � stotal(t − 1) · cs + scontrib(t) · cg (12)

where parameters cs and cg define “stickiness” and
“snappiness”, resp. Thus, the effective target width of each
object is expanded into a sphere around it’s center point,
depending on other objects in the vicinity.

However, this method can lead to problems in highly cluttered
areas: In such cases, the effective target region of an object can
shrink below the size of the target object. This effective target
region could even be “shifted” away from the target object visible
to the user. In the worst case, the target region can lie completely
outside the visible target object; this is the case, if there are close
objects in front of and behind the target object. Another
unintuitive situation can occur, for example, if the target
object’s center point is overlapped by another object; then, the
target object can still be selected through the overlapping object.

6 RESULTS

We have used the methodology described above to perform a user
study. We will first present the general results from our study.
Then we focus on the quantitative findings before we report the
results from the questionnaire.

The main study had 20 participants, 15 of which self-identified
as male and five as female. Most of them were either research
assistants or students. Four people were left handed and none had
any form of color blindness. Their ages ranged from 20 to 35 with a
mean age of 26.7, a standard deviation of 4.3 and a median of 27.5.
All but two participants had used a HMD before. A total of seven
participants already participated in at least one of the pre-studies.

Before the main study, we conducted two pre-studies with 7
participants each to determine the hyper-parameters for
LenSelect. In the first pre-study, we found that the Root and
Combined Scaling methods were the most promising versions of
LenSelect. From the second pre-study, we found that an opening
angle α of 15° was the best option and that visualizing the cone
worked better than hiding it.
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In all experiments, the participants wore the HTC Vive Pro.
Two base stations were used to track user movement. To indicate
selection participants used the trigger button. Although this
might induce selection errors through the Heisenberg effect of
spatial interaction (Wolf et al., 2020), since all techniques use the
same button for indication the error should spread among them
equally. The HMD was connected to a Windows 10 PC with an
Intel Core i7 7800X at 3.5 GHz, 64 GB RAM and a NVidia Titan
V GPU. We implemented all test scenes and selection techniques
with the Unreal Engine 4.21.2.

6.1 Statistical Methods
We use analysis of variance (ANOVA) for a statistical
interpretation of the following results. Both normality testing
with the Shapiro-Wilk test and visualizing the data as a histogram
shows that samples do not necessarily follow a normal
distribution for both the questionnaire and quantitative data.
The Levene test also shows that homoscedasticity does not always
apply to the quantitative results. Therefore, we chose Welch’s
ANOVAwith subsequent Games-Howell post-hoc test to analyze
the quantitative data. The Welch test is recommended if the data
is not normally distributed, and the variances are unequal. The
test is robust regarding differing sample sizes and non-normal
data, even if some conditions apply (Cribbie et al., 2012). The
Games-Howell test is robust to non-normality as well and works
with unequal variances.

For the results from the questionnaire, we chose the
Kruskal–Wallis test with subsequent Tukey post-hoc test.
Parametric and non-parametric tests often perform equally
well for Likert scale data with large sample size (> 15)
(Mircioiu and Atkinson, 2017). We chose the Kruskal–Wallis
test because our sample size is often smaller than 15. This test
assumes equal variances across the data. As Mircioiu and
Atkinson show, for many situations, both homoscedasticity
and normality do not play a role, as long as sample sizes are
(nearly) equal (Mircioiu and Atkinson, 2017). Both Welch’s
ANOVA (Honjing et al., 2016) and the Kruskal–Wallis test
(Honjing et al., 2016) are somewhat robust to outliers. We use
the standard significance level α � 0.05, as both of our tests
already adjust for multiple comparisons.

6.2 Quantitative Data
We had to remove five selections due to questions of the user or
distractions: two for Expand, two for LenSelect Combined, and

one for IntenSelect. A small amount, 68 out of the total of 1,500
selections, were removed because their ID could not be calculated.
The calculation failed, for example, when the end point of the
selection was outside the participant’s visible area.

First, we investigated the task completion time. In all scenes we
found significant results. The classical RaySelection, both versions
of LenSelect and and IntenSelect performed significantly faster
than Expand in all scenes. In case of tidy scenes like the Fast
Moving Single Sphere or the Rotating Spheres, IntenSelect
performs best. For instance, in the Fast Moving Single Sphere
the Games-Howell post-hoc test achieved a significance
difference (p< 0.001) for IntenSelect compared to
RaySelection (−0.688s, 95%-CI[−0.802s −0.573s]) and
LenSelectRoot (−0.215s, 95%-CI[−0.291s −0.139s]). On the
other hand, the different LenSelect versions and RaySelection
outperform IntenSelect significantly in highly cluttered scenes
like the Cluttered Cans or the Rotating Cans Scenario when it
comes to selection times. For instance for the Rotating Cans
Scenario we measured a significance of (p< 0.001) for LenSelect
Combined with the Games-Howell post-hoc test compared to
IntenSelect (0.668s, 95%-CI[0.411s 0.925s]). In the severely
cluttered scenes, like the Cluttered Cans, RaySelection,
LenSelect and IntenSelect performed similarly with respect to
the selection time. Figure 7 shows the results for all scenarios. The
interested reader will additionally find all results from our
statistical analysis using one-factorial ANOVA tests and
Games-Howell post-hoc analysis in the addendum
(Supplementary Table S1).

Beyond the pure selection time, it is essential that the user
really selects the correct object. Hence, we also investigated the
error rates for the individual scenarios. Figure 8 gives an overview
on the average errors made with the different selection
techniques. In detail, for the slightly cluttered static scenes, we
found only very little errors for all selection techniques. The mean
error was < 0.06, the median was 0, and the standard deviation
< 0.3 errors. In the tidy dynamic scenes, i.e., the Rotating Spheres
and the Fast Spheres, IntenSelect performs significantly better than
the other selection techniques. For instance, in the Fast Spheres
scenario we measured a significant difference (p< 0.001) for
IntenSelect compared to RaySelection (−0.86, 95%-CI[−1.00
−0.715]) and LenSelect Combined (−0.32, 95%-CI[−0.420
−0.219]). However, LenSelect Combined also produces
significantly (p< 0.001) less errors than RaySelection (−0.54,
95%-CI[−0.714 −0.365]). In highly cluttered scenes, either static

FIGURE 6 | Screenshots of our implementations of two state-of-the-art selection techniques used in our user study: IntenSelect (left) and Expand (right).
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or dynamic like the Cluttered Cans and Rotating Cans, both
LenSelect versions outperform the other methods. For instance,
in the Rotating Cans scene, LenSelect produces significantly fewer
errors (p< 0.001) than IntenSelect (0.119, 95%-CI[0.316 0.788])
according to the Games-Howell post-hoc test.

Figure 9 provides an overview of the average effective Index of
Difficulty for each selection technique and test scene. Since all
selection techniques modify the ID (except RaySelection,
obviously), we also investigated the influence of the physical ID
on the selection time (see Figure 10), where we fit a line into all
samples where a physical index of difficulty could be computed.
Overall, the LenSelect Combined performs best with respect to the
physical index of difficulty, except for very low ID’s (i.e., easy targets),
where the standard RaySelect performs best.

Questionnaire Data
In the complexity rating from the questionnaire (seeFigure 11, left), the
Kruskal–Wallis test shows significant effect (H(4) � 30.63, p< 0.001).
The Tukey post-hoc test reveals that Expand (M � 3.35, SD � 1.14) is
rated significantly worse than all other selection techniques. IntenSelect
(M � 2.45, SD � 1.15) is rated significantly worse than RaySelection

(M � 1.5, SD � 0.83). RaySelection was rated the least complex,
followed by LenSelect Combined (M � 1.70, SD � 0.73) and then
LenSelect Root (M � 1.95, SD � 0.83).

The rating wrt. hedonistic user experience also shows a
significant effect (H(4) � 14.70, p< 0.05). Expand
(M � 1.60, SD � 1.31) performs significantly worse than
RaySelection (M � 3.95, SD � 0.94), LenSelect Root
(M � 3.80, SD � 0.89), IntenSelect (M � 3.70, SD � 1.45) and
LenSelect Combined (M � 3.95, SD � 0.76). The others seem
to perform equally well compared to each other.

The QUESI Total is significant as well (H(4) � 29.14, p< 0.05).
RaySelection (M � 4.41, SD � 0.42) performs significantly better
than IntenSelect (M � 3.64, SD � 1.0) and Expand
(M � 3.22, SD � 0.86). While Expand shows a significantly lower
rating than LenSelect Root (M � 4.25, SD � 0.55) and LenSelect
Combined (M � 4.22, SD � 0.40). Both LenSelect techniques are
rated slightly lower than RaySelection, but not significantly so.

When the users where asked to rank the selection methods from
most to least favorite (see Figure 11, right), a significant effect can
also be observed in the user ranking (H(4) � 26.93, p< 0.001). Here
Expand (M � 1.55, SD � 1.05) is significantly less popular than

FIGURE 7 | Average time for one selection for each selection technique. As can be seen LenSelect produces better selection times than IntenSelect and slightly
better times than RaySelection. Whiskers show the one standard deviation interval.

FIGURE 8 | Average errors for each selection technique. The whiskers show the 1 standard deviation interval.
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RaySelection (M � 3.40, SD � 1.27), LenSelect Root
(M � 3.5, SD � 0.88), IntenSelect (M � 3.05, SD � 1.54) and
LenSelect Combined (M � 3.40, SD � 1.35). The other techniques
show no such differences between each other.

7 DISCUSSION

The results from the study show that no selection technique
performs best in all scenes and with all metrics. There are some
general trends, though.

According to users’ subjective overall satisfaction (QUESI
score), RaySelection was rated highest among all selection
techniques, which is mostly due to its high ranking regarding
complexity (i.e., users felt it is the least complex technique).
However, it performs very slow wrt. task completion time, except
for the simplest scenarios (i.e., very low physical IDs). Also,
RaySelection has relatively high error rates in many scenes,
particularly with moving targets.

Expand performed, on the one hand, worse than all other
methods wrt. the subjective metrics (i.e., results from the
questionnaire) and wrt. the (objective) selection time. On
the other hand, it showed to be the least error prone in
most cases, which was to be expected. Interestingly, it did
not always result in the least amount of selection errors. The
reason for that is not obvious to us, so would require further
investigation.

IntenSelect worked best if there was only little to moderate
occlusion with other objects. In these scenes, this technique can
generate the best effective target region for the objects. In other
scenes, it led to many selection errors and a high selection time.
Further, it was rated worse than both LenSelect and RaySelection
in all subjective metrics.

LenSelect performs well more consistently than all other
techniques over all test scenarios with respect to the selection
time and selection errors (see Figure 10). This consistent
performance could explain why both LenSelect variants were
favored in the user rankings.

FIGURE 10 |Relationship between task completion time (selection time) and the targets’ physical ID, which is the ID the targets have in case of the simple, standard
RaySelection. The selection times were averaged over all test scenes and all participants. LenSelect Combined performs better than the other three techniques, except
for very low ID’s (i.e., very easy targets).

FIGURE 9 | The average effective Index of Difficulty for each selection technique. The whiskers show the 1 standard deviation interval.
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It is also of note that there is a difference between LenSelect’s
variants Root and Combined Scaling in certain scenarios. It
appears that LenSelect Combined performs better than
LenSelect Root with distant objects, which showed in the
scene “Propane Tanks Far”. (This was the reason why we
selected LenSelect Combined in our final study.) This
difference, however, is not as pronounced as it might be, since
all other test scenes had about the same distance to the user. At
middle to close ranges, both scaling functions for LenSelect
perform equally well according to our studies. Most of the
differences wrt. task completion time are not significant and
even if they are, the effect size is usually so small that it’s
questionable if the difference is even noticeable to the user.

Lastly, we think that LenSelect has the potential to completely
replace RaySelection in pretty much all use-cases. LenSelect
performs equally well under circumstances where RaySelection
shows good results and otherwise outperforms it in all other cases
tested. The main advantage of LenSelect is its consistency, as it
never shows any really bad performance in any of our test scenes.

Although all selection techniques are implemented on the
CPU in the study the performance overhead for LenSelect was
minimal. Using theMiscellaneous test scene for comparison both
LenSelect techniques were able to comfortably run at 60 fps with
no change in performance when moving the cursor and therefor
scaling objects. Compared to RaySelection, which also ran at
60fps the performance overhead is minuscule and should be
negligible when LenSelect is implemented in a shader.

8 CONCLUSION AND FUTURE WORK

We have presented a novel ray-based selection metaphor called
LenSelect that implements kind of a lens distortion effect,
thereby increasing the effective target width dynamically.
LenSelect is easy to implement and can be integrated in
existing VR systems without much changes required. In fact,
it can be implemented in a shader, thus requiring minimal to no
changes to the rendering code.

Moreover, we have presented a methodology to compare ray-
based VR selection methods. Our methodology includes a set of

scenes that cover the most important factors influencing selection
techniques, i.e., the distance, the size, and the density of the
objects in the scene; it also includes an accompanying
questionnaire to evaluate user feedback.

Finally, we conducted a user study to compare several state-of-
the-art selection techniques. Our results show that LenSelect can
compete even with classic ray-selection with respect to selection
times while providing a significantly reduced error rate by up to
44%. IntenSelect performs better than LenSelect in test cases with
distant objects but has problems in near cluttered dynamic
scenes. All single-stage, ray-based selection techniques in our
user study, i.e., RaySelection, LenSelect, and IntenSelect,
outperform Expand, which uses a two-stage approach.

Overall, LenSelect’s good performance seems to be the most
consistent among all selection techniques we compared in this
study across all of our test scenarios. It also achieved the best
acceptance by the users.

The lens-effect-based approach of LenSelect seems generally very
promising and, with further adjustments, it might even outperform
IntenSelect in scenes with large target distances. To achieve that,
LenSelect offers many possibilities to modify the lens effect.

One such modification could be to dynamically change the
order of the root in Root Scaling, depending on the number of
objects inside the lens (the more objects, the higher the root order).
That way, selecting objects from very cluttered environments
becomes even easier. Another option is to calculate the scaling
factor of Same-Screen-Size Scaling at runtime, but then use that as
the maximum factor sm in Root Scaling which should improve the
performance especially for distant objects.

Furthermore, the performance in scenes containing a very
high variability of object sizes (especially with tiny objects) could
be improved. For instance, a dynamic change of the particular
lens effect at run-time, depending on the scenario, could be an
option. The general framework of our LenSelect technique allows
for easy integration of other or multiple lens distortion effects.
Obviously, such a changes should not break the user’s presence in
the VR environment; for instance, a continuous blending between
several lens types can be considered.

In the future, we plan to further investigate other ray-based
selection methods. Of course, we also encourage other researchers

FIGURE 11 | Left: Participant’s average feedback for the factors fun, complexity and total score from the QUESI questionnaire. Higher values are better on the 5-
point Likert scale. (The results for complexity were inverted, so a higher value here means less complex.) Right: Average user’s popularity ranking. The most popular
technique got five points, the second most popular got 4 and so froth. Whiskers show the one standard derivation.
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to perform their experiments with our methodology. In order to do
so, we make our scenarios publicly available at blindedforreview.

Moreover LenSelect has only been compared to ray-based
selection techniques. In especially cluttered environments other
approaches might prove more fruitful, like Starfish (Wonner
et al., 2012) or teleportation (Mendes et al., 2017).

Finally, we plan to use our testing methodology to investigate
the influence of the input device and the kind of VR display on the
optimal selection technique. For instance, we will test more
sophisticated input devices for selection tasks such as natural
interaction with hand tracking and investigate selection
metaphors for large projection powerwalls instead of HMDs.
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