
Evaluation of Point Cloud Streaming and
Rendering for VR-based Telepresence in the OR

Roland Fischer1, Andre Mühlenbrock1, Farin Kulapichitr1, Verena Nicole
Uslar2, Dirk Weyhe2, and Gabriel Zachmann1

1 University of Bremen, Bremen, Germany
{r.fischer, muehlenb, farin1, zachmann}@uni-bremen.de

https://cgvr.informatik.uni-bremen.de
2 University Hospital for Visceral Surgery, University of Oldenburg, PIUS-Hospital,

Oldenburg, Germany
verena.uslar@uni-oldenburg.de, Dirk.Weyhe@Pius-Hospital.de

Abstract. Immersive and high-quality VR-based telepresence systems
could be of great benefit in the medical field and the operating room
(OR) specifically, as they allow distant experts to interact with each
other and to assist local doctors as if they were physically present. De-
spite recent advances in VR technology, and more telepresence systems
making use of it, most of the current solutions in use in health care (if
any), are just video-based and don’t provide the feeling of presence or
spatial awareness, which are highly important for tasks such as remote
consultation, -supervision, and -teaching. Reasons still holding back VR
telepresence systems are high demands regarding bandwidth and compu-
tational power, subpar visualization quality, and complicated setups. We
propose an easy-to-set-up telepresence system that enables remote ex-
perts to meet in a multi-user virtual operating room, view live-streamed
and 3D-visualized operations, interact with each other, and collabora-
tively explore medical data. Our system is based on Azure Kinect RGB-D
cameras, a point cloud streaming pipeline, and fast point cloud render-
ing methods integrated into a state-of-the-art 3D game engine. Remote
experts are visualized via personalized real-time 3D point cloud avatars.
For this, we have developed a high-speed/low-latency multi-camera point
cloud streaming pipeline including efficient filtering and compression.
Furthermore, we have developed splatting-based and mesh-based point
cloud rendering solutions and integrated them into the Unreal Engine
4. We conducted two user studies with doctors and medical students
to evaluate our proposed system, compare the rendering solutions, and
highlight our system’s capabilities.

Keywords: Telepresence · Virtual Reality · Collaborative VR · Point
Cloud · Avatar · Point Cloud Rendering · Unreal Engine · Azure Kinect
· Mesh Reconstruction.

1 Introduction

Telemedicine plays a major role in medicine and health care and, although it
is hardly a novel concept, it has received increased attention lately. The ability

https://cgvr.informatik.uni-bremen.de


2 R. Fischer et al.

to provide assistance from a distance, and collaborate without the need for be-
ing physically present, exhibits a huge potential to provide patients with better
care, increase efficiency, and save costs [11,19]. There is a wide range of ap-
plications for telemedicine and the more advanced telepresence systems: from
telementoring and training, remote consultation and collaboration, to remote
diagnosis, surgery, and rehabilitation [30,2]. One example scenario is emergency
situations with traumatic injuries where fast interventions are critical. Regu-
larly, the dilemma is to either spend valuable time transporting the patient to
specialized health care facilities, or to go to the nearest hospital although the
local surgeons, especially in rural areas, might be less experienced [10]. These
local surgeons could benefit from consultation or even mentoring from remote
experts via telepresence systems that could preemptively be integrated into the
surgery rooms [20]. Another example would be to reduce health risks by limit-
ing the physical contact with possibly contagious patients and medical staff to
a minimum; novice surgeons could consider attending surgeries via telepresence
instead of being physically present in the operating room [8]. Other applications
could be patient visits/ward rounds in intensive care units, or tumor confer-
ences where normally many experts from different medical areas come together
to discuss the situation and the further procedure [31].

Telemedicine in the past, and to a significant degree today too, relied mostly
on classical video conferencing systems and other video-based solutions [3,16].
These systems are inherently limited by the fixed point of view, lack of depth
perception, and 2-dimensional screens, preventing a distinct feeling of (tele-
)presence [34,4]. Continuous technological advances and the emergence of im-
proved, affordable VR/AR devices lead researchers to focus on 3D VR/AR-based
telepresence solutions. These systems are intended to deliver a more immersive
experience compared to older video-based solutions, enable more natural inter-
actions, and provide a better spatial understanding of the objects and their
surroundings [29]. Many studies showed that in such systems the users’ rep-
resentation through personalized high-quality avatars is fundamental [13,7,39].
To create virtual 3D representations of the scene, these systems usually employ
RGB-D cameras or other depth sensors, whose data then has to be streamed to
the remote location to be viewed in VR. However, VR-based telepresence sys-
tems still face several challenges: high bandwidth requirements for transmission
of the data, inadequate real-time 3D reconstruction and rendering quality, or
hard-to-set-up systems.

Our proposed telepresence system is designed to tackle all the aforementioned
challenges with a combination of an immersive multi-user VR system with a
real-time RGB-D streaming pipeline and two fast, custom point cloud rendering
solutions integrated into a state-of-the-art 3D game engine. Our solution enables
remote doctors to meet and interact in a virtual operating room with real-time
point cloud avatars as well as assist in operations that are live-streamed and
visualized in the virtual room in 3D. Our proposed system is capable of handling
multiple cameras per location, as our streaming pipeline includes efficient real-
time compression and filtering algorithms. Furthermore, we integrated an easy-



VR-based Telepresence in the OR 3

to-use registration, i.e. extrinsic calibration, method. To evaluate the benefits
of VR-telepresence systems in general and ours specifically, we conducted two
user studies with doctors exploring possible use cases, comparing the different
rendering solutions, and investigating aspects such as spatial and social presence,
realism as well as preference. To summarize, our contributions are:

– A multi-user VR-based telepresence system implemented in the state-of-the-
art game engine Unreal Engine 4 (UE4) with a prototype for avatar face
reconstruction.

– A modular low-latency multi-camera RGB-D streaming pipeline including
filtering, denoising, and compression of RGB-D data, which is easy to extend.

– Custom splat- and mesh-based point cloud rendering solutions and a accom-
panying user study to compare the two methods.

– An extensive qualitative evaluation of the proposed system as well as a user
study exploring clinical benefits and relevant aspects such as spatial and
social presence.

2 Related Work

Many VR/AR-based telepresence systems have been proposed in the past, some
still rely on video feeds that can be augmented [35,17], others do make use of
real-time point clouds and 3D reconstruction [18]. For instance, Boehlen et al. [5]
recently presented a real-time telepresence system intended for usage in caregiv-
ing that uses multiple RGB-D cameras as well as point cloud visualization and
Anton et al. [2] proposed an augmented telemedicine platform for real-time medi-
cal consultation in which the patient is captured via an RGB-D camera, a remote
expert can assist using a 3D display, and annotated feedback is sent back to the
patient-side. The former system doesn’t support multiple users or avatars and
doesn’t consider compression to reduce the required bandwidth. The latter uses
only one RGB-D camera and a limited 8-bit YUV-based compression. Thoravi
Kumaravel et al. [36] successfully demonstrated the benefits of immersive telep-
resence for remote teaching of physical tasks via a bi-directional Mixed-Reality
system that combines AR and VR. In this system, point cloud hologlyphs visu-
alize the remote scene, although only with 10 Hz on the AR side. Gasques et
al. [14] developed a collaborative mixed reality system based on multiple color
and depth cameras for live 3D scene scanning and reconstruction, OptiTrack
marker-based tracking which is used for registration and annotations, and AR
and VR devices. The focus of this system lies more in tracking and interac-
tion, as the depth images are transmitted unprocessed to the remote location.
Based on the work by Gasques et al., Roth et al. [31] recently presented an-
other mixed reality teleconsultation system that is intended for telepresence in
ICUs. In their system multiple RGB-D cameras are mounted on the ceiling and,
as commonly done, connected to dedicated PCs (“capture nodes”). The data is
then compressed and transmitted to the remote location where the point cloud
is computed but eventually rendered as surface mesh via a custom shader. One
drawback they report is the high latency of 300-400 ms.



4 R. Fischer et al.

For telepresence applications, it is of high interest to constrain the required
bandwidth to a reasonable level which makes real-time streaming of RGB-D
sensor data and point clouds a difficult task. Therefore, one important but of-
ten still lacking aspect of such streaming systems is efficient data compression,
particularly of depth data. Not only must the amount of data be reduced as
much as possible but also as quickly as possible. Often this is only achieved by
sacrificing the quality, which is problematic in medical contexts though. The two
main approaches in which most of the previous dedicated research on RGB-D
compression can be split into are 2D approaches using image- and video com-
pression techniques that compress the individual color- and depth images [38]
and 3D approaches which directly compress the point cloud. The latter often
rely on hierarchical subdivision using octrees [24] and tend to be slower and less
effective compared to 2D approaches if the reconstruction quality should remain
high or even be lossless [22]. To achieve convincing results, the image- and video
compression techniques need to be adapted to depth images and their specific
characteristics though [28]. A comprehensive overview of the recent work in this
department was recently provided by Cao et al. [6]. Even with the ongoing work
in this field, the problem is far from solved.

Another important task is to produce high-quality 3D visualizations of the
RGB-D data. One persistent obstacle is the inherently noisy output of the
depth sensors, even the newest ones like the Azure Kinect suffer from tem-
poral noise and effects such as the flying pixel and multipath effects [37]. Since
the emergence of low-cost RGB-D cameras, much research was done to enhance
the depth images by proposing different denoising, inpainting, and filtering ap-
proaches [1,21,12]. Though, the problem is still relevant today, as the proposed
solutions often have difficulties with dynamic content, e.g., in form of ghosting
artifacts, or take too much time for real-time application.

To eventually visualize point clouds and, specifically, point cloud and 3D re-
constructed avatars, different techniques were proposed. While, in principle, very
high-quality representations can be achieved via offline scanning and elaborate
reconstruction techniques, these methods are not suitable for real-time telepres-
ence applications [23]. Dou et al. [9] presented an online performance capture
system with advanced volumetric 3D reconstruction achieving real-time speed,
however, multiple high-end PCs were necessary to achieve 30Hz which leaves no
room for other necessary tasks in a telepresence system such as compression,
rendering of multiple users, and rendering the scene itself in VR. Similarly, Orts
et al. [27] were able to stream high-quality 3D reconstructed avatars in real-time.
The avatars are produced via temporal-volumetric fusion of the data of multi-
ple RGB-D cameras, however, the proposed system is computationally highly
demanding, requires a 10 Gigabit connection, and is complicated to set up. On
the other hand, Gamelin et al. [13] showed that even simpler and faster point
cloud visualization techniques such as splatting are sufficient to outperform pre-
constructed animated avatars in collaborative spatial tasks. Yu et al. [39], too,
compared point cloud avatars with tracked mesh avatars in their telepresence



VR-based Telepresence in the OR 5

Stream-Server

UE4 ApplicationUE4 Application

Local User in the OR Remote User

Stream-Client

Stream-Server

Network Session
HMD +

Controller

Preprocessing

Compression

Preprocessing

Stream-Client

Compression

HMD +
Controller

RGB-D
Camera

…

Player LogicPlayer Logic

Server Logic

Avatar Actor Avatar Actor

Point Cloud ActorPoint Cloud Actor

RGB-D
Camera

RGB-D
Camera

has

has

has

has

controlscontrols

feedsfeeds

feeds
passes onpasses on

Point Cloud Streaming für Telepräsenz im
Remote Doctor 1Remote Doctor 2

Server in the OR

Virtual ORROI Point Cloud

Avatar
Point Cloud

Stream-Server

UE4 ApplicationUE4 Application

Local User in the OR Remote User

Stream-Client

Stream-Server

Network Session
HMD +

Controller

Preprocessing

Compression

Preprocessing

Stream-Client

Compression

HMD +
Controller

RGB-D
Camera

…

Player LogicPlayer Logic

Server Logic

Avatar Actor Avatar Actor

Point Cloud ActorPoint Cloud Actor

RGB-D
Camera

RGB-D
Camera

has

has

has

has

controlscontrols

feedsfeeds

feeds passes onpasses on

Fig. 1. Left: System architecture of our application. Right: System setup and commu-
nication channels between the server in the OR and the remote users.

prototype and found the point cloud avatars to be superior regarding perceived
co-presence and social presence.

3 System Overview

In this section we present our telepresence system for remote consultation and
collaboration in healthcare. In our system, the doctors and the patient in the
physical operating room as well as the remote experts in VR are visualized
via accurately registered live-streamed point cloud-based 3D representations. To
provide high-quality graphics and robust network components, we decided to use
the Unreal Engine 4 as a basis. This also has the benefit that a lot of basic aspects
such as collision handling and different Virtual Reality Headsets (HMDs) are
supported out-of-the-box. A core pillar in our system architecture is the RGB-D
streaming pipeline that we realized not with the Unreal Engine, as the engine and
its network components specifically are not suited for low-latency transmission
of huge data loads. Instead, the RGB-D data is streamed via custom client-server
connections that we implemented using C++ and CUDA; we integrated these
into our Unreal Engine application. This is illustrated by the system diagram on
the left side of Fig. 1 which shows our system’s components in more detail.

The image on the right side of Fig. 1 illustrates the general setup and the
communication channels between the participants: The server, which acts as
a client too, is located in the operating room, has multiple RGB-D cameras
connected to it, and hosts the virtual operating room scene. Remote doctors
connect to the server and receive the point cloud visualization of the physical
scene – the region of interest (ROI) of the OR – from the server. If the users
have an RGB-D camera for a personalized point cloud avatar themselves, they
directly broadcast the corresponding data to all participants. The application’s



6 R. Fischer et al.

Fig. 2. Example of our system. Left: Live-streamed point cloud visualization of the
local doctor in the real OR, seen from the perspective of a remote doctor. Middle:
Physical environments of the local (top) and remote (bottom) doctors with RGB-D
cameras (see white rectangles). Right: Point cloud visualization of the local doctor
using two cameras to minimize occlusions, and part of the remote doctor’s self-avatar.

network traffic, apart from the RGB-D data, however, is always routed via the
server.

An example of our telepresence system in action can be seen in Fig 2. The left
image shows the doctor in the real OR as a live-streamed point cloud visualiza-
tion in the virtual OR, seen from the viewpoint of a remotely connected doctor.
The right image shows the same doctor rendered with the point clouds from
two cameras which helps to minimize occlusions. The middle images illustrate
the physical environments of the local and remote doctors with their respective
RGB-D cameras.

3.1 Multi-User VR Environment

The central part of our system is a virtual operating room in which all the RGB-
D data gets streamed and rendered, and in which the remote doctors can meet
using HMDs, see Fig. 3 (left). The network architecture is based on Unreal’s
session system. After starting the application, the users arrive in a lobby where
they can start a session or join an existing one. The focus of our system lies in
users making use of HMDs to have an immersive VR experience and having real-
time personalized point cloud avatars. However, for the case that the required
technology is not available, we made sure the system is usable with a mouse
and keyboard, too, and integrated flying mesh avatars as a fallback. For VR
locomotion the room scale system is used in which the users can physically walk
to move. We also provide a teleport functionality for cases where the physical
space runs out. Research showed that this locomotion metaphor exhibits the
least risk of inducing cybersickness. Also, to not confuse other present users, a
simple particle effect is shown to indicate the deliberate nature of the teleport.
Other features of our virtual operating room are a virtual monitor to show



VR-based Telepresence in the OR 7

Fig. 3. Our virtual operating room with a point cloud avatar of a remote user on the
left and an interactive virtual liver on the right.

medical image data and 3D organ meshes modeled based on real patient data,
in this case, livers. The fully synchronized organ models consist of separate parts
for arteries, tumors, and a half-transparent outer shell and can be grabbed and
inspected by the users, as can be seen in Fig. 3 (right). Also, the organ data is
quickly replaceable to represent new cases.

3.2 Point Cloud Streaming

In this section, we describe the point cloud streaming pipeline of our telepresence
system, which is one of its core parts. Instead of implementing everything from
scratch, which would be tedious and time-consuming, we opted to use “Dyn-
Cam: A Reactive Multithreaded Pipeline Library for 3D Telepresence in VR”
by Schröder et al. [32] as a base and extended it for our needs. Generally, the
Dyncam library provides a good foundation, as it has low latency streaming
capabilities, which are crucial for telepresence in VR, and is easily extendable.
However, we found some aspects such as compression and rendering to be lack-
ing and decided to extend or replace them. We also adapted the architecture
so that a single server-client connection can handle multiple cameras to reduce
overhead and integrated functionality to record point cloud sequences and replay
them later without the need for cameras to be connected. In Fig. 4 you can see an
illustration of our final streaming pipeline. One or multiple RGB-D cameras are
connected to the streaming server and will be processed individually. We use the
new Azure Kinect RGB-D camera from Microsoft, as it has a high resolution and
precision, hardware synchronization, and uses the TOF principle which is very
suited for indoor use. The first step of our pipeline is the preprocessing of the
color and depth images, which consists of lens correction, cropping, and filtering
algorithms including background subtraction, and morphological filters for hole-
filling and denoising. Then the images get compressed and transmitted to the
client where they will be decompressed. We decided to compress and transmit
the color- and depth images instead of point clouds, as this enables us to use
more efficient image- and video-based compression algorithms. This means that



8 R. Fischer et al.

Mul�ple 
RGB-D

Cameras

Color & Depth 
Image

Preprocessing
Compression

Trans-
mission

Decom-
pression

Point Cloud 
Computa�on
+ Registra�on

Visualiza�on 
in VR

Streaming-Server Streaming-Client (in UE4)

RVL + JPEG
Background Subtrac�on
Hole-Filling, Denoising

Intrinsics

Con�nously (30 Hz)

Ini�ally:

Compression Parameters

Azure Kinect

Azure Kinect

Fig. 4. Our point cloud streaming pipeline. Color and depth images of multiple cameras
get individually preprocessed and compressed server-side and then transmitted to the
clients where the point clouds get computed and registered before rendering.

the point cloud will only be computed client-side. For this, the camera’s intrinsic
data will be transmitted once too. Lastly, the point clouds of multiple cameras
will be registered to each other and to the virtual scene and then rendered.

We have implemented the filtering algorithms using CUDA to minimize la-
tency. For background subtraction, there are two options. The first one is to set a
simple depth threshold per camera to exclude points from rendering (depth set to
zero). As a second option, the user can do a one-time recording of the scene, e.g.,
the empty operating room. In this case, the pixel-wise minimum valid value will
be stored and acts as the threshold to distinguish between foreground and back-
ground. For hole-filling and depth denoising, we did extensive experiments with
various filter algorithms, such as optical flow, Navier-Stokes-based inpainting, lo-
cal regression, etc, but found them to be too slow, or the provided improvements
were not significant enough to warrant the additional performance cost. Thus,
we settled for faster solutions that achieve a good trade-off in this regard. Hole
filling is done via multiple iterations of median-based morphological filtering and
denoising using an adapted Kalman filter. As the Azure Kinect camera masks
off the corners of the depth images with non-usable data, we added the option
to do a cropped transmission and save bandwidth. Regarding the compression
of the depth images, we extend the solution present in Dyncam (quantization
plus LZ4) by integrating the H.264 video codec, and multiple efficient lossless
algorithms, i.e., an ANS coder, RVL, and Zstandard. We found that even after
compression the depth images are responsible for most network traffic while the
color images are sufficiently small by just using jpeg compression. Therefore, we
adapted the integrated lossless depth compression algorithms to achieve higher
compression ratios by adding temporal delta compression. As with all compres-
sion and streaming systems, at some point, a trade-off has to be made between
the required bandwidth and the computational speed. To allow the users to adapt
this to their local capabilities, i.e., hardware power and network bandwidth, our
design allows the client-side user to select the compression algorithm and param-



VR-based Telepresence in the OR 9

eters which will be used for their individual connection. For example, one user
could choose to use RVL compression, which is fast and efficient, while another
user may have a slower internet connection and opt for a different compression
technique with a higher compression ratio at the cost of increased computational
costs and lower speeds. The modular design of our pipeline also makes it easy to
implement other and even more efficient compression algorithms in the future.

3.3 Point Cloud Registration and Rendering

To be able to have individual point cloud avatars for remote users, a registration
procedure between the RGB-D camera and the VR coordinate system has to be
done. When using multiple cameras, these have to be registered to each other too.
For these registration tasks, we use the novel method by Mühlenbrock et al. [25].
It uses a grid-like registration target that is visible in the depth images to register
multiple RGB-D cameras with each other and the VR coordinate system. This
registration method proved to be very quick and easy to use. In the virtual scene,
we have a hierarchy of actors in which each one is responsible for rendering one
point cloud/camera. To account for the registration occasionally being slightly
off, we allow the user to manually tweak the transformation in-game via sliders.

Of paramount interest is the fast and visually pleasing rendering of the point
clouds. The Unreal Engine historically does not natively support point cloud
rendering, however, by now, there is a publicly available point cloud rendering
plugin “LiDAR Point Cloud”1. We experimented with the plugin but found it
to be too slow with dynamic point clouds and, therefore, not suitable for our
application. Our investigations indicate that the reason for the poor performance
is that the plugin was designed to handle huge but static point clouds – it
builds a spatial acceleration data structure intended for LOD. With dynamic
point clouds, this costly operation would have to be done in each frame. The
rendering solution provided in Dyncam was not convincing to us, both visually
and from a performance point of view. We also considered implementing more
complex volumetric reconstruction techniques similar to the ones in [27] and [9]
but eventually decided against it, as they are computationally highly demanding,
and we prioritized keeping the latency, which is critical in VR, to a minimum.
Therefore, we have developed two different and very quick rendering solutions
that we both integrated and tested in the Unreal Engine.

The first method is splatting-based but uses Unreal’s new Niagara particle
system. To get the point cloud positions and colors from the CPU to the GPU,
we adopted Dyncam’s approach of using two dynamic textures. In our case, all
cameras from one user share a single texture with the size of 20482 which is
sufficient for at least 11 cameras. Via Niagara module scripts we then calculate
the UV coordinates based on the particle ID and forwarded parameters such
as the point count per camera, texture size, etc., exploiting the fact that the
point clouds are ordered. For point clouds meant to represent avatars of VR
users, we additionally filter out all points that exceed a set distance from the
1 https://www.unrealengine.com/marketplace/en-US/product/lidar-point-cloud



10 R. Fischer et al.

center of mass which we compute dynamically via the HMD position. Also,
points representing the HMD are filtered out for the local avatar’s user in a
similar fashion to prevent occluding the vision. When using splatting methods,
the size of the points is important. To minimize holes and overlaps, we compute
the diameter of each point based on the distance recorded from the sensor,
as, because of the parallel projection, the density of points decreases with the
distance. Another effect to consider is that surfaces perpendicular to the line of
sight of the camera get sampled with a significantly lower density which results
in bigger holes. To account for this fact, we also dynamically compute the local
density of points, which is computationally cheaper than approximating their
normals, and adjust the diameter accordingly. As blend mode in the material we
use the masked mode instead of the translucent mode to circumvent the costly
depth sorting.

Our second rendering method is based on a very fast mesh reconstruction
and is intended to prevent visible holes between individual points altogether
and instead provide continuous surfaces. Fig. 5 shows a comparison of the two
renderers. As can be seen, in some instances the individual points are still clearly
visible with the splatting method. With our mesh reconstruction method, we can
again exploit the fact that the point cloud is ordered and establish a one-to-one
relation between point cloud points and the vertices of a plane mesh. At start-
up, we once automatically create a plane mesh with the exact vertex dimensions
and structure as the depth image on which the point cloud is based. E.g., a
rectangular grid-like pattern of 640 × 576 vertices. At runtime, we then make
the point cloud positions and colors available to the mesh’s material, again,
via dynamically updated textures. In the material, the vertices get transformed
via Unreal’s WorldPositionOffset-function according to the corresponding point
cloud positions in the RGB-D camera’s local space and the world-transform.
We wrote custom shader nodes to exclude triangles from being rendered (alpha
set to zero) if, based on the original position, the point was invalid, or one of
the triangle’s edges is too long. This prevents long, stretched triangles between
foreground and background objects.

4 Evaluation and Results

4.1 Performance

To quantitatively evaluate our system’s performance, we measured the time
needed for filtering, compression, and rendering as well as the frame rate with
which camera updates can be processed. All performance measurements were
done using a PC with Windows 10, an Intel i7 7800x processor, 16 GB of main
memory, and an Nvidia GeForce 2070 graphics card. As HMD we used the HTC
Vive Pro Eye with a mounted Facial Tracker. Our application was developed
using the Unreal Engine 4.26. All measurements were done without background
subtraction to maintain the full worst-case workload.

First, we evaluated the speed of the filtering step of our pipeline (see the
top left part of Table 1). As a whole, it took 1.34 ms to filter an un-cropped



VR-based Telepresence in the OR 11

Fig. 5. Comparison of the two point cloud renderers, splatting on the left, fast mesh
reconstruction on the right. Both look quite good but the splatting method still has
visible holes in some areas, see the red rectangles. With the mesh however, object
borders can look jagged (see highlighted region). The bottom image shows the captured
scene.

depth image (640×576 pixel), of which 0.59 ms were spent on hole-filling. Next,
we measured the time for compression and decompression of the registered color
image using JPEG: each took 1.5 ms. Using the cropped transmission (540×476
pixel) to discard the Azure Kinect camera’s unused border areas resulted in only
1.08/1.22 ms being needed. Using H.264 (preset: ultrafast, tune: zerolatency),
the computation was significantly slower: 7.72 ms for compression and 4.84 ms
for decompression of the full-sized color images, and 11.04 ms and 9.4 ms for the
depth images, respectively. Compression and decompression of the un-cropped
depth images using the RVL method, which we found to be the most efficient,
took 1.76 ms and 1.19 ms, respectively. Cropping reduced the time needed to
1.31 ms and 0.987 ms, respectively. An important detail to note is that the
(de-)compression of color- and depth are done in parallel, meaning that the
time won’t stack on top of each other. The results show that in our pipeline,
preprocessing and compression are very fast and can be accelerated even further
by cropping the unused borders of the Azure Kinect’s depth images, although
the speed-up doesn’t reach its theoretical potential (19-28 % less time for 30 %
fewer pixels).

After these individual measurements, we evaluated the overall performance
by measuring the more comprehensive metrics of the point cloud (PC) update
rate that was maintainable as well as the eventual fps/frame times in VR. We
measured the point cloud update rate by calculating the delta time both in our
streaming server application as well as in the UE4 telepresence application that
received and rendered the data. Throughout all cases, even using two cameras



12 R. Fischer et al.

Table 1. Performance measurements of our application.

Task Duration Time (ms)
Full Cropped

Filtering 1.34 -
Color Comp. (jpeg) 1.5 1.08
Color Decomp. (jpeg) 1.5 1.22
Color Comp. (H.264) 7.72 -
Color Decomp. (H.264) 4.84 -
Depth Comp. (tRVL) 1.76 1.31
Depth Decomp. (tRVL) 1.19 0.987
Depth Comp. (H.264) 11.04 -
Depth Decomp. (H.264) 9.4 -

Latency
VR Round-Trip Time 22-29 -
PC MotionToPhoton 120-150 -

Compression Image Size (kB)
Full Cropped

Color (JPEG) 21.9 18
Color (H.264) 15.85 -
Depth (RVL) 208 -
Depth (tRVL) 96.6 81.78
Depth (H.264) 59.69 -

Rendering Perf. (ms) PC Mesh
VR Frametime (1 Cam) 10.9 8.5
VR Frametime (2 Cam) 15 13

sending in full resolution and being in VR at the same time, our system was able
to maintain a delta time of 33 ms which corresponds to the 30 fps capturing
capability of the Azure Kinect cameras. The final performance in the packaged
VR application was not only dependent on the number of cameras and the
rendering technique but also heavily dependent on the general graphics settings
the scene was rendered with (“scalability settings” in Unreal). Using the mesh
rendering technique, Unreal Engine’s “high” graphics preset, and the full depth
resolution, we achieved a frame time of 12.5 ms with one camera and 15.5 ms
with two. Setting the graphics preset to “low”, we were able to reach 8.5 ms and
13 ms, see the bottom right part of Table 1. We found the splatting technique
to be slower than the mesh variant, achieving only 10.9 ms and 15 ms under the
“low” graphics preset. Important to note here is that the rendering resolution was
held constant throughout the presets, and the graphics preset had no effect on
the visualization of the point cloud rendering but only on the surrounding scene,
most noticeably on reflective materials, anti-aliasing, and ambient occlusion. As
can be seen from the performance measurements, our pipeline is very efficient
throughout all stages and enables VR performance even with just a single PC
per location. Both of the rendering techniques are very quick to compute, but
especially the mesh version is highly efficient. As the performance scales with the
number of cameras, at some point (e.g., 4+ cameras), more powerful hardware
or a second PC would be needed to maintain the real-time VR performance,
though.

4.2 Network

Regarding network performance metrics, we measured the round-trip time for
interactions in VR, and the motion to photon latency of the whole pipeline, see
the bottom left part of Table 1. The round-trip time – the time it takes for



VR-based Telepresence in the OR 13

a client-side action to be transmitted to the server and back to a client – was
between 22 ms and 29 ms., depending on the tick rate the server and client could
achieve. The tests were conducted with 2 PCs in a local network. With greater
distances, e.g., different cities, the time will likely be higher. The time between
the camera capturing the scene and it being rendered on the display – the motion
to photon latency – was measured by pointing a camera in such a way that both
the physical scene and the display were recorded by an external camera. By
analyzing the videos frame-by-frame, we found a latency of 4 to 5 frames which
corespondents to a 120-150 ms delay. However, roughly half of this is caused by
the camera itself, as it is reported that delivery of the raw images by the Azure
Kinect SDK needs ∼ 75 ms, depending on various parameters. We couldn’t find
any significant differences in delay for a varying number of cameras, between
the rendering methods, or different graphics presets, which may also be because
the external camera that we used for the measurement itself only captured with
30 Hz. Although the measurements were not highly precise due to the limited
temporal resolution of the external camera, the results show a rather low delay
for such a system.

Lastly, we measured the compression efficacy and bandwidth required to
transmit the RGB-D Data. The color images with an original size of 1440 kB
were compressed with JPEG to 21.9 kB (on average) with a compression ratio
of 66. Cropping further reduced the size to 18 kB, as can be seen in the top right
part of Table 1. With H.264, the color images were compressed to 15.85 kB,
and the the depth images to 59.69 kB. However, the size and image accuracy
are heavily dependent on the parameters; we used CRF values of 20 and 10 for
the color and depth images, respectively. For depth images, we found the RVL
algorithm to be a good trade-off between speed and compression ratio. Using
it, depth images were losslessly compressed from the original 720 kB down to
208 kB with a compression rate of 3.46. With our temporally extended RVL,
the average compressed size shrunk to 96.6 kB with a compression rate of 7.45,
though the achievable compression here strongly depends on the amount of mo-
tion in the scene. With the cropped transmission, the size was further reduced to
81.78 kB. With the 30 images per second that the cameras provide, our system
requires per camera 3,555 kB/s in full and 2,993 kB/s in cropped mode, which
corresponds to 23.4 and 27.8 Mbps. This is a very good result considering that
the depth images are transmitted losslessly and the high computational speed
the compression runs on. Naturally, using lossy compression algorithms such as
H.264, the bandwidth could easily be reduced further at cost of higher latency, if
need be. However, we noticed visible artifacts on H.264-encoded depth images.

5 User Studies

To demonstrate the capabilities of our telepresence system and evaluate it re-
garding crucial aspects such as visualization quality, realism, and spatial- and
social presence, we conducted two user studies with doctors and medical students
in a hospital.



14 R. Fischer et al.

Fig. 6. Our telepresence system in action during the studies: on the left the remote
doctor and on the right the live-captured operating room scene.

5.1 Study 1: Qualitative Feedback, Presence, and Preference

The goal of the first user study was to get general feedback from the doctors,
evaluate it regarding relevant aspects like presence, and see how beneficial the
telepresence system could be in clinical practice. The study was conducted with
N1 = 12 doctors and medical students with varying amounts of experience in
the operating room and with AR/VR. The experimental setup for this study
was as follows: In a room similar to an operating room, we divided the space in
half. In the one half, a PC was set up that acted as the server for the streaming
pipeline and host for the VR session. Connected to the PC was an RGB-D camera
facing an operating table and a staff member acting as a surgeon, see Fig. 6
(right). In the second half of the room was a second PC with an HMD which
the participants had to put on and join the session in the virtual operating room
where they could see the operating table and staff member as a live-streamed
point cloud, see Fig. 6 (left). The PCs were connected via a local network.

The task for the participants was to observe the staff member and help him
with specific spatial tasks he had to perform with interlocking bricks (Lego). We
did use interlocking bricks for this study, as their shape, size, and inherent abil-
ity to be combined into various more complex structures makes them suitable to
recreate spatial tasks done by surgeons. First of all, the staff member did work
alone so the participants could familiarize themselves with the VR experience
and the scene. After roughly one minute, the staff member started asking ques-
tions and presenting problems to facilitate interaction with the participant and
steer his attention to individual bricks. Questions were, for example, how many
bricks of one color were used in a construction, how many studs of one color
were visible, or how a specific construction could be built with a set amount
of available bricks. After the VR experience, which lasted roughly 8 minutes,
the participants had to fill out a questionnaire. The questionnaire consisted of
a demographical part (age group, sex, experience in the operating room, expe-
rience with AR/VR), the Igroup Presence Questionnaire (IPQ) [33], which is



VR-based Telepresence in the OR 15

0
1
2
3
4
5

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Never Always

Usage Frequency

0

1

2

3

4

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

No Completely

Preference vs 2D System

0
1
2
3
4
5

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

None Strong

Benefit vs 2D System

0
1
2
3
4
5
6

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Low High

Spatial Presence

0

1

2

3

4

0 1 2 3 4 5 6
Fr

eq
ue

nc
y

Low High

Involvement

0

1

2

3

4

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Low High

Realism

0
1
2
3
4
5

0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Low High

Social Presence

Fig. 7. Results of our first user study (in Likert scores, higher scores are better).
Especially the spatial- and social presence scored very well, involvement and realism
mediocre. The users see moderate to high benefits of the system and most of them
would like to use it.

split into the three subscales spatial presence, involvement, and realism, and a
social-presence part taken from Nowak et al. [26]. Additionally, we added various
specific questions: about cybersickness; if the participants see benefits of our sys-
tem compared to more traditional video-based systems; if they would prefer it to
those systems; how often they would want to use our system. For all questions,
we used a 7-point Likert scale (1-7, but shifted to 0-6 for the evaluation; higher
scores are better).

The results of this study can be seen in Fig. 7. Note that the scores can
be fractional in some cases, as the IPQ subscales are aggregations of multiple
questions. Our system scores especially high regarding both spatial- and social
presence. 58 % of the participants stated that they had a strong feeling of being
present in the virtual world (Likert scale >= 5), the most often given score even
being the maximal one. For the rest, the feeling was still moderately pronounced.
Similarly, 62 % stated that they had a strong feeling of actually being in the same
room with the other person/having a personal meeting with another real per-
son. Only 5 % definitely had not the feeling. We also found that our system fares
very well with cybersickness, as no participant had a significant occurrence of it,
and 75 % had nearly none to none. The results for the involvement and realism
subscales of the IPQ are moderately good, most participants gave scores relat-
ing to “somewhat captivated by the virtual world” or “moderately real world”,
although, especially on the question “The virtual world seemed more realistic
than the real world” of the IPQ, 75 % gave the minimal score dragging down
the subscale. One possibility for this particularly low result could be that the
participants took the question too literally, and the question may be not that
appropriate in our context. The other questions of the realism subscale1 scored
significantly better. In the end, 25 % of the participants would attest moder-
ate advantages and 58 % even strong advantages to our system compared to
1 http://www.igroup.org/pq/ipq/download.php



16 R. Fischer et al.

0

1

2

3

4

5

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Spla�ng Mesh

Prefered Rendering Method

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

Li
ke

rt
 S

co
re

Par�cipants

Realism Subscale Spla�ng

Mesh

Fig. 8. Results of our second study in which we compare the two rendering methods.
The left diagram illustrates that the users have no definitive preference, some slightly
prefer the splatting (left side of the x-axis), others the mesh rendering (right side of
the x-axis). The right diagram shows that also the realism scores fairly similar between
the two rendering methods (higher scores are better).

more traditional videoconferencing systems. Also, 83 % would prefer this system
at least somewhat over teleconferencing systems, and 33 % would use it on all
possible occasions, while the other 77 % at least sometimes. The results for the
realism subscale as a whole are in-line with the comments made by some par-
ticipants during and after the study – that the point cloud visualization is still
somewhat grainy and low precision.

5.2 Study 2: Comparison of Point Cloud Rendering Solutions

In a second study, we compared our two point cloud rendering methods and fur-
ther investigated the specific clinical use cases in which our system could provide
benefits. The experimental setup was similar to the one in the first study, but
this time there were two VR phases for the participants. First, they saw the live-
streamed staff member with the interlocking bricks using one rendering method,
filled out a questionnaire, and then repeated the procedure with the second ren-
dering method and a second part of the questionnaire. Which rendering method
was seen first, point cloud or mesh, was randomized. The task in both phases
was the same as in the first study, helping the staff member with the interlocking
bricks. For this study, we discarded the social presence part from the first study
and the spatial presence and involvement subscales of the IPQ, retaining only
the realism one. Instead, we focused on getting more precise feedback regarding
the potential benefits and use cases of the system. We also directly asked which
rendering method would be preferred. The study was conducted with N2 = 7
doctors and medical students in a hospital.

The results can be seen in Fig. 8. The left diagram shows the answers to the
question of which rendering technique the doctors would prefer, the value of 3
meaning they found them similar, lower values meaning the splatting technique
was preferred, and higher values correspond to the mesh visualization. The right



VR-based Telepresence in the OR 17

diagram shows the scores of the realism subscale for the two rendering tech-
niques. Again, scores are fractional, as the IPQ subscale is an aggregation of
multiple questions. The results show that there was no absolute preference for
one rendering method or the other. According to the data, the participants found
them to be rather similar, some slightly preferring the splatting and others the
mesh method. From the direct question and its result in the left diagram, we
can see a small tendency for the mesh technique, which lines up with verbally
given statements from two doctors after the study that they found the mesh
rendering a bit better. The results for the realism subscale also indicate that
there is no clear advantage for one or the other method. With a sample size of
seven, it is hard to make statements with any significance, though. We did per-
form a Wilcoxon rank-sum test to test the null hypothesis of both distributions
being equal and had not enough evidence to reject this hypothesis. Similar to
the first study, the question about if the virtual world was more realistic than
the real world scored particularly bad. Asked about it, one doctor argued that a
positive answer to this would be impossible, as he obviously knew that he was in
a virtual world during the experiment. The rest of the questionnaire’s answers
confirmed the results of the first study: most doctors would like to use such a
telepresence system from time to time (57.1 %), and some would even be eager
to use it very often (28.5 %). The more in-depth questions about the benefits
and use-cases showed that most doctors see moderate benefits over video-based
solutions for our proposed system in its current state and very strong benefits
if, in the near future, the point cloud visualization quality and precision could
be improved. The doctors stated that the system could be advantageous and
helpful in emergency operations, or if an inexperienced doctor is on duty. Ad-
ditional use-cases given by the doctors were educational operations, learning of
the anatomy, patient anamnesis, and learning and teaching of practical skills in
general.

6 Limitations

From the results of the first and particularly, the second study, we conclude that
our telepresence system is a very good basis and has very high potential, but the
RGB-D cameras’ sensor resolution is a main limiting factor at the moment, at
least concerning tasks involving high precision or small details. Naturally, sensors
with higher resolutions being released would bring the biggest relief, however,
we also think about combining 3D cameras with different sensing techniques to
complement each other. E.g., stereo cameras, which typically produce higher-
resolution color and depth images, could be added and used to enhance the
fidelity of our system. Another limitation of our current system is the lack of a
dedicated point cloud/mesh fusion process. Individually rendering multiple point
clouds or meshes that depict the same object leads to visible seams or artifacts,
even though they are registered precisely. The flying pixel effect and internal
interpolation routines in the cameras may be one of the causes. Efficient and
precise real-time fusion is a challenging topic in itself though, for example, Dou.



18 R. Fischer et al.

et al. [9] proposed a sophisticated but computationally demanding approach,
and, thus, was not the focus of this work.

6.1 Face Reconstruction

A glaring problem with real-time reconstructed avatars in VR/AR telepresence
applications is the HMD blocking the face. To be able to see the people’s faces
is highly important in collaborative virtual environments, though. To solve this
issue, we developed a prototype combining the HMD’s eye- and mouth-trackers
with 3D Morphable Face Models (3DMM). A straightforward solution would be
to use the deformable face model delivered with the HTC eye-tracking SDK and
let the trackers drive the deformation. However, this generic model wouldn’t be
too realistic, as it can’t be personalized. Also, we found the resulting facial ex-
pressions often do not match the actual mimic that well, sometimes even being
weird-looking. Therefore, we acquired a more advanced morphable face model
from “eos: A lightweight header-only 3D Morphable Face Model fitting library
in modern C++11/14” [15] which can be automatically adapted to the person’s
facial geometry via a photo taken beforehand. Instead of directly applying the
trackers’ output to the morphable face, we pre-animated six facial expressions
relating to basic emotions that are dynamically selected, interpolated, and ap-
plied to the face. The selection is based on a custom neural network that we
pre-trained to map the trackers’ output to the emotions. The six basic emotions
we decided on are sadness, disgust, happiness, surprise, anger, and neutrality. To
train the neural network, we created a small data set of facial expressions by ask-
ing multiple people to mimic the six emotions while we record the tracker output.
To further customize the face model, we initially take six photos of the user’s
face, one for each of the facial expressions, and apply the most appropriate as a
texture on the face at run-time. Again, the selection and interpolation is being
driven by the neural network’s output. The morphable face model is eventually
rendered at the HMDs’ 3D position while point cloud points or mesh triangles
corresponding to the face are hidden. An example is illustrated in Fig. 9. To
get a homogeneous avatar appearance for the point cloud rendering method, we
wrote a custom shader transforming the mesh of the morphable face to look like
a point cloud.

7 Conclusion and Future Work

In this paper, we have presented an immersive VR telepresence system for
telementoring and remote collaboration in the operating room. Multiple Azure
Kinect RGB-D cameras and point cloud avatars enable doctors to interact with
each other and to view and assist in operations from a distance as if they were
there. Thanks to our modular, low latency RGB-D streaming pipeline and ef-
ficient point cloud rendering and reconstruction techniques implemented in the
Unreal Engine 4, we achieve very low latencies: our evaluation shows motion-
to-photon latencies of only 120-150 ms, of which half of the latency is caused



VR-based Telepresence in the OR 19

Fig. 9. Our mesh-rendered point cloud avatar with the reconstructed face, on the left
with a neutral look and on the right showing disgust.

by the camera itself. At the same time, our pipeline handles all relevant tasks
from filtering, denoising, and compression of the RGB-D data, to registration
and computation of the point clouds. Using lossless compression, a bandwidth
of only 23.4 Mbit/s per camera is required, although this can be further reduced
by lossy compression when appropriate. In contrast to many other telepresence
systems, our proposed solution is easy to set up and doesn’t require multiple
high-end PCs to run. We also presented a prototype to tackle the issue of oc-
cluded faces via personalized semi-real-time face reconstruction. A user study
we conducted with doctors indicated that our system is capable of inducing very
strong feelings of spatial and social presence. 83 % of the participating doc-
tors attested moderate to high benefits to our system compared to video-based
solutions, and one-third would like to use it at every opportunity. Lastly, we
compared two point cloud rendering solutions, splatting and fast mesh recon-
struction, via another study. The results showed that they scored quite similar
regarding the IPQ’s realism subscale, and the doctors had no clear preference for
one or the other method. If directly asked for a comparison, there was a slight
tendency in favor of the mesh method. In general, though, the RGB-D sensors’
lacking resolution seems to be a limiting factor. Accordingly, most doctors would
attest medium-high benefits to the system in the current state, reaching from
educational scenarios to consultation in emergency situations, and very strong
benefits if the fidelity could be improved upon in the near future.

In the future, we plan to enhance the rendering quality by improving both
the real-time preprocessing of the RGB-D data as well as the rendering solutions
themselves. For instance, neural networks became popular in many related fields
lately and may lead to improvements in hole filling, denoising, or merging of
RGB-D data and point clouds, too. In order to further increase the fidelity, we
plan to add dedicated color or stereo cameras. Deep-learning-based up-sampling
of the depth images could also be promising. Another aspect that could be fur-
ther improved upon is the compression of the depth data. State-of-the-art video
compression algorithms may be adapted to better suit compression of depth im-
ages, however, they are computationally expensive and not necessarily lossless



20 R. Fischer et al.

which is crucial to not loose information from medically important areas/the
situs. Using different compression algorithms and a combination of lossy and
lossless techniques depending on the area of the scene and the visualized object
may be a valid solution to circumvent this problem. To tackle the issue of the
obstructed faces, we plan to finalize the prototype of our proposed reconstruction
pipeline. Point cloud/mesh fusion is also an important topic we want to explore.
Lastly, integrating the option to also use AR HMDs would be a great addition,
especially for the doctors in the operating room.

Acknowledgements This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) under the grant 16SV8077.

References

1. Amamra, A.: Gpu-based real-time rgbd data filtering. Journal of Real-Time Image
Processing 14 (09 2014)

2. Antón, D., Kurillo, G., Yang, A., Bajcsy, R.: Augmented telemedicine platform for
real-time remote medical consultation. pp. 77–89 (01 2017)

3. Augestad, K., Lindsetmo, R.O.: Overcoming distance: Video-conferencing as a clin-
ical and educational tool among surgeons. World Journal of Surgery 33, 1356–1365
(07 2009)

4. Baños, R., Botella, C., Alcañiz Raya, M., Liaño, V., Guerrero, B., Rey, B.: Im-
mersion and emotion: Their impact on the sense of presence. Cyberpsychology &
behavior : the impact of the Internet, multimedia and virtual reality on behavior
and society 7, 734–41 (01 2005)

5. Böhlen, C.F.v., Brinkmann, A., Mävers, S., Hellmers, S., Hein, A.: Virtual reality
integrated multi-depth-camera-system for real-time telepresence and telemanipula-
tion in caregiving. In: 2020 IEEE International Conference on Artificial Intelligence
and Virtual Reality (AIVR). pp. 294–297 (2020)

6. Cao, C., Preda, M., Zaharia, T.: 3d point cloud compression: A survey. pp. 1–9 (07
2019)

7. Cho, S., Kim, S.w., Lee, J., Ahn, J., Han, J.: Effects of volumetric capture avatars
on social presence in immersive virtual environments. In: 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). pp. 26–34 (2020)

8. Dedeilia, A., Sotiropoulos, M., Hanrahan, J., Janga, D., Dedeilias, P., Sideris, M.:
Medical and surgical education challenges and innovations in the covid-19 era: A
systematic review. In Vivo 34, 1603–1611 (06 2020)

9. Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S., Kowdle, A., Orts,
S., Rhemann, C., Kim, D., Taylor, J., Kohli, P., Tankovich, V., Izadi, S.: Fu-
sion4d: Real-time performance capture of challenging scenes. ACM Transactions
on Graphics 35 (07 2016)

10. Dussault, G., Franceschini, M.: Not enough there, too many here: Understand-
ing geographical imbalances in the distribution of the health workforce. Human
resources for health 4, 12 (02 2006)

11. Flodgren, G., Rachas, A., Farmer, A., Inzitari, M., Shepperd, S.: Interactive
telemedicine: effects on professional practice and health care outcomes. The
Cochrane database of systematic reviews 9, CD002098 (09 2015)



VR-based Telepresence in the OR 21

12. Gallo, L., Essmaeel, K., Damiani, E., De Pietro, G., Dipanda, A.: Comparative
evaluation of methods for filtering kinect depth data. Multimedia Tools and Ap-
plications 74 (05 2014)

13. Gamelin, G., Chellali, A., Cheikh, S., Ricca, A., Dumas, C., Otmane, S.: Point-
cloud avatars to improve spatial communication in immersive collaborative virtual
environments. Personal and Ubiquitous Computing 25 (06 2021)

14. Gasques, D., Johnson, J.G., Sharkey, T., Feng, Y., Wang, R., Xu, Z.R., Zavala, E.,
Zhang, Y., Xie, W., Zhang, X., Davis, K., Yip, M., Weibel, N.: Artemis: A collab-
orative mixed-reality system for immersive surgical telementoring. In: Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21,
Association for Computing Machinery, New York, NY, USA (2021)

15. Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W.J., Ratsch,
M., Kittler, J.: A multiresolution 3d morphable face model and fitting framework.
In: Proceedings of the 11th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications. University of Surrey
(2016)

16. Jang-Jaccard, J., Nepal, S., Celler, B., Yan, B.: Webrtc-based video conferencing
service for telehealth. Computing 98, 169–193 (01 2016)

17. Kamimura, K., Fujita, Y., Miura, T., Matsumoto, Y., Maeda, Y., Zempo, K.:
Teleclinical support system via mr-hmd displaying doctor’s instructions and patient
information. pp. 477–479 (03 2021)

18. Kolkmeier, J., Harmsen, E., Giesselink, S., Reidsma, D., Theune, M., Heylen, D.:
With a little help from a holographic friend: the openimpress mixed reality telep-
resence toolkit for remote collaboration systems. pp. 1–11 (11 2018)

19. Kvedar, J., Coye, M., Everett, W.: Connected health: A review of technologies and
strategies to improve patient care with telemedicine and telehealth. Health affairs
(Project Hope) 33, 194–9 (02 2014)

20. Latifi, R., Weinstein, R., Porter, J., Ziemba, M., Judkins, D., Ridings, D., Nassi, R.,
Valenzuela, T., Holcomb, M., Leyva, F.: Telemedicine and telepresence for trauma
and emergency management. Scandinavian journal of surgery : SJS : official organ
for the Finnish Surgical Society and the Scandinavian Surgical Society 96, 281–9
(02 2007)

21. Lin, B.S., Su, M.J., Cheng, P.H., Tseng, P.J., Chen, S.J.: Temporal and spatial
denoising of depth maps. Sensors (Basel, Switzerland) 15, 18506–25 (08 2015)

22. Liu, Y., Beck, S., Wang, R., Li, J., Xu, H., Yao, S., Tong, X., Froehlich, B.: Hybrid
lossless-lossy compression for real-time depth-sensor streams in 3d telepresence
applications. pp. 442–452 (09 2015)

23. Mao, A., Zhang, H., Liu, Y., Zheng, Y., Li, G., Han, G.: Easy and fast reconstruc-
tion of a 3d avatar with an rgb-d sensor. Sensors (Switzerland) 17 (05 2017)

24. Mekuria, R., Blom, K., César, P.: Design, implementation and evaluation of a point
cloud codec for tele-immersive video. IEEE Transactions on Circuits and Systems
for Video Technology 27, 1–1 (01 2016)

25. Mühlenbrock, A., Fischer, R., Weller, R., Zachmann, G.: Fast and robust registra-
tion of multiple depth-sensors and virtual worlds. In: 2021 International Conference
on Cyberworlds (CW). pp. 41–48 (2021)

26. Nowak, K., Biocca, F.: The effect of the agency and anthropomorphism on users’
sense of telepresence, copresence, and social presence in virtual environments. Pres-
ence Teleoperators and Virtual Environments 12, 481–494 (10 2003)

27. Orts, S., Rhemann, C., Fanello, S., Kim, D., Kowdle, A., Chang, W., Degtyarev,
Y., Davidson, P., Khamis, S., Dou, M., Tankovich, V., Loop, C., Cai, Q., Chou,



22 R. Fischer et al.

P., Mennicken, S., Valentin, J., Kohli, P., Pradeep, V., Wang, S., Izadi, S.: Holo-
portation: Virtual 3d teleportation in real-time (10 2016)

28. Pece, F., Kautz, J., Weyrich, T.: Adapting standard video codecs for depth stream-
ing. pp. 59–66 (01 2011)

29. Ragan, E., Kopper, R., Schuchardt, P., Bowman, D.: Studying the effects of stereo,
head tracking, and field of regard on a small-scale spatial judgment task. IEEE
transactions on visualization and computer graphics 19 (08 2012)

30. Rojas, E., Cabrera, M., Lin, C., Sánchez-Tamayo, N., Andersen, D., Popescu, V.,
Anderson, K., Zarzaur, B., Mullis, B., Wachs, J.: Telementoring in leg fasciotomies
via mixed-reality: Clinical evaluation of the star platform. Military Medicine 185,
513–520 (01 2020)

31. Roth, D., Yu, K., Pankratz, F., Gorbachev, G., Keller, A., Lazarovici, M., Wilhelm,
D., Weidert, S., Navab, N., Eck, U.: Real-time mixed reality teleconsultation for
intensive care units in pandemic situations. pp. 693–694 (03 2021)

32. Schröder, C., Sharma, M., Teuber, J., Weller, R., Zachmann, G.: Dyncam: A reac-
tive multithreaded pipeline library for 3d telepresence in vr. In: Proc. of the 20th
ACM Virtual Reality International Conference (VRIC 2018). ACM (2018)

33. Schubert, T., Friedmann, F., Regenbrecht, H.: The Experience of Presence: Factor
Analytic Insights. Presence: Teleoperators and Virtual Environments 10(3), 266–
281 (06 2001)

34. Söderholm, H., Sonnenwald, D., Cairns, B., Manning, J., Welch, G., Fuchs, H.: The
potential impact of 3d telepresence technology on task performance in emergency
trauma care. pp. 79–88 (11 2007)

35. Teng, C.C., Jensen, N., Smith, T., Forbush, T., Fletcher, K., Hoover, M.: Inter-
active augmented live virtual reality streaming: A health care application. pp.
143–147 (06 2018)

36. Thoravi Kumaravel, B., Anderson, F., Fitzmaurice, G., Hartmann, B., Gross-
man, T.: Loki: Facilitating remote instruction of physical tasks using bi-directional
mixed-reality telepresence. pp. 161–174 (10 2019)

37. Tölgyessy, M., Dekan, M., Chovanec, L., Hubinský, P.: Evaluation of the azure
kinect and its comparison to kinect v1 and kinect v2. Sensors 21, 413 (01 2021)

38. Wilson, A.: Fast lossless depth image compression. pp. 100–105 (10 2017)
39. Yu, K., Gorbachev, G., Eck, U., Pankratz, F., Navab, N., Roth, D.: Avatars for

teleconsultation: Effects of avatar embodiment techniques on user perception in
3d asymmetric telepresence. IEEE Transactions on Visualization and Computer
Graphics PP, 1–1 (08 2021)


	Evaluation of Point Cloud Streaming and Rendering for VR-based Telepresence in the OR

