
EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

kDet: Parallel Constant Time Collision Detection
for Polygonal Objects

René Weller, Nicole Debowski and Gabriel Zachmann

University of Bremen, Germany

Figure 1: Specially constructed objects like Chazelle polyhedra (left) realize a quadratic number of intersecting pairs of polygons in the worst
case. Our novel algorithm supports inter- and intra-object collision detection for real-world polygon soups, including topology changes of
fracturing objects (middle) and deformable objects (right), in parallel constant time.

Abstract

We define a novel geometric predicate and a class of objects that enables us to prove a linear bound on the number of intersecting
polygon pairs for colliding 3D objects in that class. Our predicate is relevant both in theory and in practice: it is easy to check
and it needs to consider only the geometric properties of the individual objects – it does not depend on the configuration of a
given pair of objects. In addition, it characterizes a practically relevant class of objects: we checked our predicate on a large
database of real-world 3D objects and the results show that it holds for all but the most pathological ones.
Our proof is constructive in that it is the basis for a novel collision detection algorithm that realizes this linear complexity also
in practice. Additionally, we present a parallelization of this algorithm with a worst-case running time that is independent of the
number of polygons. Our algorithm is very well suited not only for rigid but also for deformable and even topology-changing
objects, because it does not require any complex data structures or pre-processing.
We have implemented our algorithm on the GPU and the results show that it is able to find in real-time all colliding polygons
for pairs of deformable objects consisting of more than 200k triangles, including self-collisions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

From a theoretical point of view, finding collisions between a pair
of polygonal objects is trivial: we simply check each polygon of
one object against all polygons of the other object. In practice, how-
ever, this so-called all pairs weakness leads to a worst-case running
time quadratic in the number of polygons. Obviously, this is not an
option in practice. Hence, a lot of work has been spent on develop-
ing sophisticated acceleration data structures to reduce the number
of potentially colliding polygon pairs in most cases, such as bound-

ing volume hierarchies, which can quickly prune parts of the ob-
jects that cannot collide. For many cases and configurations, these
data structures work reasonably well. Unfortunately, the quadratic
bound on the number of intersecting pairs of polygons is tight: it
can be reached by objects such as the Chazelle polyhedron (see
Figure 1) [Cha84]: each triangle of one Chazelle polyhedron can
intersect all triangles of the other one. In practice, this worst case
does not occur very often, but until now, it is impossible to predict
in advance for what kinds of objects and in which configuration
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it could occur. In physically-based simulations we will probably
notice a stuttering in the framerate, but in case of time-critical ap-
plications like robotics or haptics, exceeding a certain time budget
can lead to serious problems.

For the first time, we define a novel geometric predicate that al-
lows to characterize a class of polygonal objects that will not ex-
hibit the quadratic worst-case behavior during collision detection.
One nice feature of our predicate is that it depends only on the set
of polygons of a single object, and not on the configuration of a
pair of objects, i.e. on their position and orientation. It allows us to
prove a linear worst-case bound on the number of intersecting pairs
of polygons for objects that fulfill it. The main idea behind our
predicate is the simple observation that for "normal" objects, the
number of neighbors (in some sense, which is to be defined later)
of each polygon is usually limited. This is based on a new notion
of neighborhood, which takes into account not only the topology
of the mesh but also its volumetric configuration. Our predicate is
not only of theoretical interest: we tested it on a large database of
thousands of 3D objects and found that almost all objects fulfill it,
except a few pathological ones.

Moreover, our proof of the linear complexity implies a novel al-
gorithm for collision detection that realizes a worst-case running
time that is independent of the number of polygons. Our algorithm,
called kDet, can be easily parallelized which leads to a worst-case
constant complexity of parallel running time by using only a lin-
ear number of processors. Another advantage is that our algorithm
does not require any complicated pre-processing or sophisticated
data structures. Hence, it is also perfectly suited for collision de-
tection of deformable objects and it can easily handle fracturing
objects and even the insertion or deletion of polygons during run-
time.

We have implemented kDet using CUDA and we measured the
performance with a number of challenging scenarios, using both
deformable and fracturing objects. Our results show that our al-
gorithm can handle complex scenarios consisting of hundreds of
thousands of polygons, including self-collision detection, in real-
time. We compared it to a GPU implementation of a state-of-the-art
parallel algorithm for all-pairs discrete collision detection and our
algorithm outperformed it by more than a factor of four.

2. Related Work

In this section we will briefly summarize works that are related to
our paper. We start with an overview on previously published theo-
retical results in the field of collision detection. Because a complete
review on all existing collision detection algorithms would exceed
the scope of this paper, we focus on the most fundamental algo-
rithms and recent works that use the GPU.

2.1. Theoretical Results

There is a large body of literature on algorithms and accelera-
tion data structures to reduce the running time in practice. How-
ever, there are very little theoretical results on the complexity of
the problem of collision detection. There mainly exist some re-
sults on special objects such as convex polyhedra. For instance,

[DK90] used a hierarchical representation of convex polyhedra to
show that the distance between two of them can be computed in
O(log(| P |) · log(| Q |)) with | P | and | Q | being the number
of faces of P and Q respectively. If closest features of polyhedra
based on Voronoi regions are considered [LC91], the worst-case
running time for finding the distance is linear. If convex polyhedra
undergo only translations, the running time isO(n

8
5 +ε) [ST95] and

O(n
5
3 +ε) for rotational movements of at most the second degree.

Later, a generalization for more flexible movements in o(n2) have
been made [ST96].

For pairs of general polygonal objects, [WKZ06] showed an ex-
pected running time of O(n) or O(log(n)), depending on the over-
lap of the root bounding volumes and the diminishing factor of the
AABB hierarchy that was used in the proof. However, the running
time depends on the respective bounding volume hierarchy and on
the configuration of the objects, i.e. their position and orientation,
not on the object itself. When using other object representations in-
stead of polygons, e.g. sphere packings, is possible to prove a linear
complexity for the number of collisions [WFZ13]. Unfortunately,
these polydisperse sphere representations only support watertight
objects and thus, can be hardly applied to general scenarios.

2.2. Collision Detection on the GPU

In the past, collision detection algorithms have been implemented
mostly on the CPU. While the worst-case running time does not
change for polygonal objects, acceleration data structures have
been used to speed up collision queries for regular cases. Those
acceleration data structures include bounding volume hierarchies
based on axis aligned bounding boxes [vdB98] or spheres [PG95]
among others, or space partition trees such as octrees [BT95], k-d
trees [Ben75] or binary space partitioning trees [PY90]. For de-
formable objects those hierarchical data structures have to be re-
built or at least updated. This has been done by refitting AABBs
according to the surface area heuristic [WBS07], previously vis-
ited nodes [LAM06] or independently of other nodes in the case
of wrapped sphere volumes [JP04]. Mesh representations based on
tetrahedra have also been used with hierarchical grids [EL07] for
fewer occupied grid cells per primitive.

The introduction of programmable GPUs allowed completely
new algorithms. First, the depth buffer was used to determine
overlapping primitives in conjunction with a color buffer for the
collision response [VSC01], while the stencil buffer was used in
CInDeR [KP03] to count ray-face intersections resulting from ray
casts. CULLIDE [GRLM03] and its successor Quick-CULLIDE
[GLM05] only used the image space for filtering potential collision
candidates to reduce the errors caused by the 2.5D projection in im-
age space. Moreover, image space algorithms have been improved
by using a layered depth image per dimension to obtain a collision
volume [AFC∗10].

Although fully programmable, the architecture of modern GPUs
is not well-suited for deep recursion. Hence, traditional BVH-based
methods have been adjusted accordingly. A hybrid method has been
proposed [PKS10] which executed the BVH construction and up-
dates on the CPU and the actual collision queries on the GPU.
An entirely GPU method used linear ordering with a surface area
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Figure 2: Left: in this situation, the red triangle (dark red) is 3-free: the green triangles don’t count, because their minimum enclosing sphere
is smaller, while the two larger triangles (blue) intersect the Minkowski sum (light red). Middle: partitioning of the triangle in the acute case.
The center c of the circumcircle with radius r is the intersection point of the perpendicular bisectors (green). The bisectors and lines from
the center to the vertices (red), which have length r, divide the triangle into six disjoint right triangles. They can be covered by three circles
that have diameter r. Right: a circle of diameter d can be covered by seven circles that have half of it’s diameter.

heuristic for BVH construction with AABBs [LGS∗09] and was
later adjusted for OBBs and rectangle swept spheres as well as self-
collisions [LMM10]. Sweep and prune algorithms are not restricted
by recursion and have been proposed using principal component
analysis for an optimal sweeping direction for rigid objects and par-
ticles [LHLK10] and deformable objects [MZ15]. There also exists
an approach based on adaptive octrees [WLZ14].

Recent works often concentrate on continuous collision detec-
tion (CCD) rather than all-pairs discrete collision detection (DCD).
For instance [TTWM14] presented an approach that uses Bernstein
sign classification on the GPU to accelerate continuous collision
elementary tests. This method was later extended to support the
computation of tight error bounds that typically arise when using
finite-precision arithmetic [WTTM15]. CCD is often used for cloth
simulation whereas DCD is preferred for CAD, path planning, Vir-
tual Reality or force feedback. Some CCD algorithms like the work
presented by Tang et. al [TMLT11], which is based on stream com-
paction and hierarchical culling techniques, can be also extended to
DCD.

3. Our Geometric Predicate

In this section, we establish the theoretical basis of our novel linear
sequential time collision detection method. First, we consider only
triangulated objects. In this case, we are able to prove a slightly
better bound than for arbitrary polygonal objects. However, we will
extend our definitions and theorems to arbitrary polygons in the
second part of this section.

3.1. The Triangle Case

We start with the definition of our geometric predicate that allows
us to prove a linear number of intersections for objects that fulfill
it.

What makes the analysis of the number of potentially colliding
triangles so difficult is mainly the embedding of a 2-manifold ob-
ject into 3-dimensional space, which allows for the stacking of an
infinite number of 2D triangles into a small 3D volume. Obviously,

this is an artificial scenario. Hence, our geometric predicate aims
to exclude these cases. The main idea behind the definition of our
geometric predicate is to ensure that each triangle shares a certain
volume of its environment only with a limited number of other tri-
angles. We define this environment with respect to the size of the
triangle, or more precisely, with respect to the triangle’s minimum
enclosing sphere.

Definition 3.1 Let t ∈ A be a triangle in a triangle set A and integer
k > 0 some constant. Let s be a sphere with diameter d

2 , where d
is the diameter of the the smallest enclosing sphere of t. We call t
k-free if | {t j ∈ A|d ≤ d j and t j ∩ (t⊕ s) 6= ∅} | < k, where d j is
the diameter of the smallest enclosing sphere of triangle t j and t⊕s
is the Minkowski sum of s and t (Figure 2 shows a situation where
a triangle (red) is 3-free).
Accordingly, we call the whole set A k-free, if all triangles ti ∈ A
are k-free.

In other words, a triangle t is k-free if there are fewer than k
triangles of A that both (1) have a larger minimum enclosing sphere
and (2) intersect the volume that results from sweeping a sphere
with diameter d/2 around t. For sake of simplicity, we will call
these triangles larger triangles. More precisely, let ti and t j be two
triangles with minimum enclosing spheres si and s j. Let di be the
diameter of si and d j be the diameter of s j. Then we say ti is larger
than t j if di ≥ d j.

Please note that if we want to determine the concrete number of
intersections for a concrete triangle mesh we are usually interested
in a minimal constant k. However, for the theoretical considerations
in this section, it is sufficient to have any constant k. It improves
readability if we can simply use the same constant k for the indi-
vidual triangles and the complete triangle set.

The following lemma shows that our definition guarantees that a
single triangle cannot intersect too many larger triangles of a k-free
triangle set:

Lemma 3.1 Let A be a k-free set of triangles and let t /∈ A be an
arbitrary triangle. Then, t intersects at most a constant number of
larger triangles t j ∈ A. More precisely, the number of intersections
between t and larger triangles t j ∈ A is at most 3k.
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The proof of this lemma relies on the following simple geometric
observation:

Lemma 3.2 Let t be a triangle in 2D and c its minimum enclos-
ing circle with diameter d. Then we need at most three circles of
diameter d

2 to completely cover t.

Proof We consider two cases, acute and obtuse triangles. In the case
of acute triangles, we can use the Circumcenter Theorem, which
gives the circumcircle as the smallest enclosing circle. With the
perpendicular bisectors, we can partition the triangle into six right
triangles, all meeting at the circumcenter (see Figure 2 middle).
The length of the hypotenuses of all the sub-triangles is obviously
d
2 . On each of the three hypotenuses, we place a circle of diameter
d
2 on the midpoints. Due to Thales’ Theorem, the opposite vertices
will lie on these circles. Thus, all six sub-triangles are completely
covered by those three circles.
In the case of obtuse triangles, the minimum enclosing circle c
is not the circumcircle. Instead, its diameter is the length of the
longest side, and its center lies on the midpoint of the longest side.
Without loss of generality, it is sufficient to consider right triangles.
If t is obtuse, we simply enclose it by a larger triangle t′ by moving
its vertex opposite the longest edge outwards onto the minimum
enclosing circle. In the following, let t be a right triangle. Similar
to the case above, we construct a partitioning of t by the perpen-
dicular bisectors and the circumcenter. In this case, there will be
four right sub-triangles. Again, the hypotenuses of all these sub-
triangles have length d

2 . Hence, we obtain a circle covering by plac-
ing circles of diameter d

2 on the midpoint of h and at the positions
1
4 and 3

4 of the length of the hypotenuse of t.

Now that we have proven Lemma 3.2, we can use it to prove
Lemma 3.1:

Proof Let c be the minimum enclosing circle of t in its support-
ing plane; let d be its diameter. We construct a circle covering of
t according to Lemma 3.2. We claim that for each of these circle
c j of diameter d

2 there can be at most k larger triangles ti ∈ A that
intersect it.
We use a proof by contradiction: assume that circle c1 is intersected
by k+ 1 larger triangles. Let ta be the smallest of these triangles,
and let da be the diameter of its minimum enclosing sphere. Then,
by definition, d ≤ da, because ta is larger. Since ta intersects c1
and the diameter of c1 is d

2 , c1 is completely located inside ta⊕
sa. Hence, there have to be k larger triangles in ta⊕ sa. This is a
contradiction to ta being k-free by prerequisite of Lemma 3.1.

Note, if a set of triangles is k-free for a sphere of diameter d
2 , it

is also k-free for smaller spheres in the range of 0 < δ ≤ d
2 which

could result in smaller factors k′. Nevertheless, the choice of d
2 is

not arbitrary. Actually, smaller spheres would require more circles
for the circle covering in the proof of Lemma 3.2. The best choice
between the sphere diameter and the number of circles in the cover-
ing remains an open question. This is mainly because, to our knowl-
edge, the general sphere covering problem for triangles is still open.

However, the result of Lemma 3.2 allows us to prove a linear
bound on the number of intersecting triangles with a decent con-
stant factor for all k-free triangulated objects:

Theorem 3.3 Let A and B be two k-free sets of triangles. Then the

total number of colliding triangles of A and B is in O(n), where n
is the number of triangles in A and B. More precisely, the number
of intersections is at most 3nk.

Proof We test each triangle of A against all larger triangles of B and
vice versa. For each of these tests we get at most 3k intersections
according to Lemma 3.1. Moreover, we find all pairs of colliding
triangles, because either of the triangles in a pair of intersecting
triangles must be larger than the other. Overall, we get at most 3nk
intersections.

3.2. Extension to Arbitrary Polygons

Similarly to Definition 3.1, we can define k-freeness for arbitrary
polygons:

Definition 3.2 Let p ∈ A be a polygon in a polygon set A and k > 0
some constant. Let s be a sphere with diameter d

2 , where d is the
diameter of the the smallest enclosing sphere of p. We call p k-
free if |{p j ∈ A|d ≤ d j and p j ∩ (p⊕ s) 6=∅}|< k, where d j is the
diameter of the smallest enclosing sphere of polygon p j and t⊕ s
is the Minkowski sum of s and t.
Accordingly, we call the whole set of polygon A k-free, if all poly-
gons pi ∈ A are k-free.

Unfortunately, Lemma 3.2 does not necessarily hold for arbitrary
polygons. Obviously, we could simply use a triangulation of an ar-
bitrary polygon and apply Lemma 3.2 to each of the triangles in the
triangulation. However, in this case, the constant would depend on
the triangulation and thus, the number of edges of the polygons.

In order to get a factor that is independent of the actual polygon
we use another approach. The main idea of Lemma 3.2 is to cover
a triangle with circles of half of the diameter of the circumcircle
of the triangle. Instead, we could also cover an upper bound of the
triangle, this would still result in a linear number of intersections.
In case of polygons we simply chose to cover the complete cir-
cumcircle of the polygon as an upper bound. We can cover it with
seven spheres that have half of its’ diameter (see Figure 2). This is
a well known circle covering theorem [Ker39]. This results in an
only slightly worse constant factor for arbitrary polygon soups, but
the maximum number of intersections remains linear. The rest of
the proof of the following theorem remains exactly the same as for
Theorem 3.3.

Theorem 3.4 Let A and B be two k-free sets, each consisting of n
polygons. Then the total number of colliding polygons of A and B
is in O(n). More precisely, the number of intersections is at most
7nk.

4. Our Algorithm

The proofs of Theorem 3.3 and Theorem 3.4, respectively, lead to
an algorithm based on the following idea: when we want to check
two objects A and B for collisions, we simply have to check each
polygon of A against larger polygons of B and vice versa. Obvi-
ously, a naive implementation would still result in a quadratic run-
ning time. The challenge is to reduce the number of potentially
colliding triangles that we have to check to a constant number for
each polygon. In other words, we have to identify polygons in a
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Figure 3: Left: three consecutive levels of the hierarchical grid with distributed polygons based on their circumcircle. Right: covering of a
cell in the uniform grid with two shifted regular circle lattices.

certain neighborhood and we have to show that there are not too
many polygons in this neighborhood.

A widely used approach for neighbor searching are uniform
grids. However, choosing an appropriate cell size is challenging:
if the cell size is too large, there may be many polygons assigned to
the same cell. On the other hand, if the cell size is chosen too small,
large polygons occupy a large number of cells. Fortunately, in our
case, we are not interested in finding all neighbors, but we have to
find only larger polygons. This means, we can use a hierarchy of
grids with different cell sizes and assign each polygon to a certain
level in this hierarchy where it does not occupy too many cells.

4.1. Populating the Hierarchical Grid

Before performing a collision query, we have to assign the polygons
to their particular grid cells. To do that, we apply a simple rule: let A
be a set of polygons. For each polygon pi ∈ A let di be the diameter
of the circumcircle and let dmin = min{di}. We set the cell size of
the finest grid in our hierarchy to dmin. Coarser levels are derived by
successively doubling the cell size. The hierarchy level li of each
polygon pi can be computed by

2li ·dmin ≤ di < 2li+1 ·dmin.

In other words, each polygon is assigned to the level so that the
cell size is at most the diameter of the circumcircle. Then we simply
add the polygon to all cells in the level li that are intersected by the
polygon (see Fig 3).

4.2. Collision Queries

If we want to check two objects A and B for collision, we simply
test all polygons pA

i ∈ A against all larger polygons pB
j ∈ B and

vice versa. In detail, for each pA
i ∈ A we compute its level li and

all cells in B’s hierarchical grid that are intersected by pi at this
level. For each of these cells we test all included polygons pB

j with
at least the size of the circumcircle, i.e. cA

i ≤ cB
j . In order to check

also larger triangles, we ascend in the hierarchy until we reach the
maximum level and again, test pA

i against all included polygons of
B for an intersection (see Algorithm 1 and 2).

This algorithm guarantees that we find for each polygon pi ∈ A

Algorithm 1: checkCollisions( object A, object B )

forall the polygons pi ∈ A do
checkCollisions( pi, B)

forall the polygons p j ∈ B do
checkCollisions( p j, A)

all intersecting polygons p j ∈ B with at least the same diameter of
the circumcircle.

Overall, we will find all colliding pairs of polygons if we test
A against B and vice versa, because either of the polygons has a
larger circumcircle, assuming general position of the polygons. Ob-
viously, for real-world tests we cannot assume general positions.
Here we avoid to double check polygon pairs by simply testing
only strictly larger polygons in one direction.

Algorithm 2: checkCollisions( polygon pi, object B )

Get hierarchy level li for pi

forall the hierarchy levels: li · · · lmax do
forall the cells ck ∩ ti 6=∅ do

forall the polygons p j ∈ ck do
polygonIntersection(pi, p j)

4.3. Parallelization

This algorithm can be easily parallelized. For the population of the
hierarchical grid, we assign all polygons independently to their par-
ticular cells. Simple atomic operations avoid race conditions if two
polygons are assigned to the same cell. During the queries, we can
also check all polygons for each object in parallel. Algorithm 3
shows the complete parallel algorithm. It uses Algorithm 2 that will
be executed as the kernel for the collision check per polygon.

In case of rigid objects, the assignment to the grid cells does not
have to be computed before each collision check, but it can be done
once at the beginning of the simulation as a pre-processing step.
However, even if the assignment is computed before each collision
check, as it would be required for deformable objects, it does not
affect the theoretical complexity of our algorithm.
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Figure 4: Scenes from the benchmarks we used. Left: funnel benchmark, a ball presses a cloth into a funnel. Right: Buddha cloth benchmark,
a cloth wraps around a Buddha statue.

Algorithm 3: checkCollisionsParallel( object A, object B )

In Parallel forall the polygons pi ∈ A do
assignPolygonToGridcell( pi )

In Parallel forall the polygons p j ∈ B do
checkCollisions( p j, A)

In Parallel forall the polygons p j ∈ B do
assignPolygonToGridcell( p j )

In Parallel forall the polygons pi ∈ A do
checkCollisions( pi, B)

4.4. Analysis

The construction of our hierarchical grid can be done in linear time
in case of sequential processing and constant time in the parallel
case: computing the level of each triangle takes O(1) time. Due
to the choice of the level – the cell size is at least the diameter
of the circumcircle of each polygon – the polygon can intersect
only a constant number of cells on its level. Hence, it has to be
inserted into at most a constant number of cells. More precisely,
each polygon can intersect at most eight cells in its level. Overall,
we get a linear time for the construction of the hierarchical grid.

The query time consists mainly of two factors: the height of the
hierarchy and the maximum number of polygons in a cell. First, we
consider the number of polygons per cell. Due to the construction
of the hierarchy, the minimum diameter d of the circumcircle of any
polygon inside a cell with length c is at most c

2 . We can cover the
complete cell with spheres of diameter c

4 , for instance by overlay-
ing two regular sphere packings (see Figure 3 for an 2D example).
Obviously, the number of spheres is constant and independent of
the particular cellsize, because the diameter of the spheres is a frac-
tion of the length of the cell. This number can be improved by using
a better sphere covering. If we have such a sphere covering and if
the object is k-free, there can be at most k+ 1 polygons intersect-
ing such a sphere of diameter c

4 , following the same argumentation
as in the proof of Lemma 3.1. Summarizing, we have a constant
number of spheres that are required to cover a cell c and we have
at most a constant number of polygons intersecting each of these
spheres; Consequently, the total number of polygons inside a cell is
constant. Please note that this holds only for k-free objects. For the
Chazelle polyhedron we would get a linear number of intersecting
polygons for a sphere.

It still remains to show that the height of the hierarchy is in-

dependent of the number of polygons. Actually, the height of the
hierarchy depends only on the ratio between the largest and the
smallest polygon of each individual object. Let dmin = min{di} and
dmax = max{di} where pi ∈ A are the polygons of a set of poly-
gons A and di is the diameter of the circumcircle of each polygon
pi. Then the height h of the hierarchy is h = log( dmax

dmin
). Obviously,

h is independent of the number of polygons in A, it only depends
on their size distribution.

To summarize: in case of k-free sets of polygons, we get at most
a constant number of polygons in each cell of the hierarchy, each
polygon intersects at most a constant number of cells and the num-
ber of levels in the hierarchy is independent of the number of poly-
gons. Overall, we get a running time of O(log( dmax

dmin
)n) for a colli-

sion query which is almost linear in the number of polygons.

In the parallel case, we process all polygons at the same time
for both the hierarchy construction and the collision queries. The
construction requires an atomic operation when inserting several
polygons into the same cell. However, the number of polygons per
cell is constant, consequently, also the number of atomic operations
is constant per cell. This means, we get a constant running time for
the construction. In the query algorithm, all steps are constant per
polygon except the height of the hierarchy. Hence, we get a parallel
running time ofO(log( dmax

dmin
)) for the query which is independent of

the polygon count and thus, almost constant. For both algorithms
we need only a linear number of parallel processors.

The factor log( dmax
dmin

) somewhat blemishs the analysis and it is
easy to construct artificial worst-case objects that would produce a
linear height of the hierarchy. However, objects with such a wide
spread in polygon sizes can be easily identified, in contrast to ob-
jects that produce a quadratic number of collisions, and moreover,
they are typically avoided in real-world scenarios. In Section 6 we
present the results of measuring a large object database. The typical
height of the hierarchy is about eight for most objects.

In case of deformable (or fracturing) objects, dmax
dmin

could change
due to the deformations. In our experiments (see Section 6) we did
not observe such a behavior. We are positive that most deformation
methods will not change dmax

dmin
much, because an extremely varying

polygon size is usually unwanted, if only for reason of numerical
stability and high-quality rendering. However, the theoretical proof
of a constant dmax

dmin
for existing deformation schemes or the devel-

opment of novel deformation schemes that keep this within certain
bounds is an interesting question for future works.
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Figure 5: Left: the worst object we found in the database has a constant k of more than 6000 according to Definition 3.1. Middle left: the
object that realizes the maximum height of the hierarchy that we have found. It is a highly detailed object placed on a plane formed by two
triangles. Middle right and right: scenes from the exploding dragon we used in one of our benchmarks.
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Figure 6: Tukey boxplots of the factors k according to Definition 3.1 that we computed for 8000 objects from the 3D Meshes Research
Database of the INRIA GAMMA group. We binned the objects with respect to the polygon count. The resolution was not equally distributed
over all objects, hence, the number of objects with a high polygon count is relatively small. This results in larger standard deviations. Overall,
we did not observe a relationship between the factor k and the number of polygons of the object.

5. Implementation Details

The high-level description of our algorithm from the previous sec-
tion is useful to understand the underlying concepts and for the
theoretical analysis. An actual implementation should also consider
details of current computer architectures like memory consumption
or the memory access of current massively parallel processors like
GPUs. In this section, we will describe our current implementation
we used for our tests (see Section 6).

5.1. Spatial Hashing

A major drawback of the naive algorithm is the high memory con-
sumption that is required to maintain a hierarchy of uniform grids.
Usually, most of the cells remain empty, even if we restrict the
grids’ extents to the bounding boxes. In order to overcome this
drawback, we use hash tables instead of real grids.

Hash tables are a widely used data structure that already
have been applied successfully to represent uniform grids in the
past [Tur89]. Hash tables achieve almost constant insertion and
query time while reducing the memory overhead. The main chal-
lenge when using hash tables is to find an appropriate hash func-
tion. We assumed different hashing functions like DJB2 hashing
[EL07], that spreads the triangles relatively uniformly in the hash

table and, thus, minimizes hash collisions. Additionally, we tested
3D Morton codes [Mor66] that generate a neighborhood-preserving
distribution of the triangles that should help to maximize coalesced
memory access in our GPU implementation. In order to further im-
prove the memory access, we initially pre-sort the triangles with
respect to the Morton codes and the hierarchy levels using a bitonic
sorter [Bat68]. However, we do this only once at the beginning of
the simulation, not before each individual collision check. Conse-
quently, this pre-processing heuristic does not affect the constant
running time.

Another question that arises when using hash tables is the resolu-
tion of hash collisions that appear when several polygons have the
same hash value. Closed hashing would result in extremely non-
coalesced memory access. Open hashing, on the other hand, would
require dynamical memory allocation if we would use lists for in-
stance. Fortunately for our algorithm, we already know the maxi-
mum number of polygons per cell that we could use to pre-allocate
memory for the hash buckets, at least as long as there is only one
grid cell assigned to each hash value. However, this constant fac-
tor is only an upper bound that is rarely met in real applications
and, hence, simply using such a large number of entries for each
bucket would result in a large memory footprint of the hash table.
To overcome these drawbacks, we decided to use a hybrid hashing
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Figure 7: Scenes from the benchmarks we used. Left: N-body benchmark, dozens of balls flying around. Middle left: chair benchmark, a cloth
wraps around a chair. Middle right: breaking Buddha benchmark, a Buddha statue falls down and breaks into pieces when hitting another
Buddha statue (see also Figure 1). Right: whirling cloth benchmark, a cloth is whirled by a ball (see also Figure 1)
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Figure 8: Left: the collision detection times of kDet for different hashing functions, namely, Morton codes and DJB2 in the n-body scene that
consists of 146k polygons. Right: stacked plot of our kDet’s collision detection time (blue) and the hierarchical hash map’s population time
in the highest resolution chair scene (130k polygons).

strategy: we reserve a certain, relatively small, number of entries
for each bucket and in case of a bucket overflow, we simply search
for an empty bucket and link it to the overflown bucket.

6. Results

In this section we present results for both our theoretic considera-
tions and the practical implementation of our new algorithm. More
precisely, we checked how good our geometric predicate fits to real-
world 3D objects, and we applied our algorithm to challenging sce-
narios including deformable object simulations and self-collision
detection.

6.1. Analysis of Real-World Objects

First we tested, whether our geometric predicate is reasonable or
not. This means, we checked whether typical real-world 3D ob-
jects are k-free and we derived their (minimum) constant factors
k. We used objects from the 3D Meshes Research Database of the
INRIA GAMMA group. This database covers a wide variety of dif-
ferent 3D objects with different polygon counts. Overall, we chose
randomly 8000 objects from all categories (like cars, cloth, archi-
tectural models,...). The polygon count ranges from 10 to 2 millions

(M=20657, SD=58168). For all objects we computed the minimum
constant factor according to Definition 3.1. The average factor is
30.79 with a standard deviation of 32.82 (see Figure 6 for more de-
tails) but only a relatively small amount of this number (M=6.44,
SD=6.14) results from topologically adjacent polygons. However,
there are only very few objects with very high constant factors of
up to 6000 that disturb the average (see Figure 5). Actually, a rep-
resentative sample of these objects appears to be defective in our
object viewer. Due to the large number of objects, it was impossi-
ble to filter out the defective ones, because this would have to be
done by inspecting manually all objects.

In addition, we investigated the heights of the hash map hier-
archies, which depends on the ratio between the largest and the
smallest object of the scene. The average hierarchy height of all
tested objects is 8.17 (SD=4.03). Again, we identified some objects
with very large hierarchies. Most often, these are relatively small
objects that are placed on large planes that are only modeled by
two triangles (see Figure 5). Scenes like that hardly ever occur in
real-time applications due to a number of detrimental effects. The
total maximum height measured over all objects was 29 for a scene
consisting of 40k polygons.

Overall, our geometric predicate defines factors that allow us
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Figure 9: Left: the average total time for kDet and gProximity, i.e. collision detection and hash map population or hierarchy refitting time,
respectively in relation to the polygon count for the different resolutions in the cloth on Buddha scene. Right: the total time per simulation
step for kDet and gProximity in the highest resolution breaking Buddha scene (250k polygons).

to predict a much smaller number of possibly colliding polygons
than the worst-case bound of n2 for all real-world 3D objects in
the database. Moreover, the height of the hash map hierarchy used
by kDet is small compared to the number of polygons for all ob-
jects. The theoretical worst-case object with a linear height of the
hierarchy does not seem to occur in practice.

6.2. Practical Results

We have implemented the parallel version of our algorithm in
NVIDIA’s CUDA. Our testing system consists of a 64 bit Win-
dows 10 PC with a Nvidia GTX 1080 with 8 gigabytes of GDDR5X
memory. The code was compiled with CUDA 8.0 for a device ca-
pability of 6.1.

We use different test scenes including classic benchmarks for de-
formable and fracturing objects like the funnel, the swirling cloth,
the n-body and the exploding dragon benchmark from the UNC dy-
namics benchmarking suite [YCM07, PKS10] (see Figures 1, 5, 4
and 7). Additionally, we created own scenes in order to stress our
algorithm and to test the performance with respect to the polygon
count. Therefore, we built animations with different polygon reso-
lutions for the chair, the cloth on Buddha and the breaking Buddha
scene (see Figures 1, 5, 4 and 7). Since all our scenes contain de-
forming objects we inserted all polygons in the same hierarchical
hash table. All our timings include all intra- and inter object col-
lisions. We repeated each test run 10 times and always took the
average from these runs in order to avoid the influence of system-
specific caching effects. However, we did not observe significant
differences between the test runs.

Table 1 summarizes all results from our timings. In addition to
the timing for collision detection and the hash table population, we
also included the average constant factors and standard deviations
according to Definition 3.1 and the average heights of the hierar-
chies. First, we investigated the influence of the hashing function
on the performance. We used DJB2 hashing and Morton codes as
described in Section 5.1. For the DJB2 version we chose a size of

131101 elements as a large prime number and for the Morton codes
a grid size of 643, which results in a table size of 64 and 128 MByte,
respectively. Because of the more uniform spread of the polygons
by DJB2, we decided to choose a smaller hash table. The results
show that both methods perform equally well. Figure 8 shows the
timings for the n-body simulation.

The insertion time of the polygons in the hierarchical grid does
not differ significantly across all our scenes. Actually, it can be
done very fast in less than two milliseconds in all our examples,
including the breaking Buddha scene with more than 200k poly-
gons. Compared to the collision detection time, the population time
is negligible (see Figure 8 for an example in the highest resolution
chair scene with 130k polygons). Our hash table build times are not
only faster than typical refitting procedures for bounding volume
hierarchies but they also avoid the typical deterioration: the quality
of refitted bounding volume hierarchies usually decreases over time
in case of heavy deformations, which usually results in decreased
culling efficiency during the collision queries. kDet completely re-
builds the hash table hierarchy every time, hence, there is no quality
loss. Moreover, kDet supports the removal or the addition of new
polygons during the simulation.

We compared the performance of kDet to gProximity, a state-
of-the art all-pairs collision detection method that also works com-
pletely on the GPU [LMM10] and whose sourcecode is available
for download on the authors’ website. gProximity relies on bound-
ing volume hierarchies and it supports continuous as well as dis-
crete collision detection and proximity queries. We used the OBB
discrete version for all-pairs collision of deformable and fracturing
objects. Like kDet, gProximity can also compute intra- as well as
inter-object collisions.

We measured the smallest speed-up, 2.7, of kDet compared to
gProximity in the chair scene. The reason for this is the geome-
try of the scene: the pipes forming the legs and the arms of the
chair consist of long triangles in close proximity. In contrast, the
triangles of the cloth are relatively small. This results in a large
height of the hierarchy as well as a large factor k. However, even in

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



R. Weller & N. Debowksi & G. Zachmann / kDet: Parallel Constant Time Collision Detection for Polygonal Objects

Scene #
polys

k (stdev) height
(stdev)

kDet
col det

kDet
update

kDet
total
time

gProx.
col det

gProx.
update

gProx.
total
time

speed-
up

Dragon 252k 8.4 (0.9) 7.8 (0.0) 8.3 1.0 9.3 30.2 3.1 33.3 3.6
Whirling cloth 92k 6.6 (0.2) 3.4 (0.1) 5.2 0.2 6.1 21.9 2.1 24.0 3.9
N-body 146k 9.7 (0.5) 4.4 (0.0) 4.1 0.3 4.4 17.2 2.1 19.3 4.4
Funnel 18k 9.5 (2.0) 6.7 (1.0) 1.6 0.1 1.7 12.3 1.0 13.3 7.8

40k 19.0 (0.3) 10.7 (0.0) 4.6 0.1 4.7 11.8 1.0 12.8 2.7
90k 20.6 (0.5) 12.3 (0.0) 10.0 0.2 10.2 23.1 1.4 24.5 2.4Chair
130k 21.3 (0.6) 11.8 (0.0) 14.3 0.3 14.6 32.1 2.1 34.2 2.3
38k 16.8 (6.1) 8.3 (0.0) 4.9 0.2 5.1 18.6 0.9 19.7 3.8
68k 16.8 (6.8) 8.3 (0.0) 6.2 0.2 6.3 27.1 1.4 28.5 4.5
100k 13.3 (1.8) 8.3 (0.0) 7.6 0.3 7.9 38.0 2.1 40.1 5.1

Breaking
Buddha

120k 13.3 (1.8) 8.3 (0.0) 11.8 0.4 12.2 59.2 2.5 61.7 5.1
20k 11.6 (2.0) 8.3 (0.0) 1.8 0.1 1.9 8.3 0.3 8.6 4.5
40k 11.1 (2.0) 8.0 (0.0) 2.5 0.1 2.6 11.2 1.0 12.2 4.9
90k 10.0 (1.4) 7.9 (0.0) 4.4 0.2 4.6 17.0 1.7 18.7 3.8
200k 8.3 (0.9) 7.6 (0.0) 7.7 0.5 8.2 31.3 2.0 33.4 4.1

Cloth on
Buddha

250k 8.2 (0.6) 7.5 (0.0) 9.2 0.5 9.7 39.1 2.5 41.6 4.2

Table 1: The results from our timings for the different benchmarks and the different algorithms. The table shows the polygon count of the
scenes we used in our benchmarks, the average factors k according to Definition 3.1, including the standard deviation, the average height of
our hierarchical hash map, and the timings for kDet and gProximity. The timings are divided into the population time of the hash map for our
algorithm and the BVH refitting for gProximity, respectively (update), and the collision detection times for inter- and intra-object collisions
(col det). Additionally, the total times for the update and the collision detection are shown (total time).

this case kDet outperforms gProximity by at least a factor of two.
The biggest challenges for BVH-based algorithms are scenes with
heavy deformations or even changes in the topology (like the cloth
on Buddha or the breaking Buddha scene). In these scenarios we
achieved a speed-up factor of more than four for our algorithm.

Overall, the results show that kDet is able to achieve real-time
performance, i.e. less than 15 msec, in all our test scenarios, even
for large polygon counts of up to 250k polygons in the exploding
dragon and the cloth on Buddha scene (see Table 1). These times in-
clude the population of the hierarchical grid, the computation of the
collisions between different objects but also self-collisions. More-
over, our algorithm outperforms gProximity in all scenarios by at
least a factor of two. However, not only the average time is much
better but also the individual collision detection times per frame
(see Figure 9 for results of the highest resolution breaking Buddha
scene).

Although the theoretical running time of kDet is constant assum-
ing an ideal PRAM model, it does vary in practice. This is mostly
due to the limited number of processors of current GPUs. Conse-
quently, our algorithm scales linearly with the number of polygons
on real GPUs, as expected (see Figure 9 for results of different res-
olutions of the cloth on Buddha scene).

7. Conclusions and Future Work

We have defined a novel geometric predicate for arbitrary polygo-
nal models that allows us to prove a worst-case linear number of
intersecting polygon pairs for all objects that fulfill it. The predi-

cate can be easily tested in advance and it is sufficiently general that
almost all "normal" 3D object fulfill it. Our proof provides a theo-
retical basis for the common wisdom that "normal" shapes usually
exhibit worst-case collision detection times linear in the number of
triangles.

Additionally, we have presented a new algorithm, kDet, that is
able to find all intersecting polygons in almost linear sequential
time for objects that match our predicate. A parallel version can
even achieve a constant worst-case running time. kDet is suitable
for all kinds of polygon soups and it can be applied to deformable
and even topology-changing objects at no extra costs, because no
complicated pre-processing steps or acceleration data structures are
necessary. Our results show that complex deformable objects con-
sisting of hundreds of thousands of polygons can be checked in less
than 15 msec including self-collision detection.

Our work presented here opens up a lot of interesting avenues
for future work: a natural next step would be the development of
an algorithm that optimizes the constant factor for real-world ob-
jects by improving the meshing. Obviously, also the height of the
hash map hierarchy should be considered for this optimization. We
believe, our predicate could be also used to improve existing ap-
proaches. For instance, it can lead to new construction methods for
optimized bounding volume hierarchies. The development of simu-
lation methods that maintain the predicate and the height of the hi-
erarchy during deformations is another challenge. Finally, it would
be interesting to apply our geometric predicate also to other prob-
lems in computer graphics, for instance to quality measurement of
polygonal meshes or for object classification problems.
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