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Motivation

• Accurate hand tracking for

• Physically-based grasping

• Medical training

• Human-to-robot transfer

• Trajectories of finger motion

• Heatmaps of contact points

Verschoor et al. 2018



Hand Tracking Methods

Cyberglove RGB Active Markers

Mueller et al., 2018 Pavllo et al., 2018



Optical Marker-based Tracking

• Sub-millimeter accuracy

• Less invasive than active markers

• Challenges: Occlusions require relabeling



Related Work

• Sparse marker sets

• Real-time inverse kinematics (Maycock et al., 2015)

• Gaussian mixture models (Alexanderson et al., 2017)

• Labeling of dense marker sets (Han et al., 2018)

Han et al., 2018



Contribution

• Improvement of current state-of-the-art labeling

• Modified depth images

• Retraining of CNN

modified from Han et al., 2018



Depth Image Generation 

• Find projection axis for orthographic projection

• Values along the axis are normalized between [0.1,1] (depth value)

• Splatting to preserve relative depth



Random Projection Axis (RPA)

• Idea: Use random projection axis (Han et. al)

• Generate 10 random images and select the one with highest spatial spread (highest 

eigenvalues of covariance matrix)



Multi Images – Minimal Cost (Multi)

• Idea: Multiple marker matches and select best match

• Generate multiple random projection axis and images

• Match all images and select the one with lowest matching cost



Principal Component Analysis (PCA)

• Idea: Create an image with high spatial spread

• Get principal axes of the 3D point cloud

• Use principal axis with lowest eigenvalue as projection axis



Palm Prediction Method (PalmP)

• Idea: Similar images independent of hand pose

• Projection axis perpendicular to the palm’s orientation

• Palm orientation from rigid markers



CNN

• Training set1 of 168691 frames provided by Han et al.

• VGG-style neural network

• Retraining of provided CNN1 for PCA & PalmP for improved results

• 137357 frames for training & 31.334 frames for validation

• Improves accuracy up to 20 percent points

Han et al., 2018

1 https://github.com/Beibei88/Mocap_SIG18_Data



Results – Label Prediction

Han et al.

ours

ours
ours



Results – Frame Prediction

Han et al.

ours

ours

ours



Results – Multi

• How many images can be used for the Multi method?



Conclusion

• Current state-of-the-art labeling up to 40 percent points improved

• Multiple methods depending on use-case

• Multi: Independent of marker set but multiple CNN passes are necessary

• PCA: Independent of marker set and fast

• PalmP: Prior knowledge required (in our case the palm) 


