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Figure 1: Flow chart from raw eye tracking data to two applications of the Prediction Correctness Value: trajectory based for a
single participant (left) and heatmap based for multiple participants (right).

ABSTRACT
Eye tracking data is often used to train machine learning algo-
rithms for classification tasks. The main indicator of performance
for such classifiers is typically their prediction accuracy. However,
this number does not reveal any information about the specific
intrinsic workings of the classifier. In this paper we introduce novel
visualization methods which are able to provide such information.
We introduce the Prediction Correctness Value (PCV). It is the differ-
ence between the calculated probability for the correct class and
the maximum calculated probability for any other class. Based on
the PCV we present two visualizations: (1) coloring segments of
eye tracking trajectories according to their PCV, thus indicating
how beneficial certain parts are towards correct classification, and
(2) overlaying similar information for all participants to produce
a heatmap that indicates at which places fixations are particularly
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beneficial towards correct classification. Using these new visual-
izations we compare the performance of two classifiers (RF and
RBFN).
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1 INTRODUCTION
Eye tracking data is often used for classification tasks; for instance,
to determine users based on their eye movements [George and
Routray 2016; Kasprowski and Ober 2004; Rigas and Komogort-
sev 2017; Schröder et al. 2020], to predict gender via eye movements
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[Moss et al. 2012; Sargezeh et al. 2019; Zaidawi et al. 2020], or
to predict some disorders such as dyslexia [Benfatto et al. 2016]
(see also [Shojaeizadeh et al. 2019]). A central element is the used
stimulus which shapes the behavior of participants of eye track-
ing experiments. This leads to two questions: (1) How do stimuli
have to be designed to improve the performance of classification?
and (2) What are the differences in the behavior of participants?
Both questions are related to areas of the stimuli where the par-
ticipants act most differently, and therefore the classifier works
especially well. Understanding the classifier is related to the field of
explainable artificial intelligence [Adadi and Berrada 2018; Arrieta
et al. 2020; Samek et al. 2017]. Here we focus, instead of a concrete
explanation of the algorithm, on a justification for its behavior (see
[Biran and Cotton 2017] and [Nguyen et al. 2019]). To explore this
topic a visualization of the classifier’s performance could be helpful.
While typically this means an overall assessment of the classifier
(e.g., [Alaiz-Rodríguez et al. 2008; Seliya et al. 2009]) in our case
the interest lies on single predictions with specific locations on
the stimuli. There are already many different approaches to extract
and visualize information regarding eye tracking data, see, e.g.,
[Blascheck et al. 2014, 2017] for an overview. Usually each man-
ufacturer of an eye tracking device provides their own software
(e.g., Tobii Pro AB [2014], GAZE INTELLIGENCE [2020], or S.R.
Research Ltd. [2020]). There are commercial tools for multiple eye
trackers (e.g., GazeTracker [Eyetellect 2016]) and there are open
source tools (e.g., Pupil [Kassner et al. 2014], OGAMA [Voßkühler
et al. 2008], PyGaze Analyzer [Dalmaijer et al. 2014], EyeVis [Menges
et al. 2020], or IRIS [D’Angelo et al. 2019]). Recently also web tools
arise [Bakardzhiev et al. 2020]. All of these tools provide a visualiza-
tion of fixations and saccades. Most of them can present heatmaps,
and have other specialties. To the best of our knowledge, none of the
existing tools provides visualizations of the results of classification
algorithms for eye tracking data.

In this paper we introduce a novel measure: the Prediction Cor-
rectness Value (PCV). It can be used to spatially visualize the correct-
ness of predictions made by a classifier which in turn helps the user
to understand the workings of the classifier better. We also find
that these visualizations spawn new hypotheses which were not
apparent to us without the visualizations. Given sample data and
a set of classes, a classification algorithm computes a probability
distribution over the classes. The PCV is defined as the calculated
probability for the correct class minus the maximum calculated
probability for any other class. The PCV tells us if and how well a
classifier was able to make a prediction (when the PCV is negative,
the prediction was wrong). In this paper we present two techniques
for visualizing the PCV: (1) trajectory based visualization for single
participants, and (2) heatmap based visualization for several partic-
ipants. The Prediction Correctness Trajectory (PCT) lets us focus on
one participant at a time. It shows in detail which eye movements
of a participant caused the classifier to make a correct decision. To
have a better overview of a complete dataset we present the Pre-
diction Correctness Heatmap (PCH). It combines the predictions of
several participants in relation to the used stimulus showing which
regions are beneficial for correct classification and which are not.
E.g., for a reading stimulus, the heatmap can highlight single words
or syllables where the participants act very differently (with respect

to the classes) and therefore can be classified well (see Figure 1),
which leads to high prediction correctness.

To present our visualization methods we focus on one concrete
classification task (biometrics). The classifier is supposed to iden-
tify people via their eye movements. As is commonly done (see,
e.g., [George and Routray 2016]) we feed the classifiers with fea-
ture vectors of trajectory segments that represent fixations and
saccades. We focus on two classifiers in this paper: Random De-
cision Forests (RF) [Breiman 2001] and Radial Basis Function Net-
works (RBFN) [Broomhead and Lowe 1988].

The paper is organized as follows: Description of the usedDataset
is in Section 2 followed by the description of the methods (namely
Filtering, Segmentation, Classification, and Features) in Section 3. In
Section 4 the new visualization techniques are explained. Section 5
shows some applications. The paper closes with conclusions and
future work in Section 6.

2 DATASETS
We use two datasets from the 2015 BioEye competition [Rigas and
Komogortsev 2017]. Both contain data obtained from 153 partici-
pants, whose tasks were to read a poem (TEX), and to observe a
randomly moving dot (RAN). For the TEX stimulus, there are two
60 seconds recordings per participant which were recorded with
a pause of 30 minutes in between. For the RAN stimulus, there
are also two recordings, each of length 100 seconds. All sessions
were recorded with an EyeLink-1000 eye-tracker at 1000Hz and
were decimated to 250Hz to have a balance between noise filtering,
data size and preservation of the eye movement characteristics
(see [Rigas and Komogortsev 2017] for further details). The partic-
ipants are comprised of males and females aged 18 to 46. During
the recordings, the head of each participant was positioned on a
chin rest at a distance of 550mm from a 22-inch screen (resolution
1680 x 1050).

In the TEX dataset the alignment of the gaze trajectories to
the stimulus is not correct. This is obvious because of the specific
spacing of the text (primarily by the distances between heading,
paragraphs and lines). We performed horizontal and vertical cor-
rections for each user in each session to fit the trajectory plausible
to the poem. This was done by hand and is therefore subjective
but certainly improves the alignment. The procedure sharpens all
results which depend on the position of the trajectory.

3 METHODS
In this section, we describe the steps from the raw data to the
predictions of our classifiers (see also Figure 1).

Filtering. To reduce noise and other undesirable artifacts we
apply a Savitzky-Golay filter [Savitzky and Golay 1964] (see also
[Schafer 2011]). This filter is controlled by two parameters: the
number 𝑁 of the considered samples (filter width) and the degree 𝐷
of the used polynomial. For every point (𝑥𝑖 , 𝑦𝑖 ), with (𝑁 − 1)/2 ≤
𝑖 ≤ 𝑛 − (𝑁 − 1)/2, where 𝑛 is the total number of points, the filter
fits a symmetric polynomial of degree 𝐷 through the amount of
selected samples 𝑁 . The point (𝑥𝑖 , 𝑦𝑖 ) is always the center of the
selected samples, so only odd filter widths 𝑁 are allowed.
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We use 𝑁 = 7 and 𝐷 = 1, which reduces the noise without
influencing the trajectory too much. With this setting the filter
works like a line fit starting 3 points before and ending 3 points
after the point to calculate.

Segmentation. To divide the gaze trajectories into fixations and
saccades, we implemented the simple Identification-by-Velocity-
Threshold (IVT) algorithm which is described in slightly different
ways in multiple publications (e.g., [Erkelens and Vogels 1995; Sen
and Megaw 1984], and [George and Routray 2016]). Our imple-
mentation of the IVT algorithm uses two parameters (like [George
and Routray 2016]): the velocity threshold (VT) and the minimal
fixation time threshold (FT). The algorithm defines as fixation all
consecutive gaze points resulting in eye rotation velocities below
the VT, unless the fixation would be shorter than the FT. All other
segments are identified as saccades. We use VT = 15 deg/s and
FT = 50ms. The values were chosen by hand so that plausible
numbers of fixations appear.

Classification. In our context, classification means to label eye
tracking data with the ID of a unique participant. If 𝐿 is the set of
participant IDs, then the classification task is to learn and predict
a function 𝑝 from trajectories 𝑡 to probability distributions over 𝐿:
𝑝 (𝑡) : 𝐿 → (0, 1). For a given ID 𝑢 ∈ 𝐿, 𝑝 (𝑡,𝑢) denotes the probabil-
ity for participant 𝑢. For us, 𝑝 is determined by learning two such
functions 𝑝 𝑓 and 𝑝𝑠 (one for fixations and one for saccades) and av-
eraging them to create a single result. As classifiers we use Random
Decision Forests (RF) (as implemented in [Pedregosa et al. 2011])
with 200 estimators and an implementation of Radial Basis Func-
tion Networks (RBFN) with 32 clusters as described in [George and
Routray 2016]. In both datasets we have two sessions for each user:
one is used for training and the other for testing. Unless otherwise
stated, all results we presente are from the test session.

Features. We calculate a set of 9 fixation and 43 saccade features
as described by George and Routray [2016] from the fixation and
saccade segments to feed into the classification algorithms. These
include, for example, features like duration, path length, angular
velocity, and statistical features such as standard deviation, skew-
ness, or kurtosis, but also features related to the previous or next
segment like distance or angle.

4 VISUALIZING THE CORRECTNESS OF
PREDICTIONS

In this section we describe how we calculate the correctness of a
prediction and how we visualize it. All results presented in this
paper were created with our own tool written in Python. It includes
an interactive GUI to visualize and prepare eye tracking data using
the Bokeh library [Bokeh Development Team 2018] and is available
as open source from the url: http://wwwdb.informatik.uni-bremen.
de/smida_pcv/.

4.1 Calculation of the Prediction Correctness
For a given trajectory segment 𝑡 , our classifier returns a probabil-
ity 𝑝 (𝑡,𝑢) for each participant 𝑢. Let 𝑐 (𝑡) be the participant who
produced the segment 𝑡 , i.e.; it is the correct class that the classifier
should choose. We introduce the Prediction Correctness Value (PCV),

Figure 2: Explanation of the Prediction Correctness Value
(PCV) at a segment for an excerpt of five participants. The
segment belongs to participant 03 and is classified correctly
on the left side. The algorithm on the right side predicted
participant 02 as the segment’s creator. The calculated prob-
ability of the correct participant is subtracted either by the
second ranked guess of the classifier, or in case of a wrong
prediction, by the probability for the first ranked guess.

which is the difference between the calculated probability of the par-
ticipant 𝑐 (𝑡), and the highest probability from any other participant
𝑝𝑚 (𝑡) = max {𝑝 (𝑡,𝑢) | 𝑢 ∈ 𝐿\{𝑐 (𝑡)}}:

PCV(𝑡) = 𝑝 (𝑡, 𝑐 (𝑡)) − 𝑝𝑚 (𝑡) .

The concept is visualized in Figure 2. In case of a correct prediction,
the PCV is positive. If the classifier predicted any other participant,
the PCV will be negative. The greater the difference from the first
to the second guess of the algorithm, the greater the absolute value
of the PCV. So high absolute values mean high confidence of the
classifier in its decision.

4.2 Prediction Correctness Trajectory for Single
Participants

As a simple example, we consider the PCVs for single participants.
Be aware that our calculations are based on one run of one classifier.
The result will vary with different settings.

Figure 3 shows an example for a single participant (ID_053) from
the RAN dataset. The continuous line is the actual gaze trajectory
colored according to the PCV. We call this a Prediction Correctness
Trajectory. Green means positive PCV, white means close to zero,
and red negative. The full saturation of the color is reached for
the top 10 % of the PCVs. Most of the main movements for the
task (following the dots) are wrongly classified in the test case (a).
For all paths outside of the stimulus region in the top right, the
classifier predicts the wrong participants even with high confidence.
Nevertheless, the used RF algorithm could use the lower left paths
to identify the correct participant. In this case, in the training data
(b), the participant had many outgoing paths at the bottom, but
none at the top, which is an explanation of the classifier’s behavior.

In Figure 4 the PCV is shown for a participant (ID_045) from the
TEX dataset reading a poem. The upper two images (a, b) show
the actual test case, where the algorithms have not seen the data
before. The training happened on the data shown in the lower
two images (c, d). On the left (a, c), the applied classifier is RF,
while on the right (b, d) it is RBFN. It is visible that RF is overfitted
and identifies every segment correctly in the training data. RBFN
instead performs similarly on the training and on the test data.
While the outliers are correctly identified in the training data, they
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(a) Test case

(b) Training case

Figure 3: Visualization of correctness of predictions made by
a Radial Basis Function Networks classifier on the RAN stim-
ulus (the participant is following random appearing dots).
The participant is correctly identified in the test case (a) by
the outgoing paths to the bottom, which are also present in
the training case (b).

are mistaken for a different participant by both classifiers in the
testing cases. In contrast, eye movements in the region of the text
are mostly correctly classified.

4.3 Prediction Correctness Heatmap for
Multiple Participants

The consideration of results for single participants can bring up
a detailed knowledge of the classifiers and anomalies in the data
but needs investigation. Occurring patterns may depend not only
on the single participant but also on the combination of partici-
pants used for training the algorithm. When we consider multiple
participants at once we obtain insights on more general patterns.
Minor differences in the starting conditions, which can affect the
prediction of single images, will average to a more stable outcome
when considering multiple images at once.

To do so, we acquire the centers of gravity of all fixations and
calculate a two dimensional histogram, where we sum up the PCVs.

We call this the Prediction Correctness Heatmap (PCH). For a bin
𝑖, 𝑗 of the histogram and with a total number of 𝑛fix fixations this
means:

PCH𝑖, 𝑗 =

𝑛fix∑︁
𝑘=1

{
PCV𝑘 if fixation𝑘 in bin𝑖, 𝑗
0, otherwise.

After the calculation of 500×500 bins we use a Gaussian filter (𝜎 = 5,
implemented by SciPy [Virtanen et al. 2020]) to blur the image for
a more natural look. We distinguish fixations with a positive PCV
from these with a negative PCV.

In Figure 5 we show the positive histograms for the 153 partici-
pants of the TEX dataset, which are classified by RF (left: a, c) and
RBFN (right: b, e). The top row (a, b) shows results from the test
cases with unseen data. For the bottom row (c, e), the algorithms
were applied to the data they were trained with. The values are
visualized in green by a color scale from transparent (zero) to 90 %
opacity (maximum).

It is clear that the overall occurrence follows a standard density
heatmap of the fixations. This is shown in image (d) in Figure 5.
The frequency of fixations is visualized in yellow by a color scale
from transparent (none) to 90% opacity (maximum). While the
first paragraph is covered with 45 fixations on average and the
second and the third have still around 40, from the fourth to the
sixth paragraphs there are less fixations. The reason is that some
participants do not finish the complete poem and others start over
again. By comparing the fixation heatmap (d) with the PCH images,
we find that in the bottom paragraph, there are less beneficial
predictions because there are less fixations in total. Furthermore,
the PCH on the training data (c, e) in Figure 5 looks similar to
the general fixation heatmap. This is especially the case for the
prediction of RF (c) because it is overfitting and predicting nearly
every fixation correctly. RBFN, on the other hand, has a slightly
different pattern. It seems to prefer fixations in some regions over
others (see the more intense color in the first and last paragraph).
Note: The maximum opacity is related to the different distribution
of values for each image and can only be compared qualitatively.

By viewing the test case (a, b) in Figure 5, we find there is a
clear pattern for beneficial fixations, and it is not dependent on
the classifier. However, the interpretation of the pattern is open to
discussion (see Section 5).

Note: In our experience, saccades contribute more to the classifi-
cation than fixations, but the calculation of heatmaps for saccades
is more difficult since saccades cannot easily be consolidated to
one point. Using all the samples of the saccades and applying our
present method, we found no specific patterns. The PCHs calcu-
lated in this way is similar to the general saccade heatmap, showing
only the saccade density.

5 APPLICATIONS
5.1 Prediction Correctness Trajectory
Let us demonstrate how PCTs can be used to generate hypotheses
about the eye tracking data: In Figure 3(a) we observe that all paths
that leave the stimulus window to the top-right are colored red.
On the other hand, of those paths that leave the stimulus window
to the bottom, some are colored green and others red. At first,
we thought that these paths might belong to two different groups
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(a) RF on test case (b) RBFN on test case

(c) RF on training case (d) RBFN on training case

Figure 4: Visualization of correctness of predictions made by a Random Decision Forests (left) and a Radial Basis Function
Networks classifier (right) on the TEX stimulus. Both classifiers perform equally in the test case (top), while RF (left) overfits in
the training case (bottom).

(e.g., two different kind of blinkings), but Figure 3(b) reveals that
the explanation may be much simpler: the training data does not
contain any paths that lead to the top-right. Consider Figure 4.
We can see that in the training cases the two classifiers (RF and
RBFN) behave quite differently: in the case of RF, all segments are
colored green (which indicates overfitting), while in the case of
RBFN several segments are colored white or red. Nevertheless, and
we find this astonishing, the behavior of both classifiers on the test
data is rather similar : segments that are white or red in Figure 4(a)
(i.e., for RF) are also white or red in Figure 4(b). Similarly, segments
that are green in Figure 4(b) are also green in Figure 4(a).

5.2 Prediction Correctness Heatmap
The PCH combines the PCV of multiple users into one image. Con-
sider Figure 5 which combines the fixations of all participants. We
see that RF and RBFN behave differently on the training case: for
RBFN, more green regions are on the left or the bottom part of
the poem, while for RF more green regions are towards the top

and are evenly spread from left to right. Again it turns out that
in the test case, both classifiers behave very similarly! And more
than that, let us consider the regions that are colored rich green in
the test cases of the two classifiers: it appears that these regions
are on simpler and shorter words, rather than on more complex
words. This could lead to the hypothesis that participants differ
more reliably in their “common reading behavior” rather than in
their approach to understanding complex words.

6 CONCLUSIONS AND FUTUREWORK
We consider classification tasks over eye tracking data. We define
the Prediction Correctness Value (PCV) as the difference between the
calculated probability for the actual correct class and the highest
calculated probability for any other class. We then present twoways
of visualizing PCVs: the Prediction Correctness Trajectory (PCT) in
which segments are colored according to their PCV (we use green
for positive PCVs and red for negative PCVs) and the Prediction
Correctness Heatmap (PCH) which combines the PCTs of several
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(a) PCH with RF on test case (b) PCH with RBFN on test case

(c) PCH with RF on training case (d) fixations heatmap (e) PCH with RBFN on training case

Figure 5: Beneficial fixation areas for predicting the correct participant via Random Decision Forests (left) and Radial Basis
Function Networks classifier (right) in the TEX dataset. Figure (d) shows the overall distribution of fixations in yellow. The
average number of fixations per user is written in purple beside each paragraph.
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users. Both visualization methods give insights into the workings
of the different classifiers. For instance, overfitting is easily ob-
served by only green segments in the training data. The PCH of our
poem reading stimulus shows particular regions and words that
are beneficial for the classifiers. We expect that many more inter-
esting observations can be made on other data sets using PCTs and
PCHs. For instance, they may reveal particular groups of “outliers”
(e.g., paths that exit the stimulus window) and how these influence
the working of the classifier. In the future we would like to apply
our methods to other classifiers and to datasets with other stimuli;
moreover, we would like to investigate ways to produce heatmaps
for saccades.
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