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Introduction

Current and future small body missions, such as the ESA Hera mission [1] or the JAXA MMX mission
[2] demand good knowledge of the gravitational field of the targeted celestial bodies. This is not
only motivated to ensure the precise spacecraft operations around the body, but likewise important
for landing manoeuvres, surface (rover) operations, and science, including surface gravimetry [3].
To model the gravitation of irregularly-shaped, non-spherical bodies, different methods exist.
Previous work performed a comparison between three different methods [4], considering a
homogeneous density distribution inside the body. In this work, the comparison is continued, by
introducing a first inhomogeneity inside the body. For this, the same three methods, being the
polyhedral method [5] and two different mascon methods [6][7] are compared. We will describe the
methods and our test cases in the next Section.

Methodology

The polyhedral method (PM) provides an analytical solution to the gravitational potential field of any
polyhedral body [5]. Intrinsically, the method demands a homogeneous density throughout the
body, making it not directly applicable to account for inhomogeneities. Therefore, in this work, we
perform a superposition of the gravitational fields of the main body and the inhomogeneities,
considering the differential density, which can also be negative.



The other two methods are based on mascons, namely MSP (Mascons: Sphere Packing) and MASC
(Mascons: Spherical Coordinates). These mascon methods subdivide a body into smaller parts. The
mass is then concentrated in the centre of these parts and the gravitational field is the sum of the
individual accelerations. MSP uses a sphere packing with non-uniform-sized spheres that do not
overlap (see Fig.1). Since the sphere packing does not cover the complete volume, we use
additionally a heuristic that tends to assign smaller spheres more mass. To model inhomogeneity,
we compute separate sphere packings with different densities assumed. With MASC, the internal
mass distribution is modelled by dividing the body in longitude, latitude, and radius, and by
assigning individual densities to the resulting set of tesseroids.

(a) Sphere packing with 800k (b) Cross-section with red core (c) Cross-section with red core
spheres. at center 5 = (0,0,0). at position 7 = (—100, —100, 0).

Figure 1: Sphere packings created and used by the MSP approach are shown. a) complete packing for
case L. b) and ¢) the packing cross-sections for the two investigated cases (I, II).

Test Cases

Our two test cases consider two nested ideal spheres that are approximated through a UV-Sphere
with 328,328 facets [4]. The outer sphere has a radius r=1,000 m and a density of 1.0g/cm3, and
the inner sphere has a radius r=100 m and a density of 0.5g/cm3. In Case I, the inner sphere is
placed concentric to the outer sphere, whereas in Case II the sphere’s centre is translated to
X=-100 m and Y=-100 m. We compute the gravitational acceleration for points on the ideal sphere
and compare it to the analytical solution through a relative error. Clearly, the ratio of computed and
analytical solution T =gom /9ana Should always be <100% as the UV-sphere is only an approximation
of the perfect sphere, values >100% represent an overshoot. This agreement ratio is presented in
the next Section.

First Results

The overall results and range of T on the surface of the sphere are summarized in Table 1:



Table 1: Comparison of all methods with the analytic solution. Case (I) is the core at center, and case
(IT) is the moved core. The number in the name indicates the number of mascons. Gravitational constant
used: 6.674 x 10 ' m? kg~ ' 572

Case | Method Min. [%] | Mean [%] | Max. [%] | o [%]

I PM 99.993143 | 99.995461 | 99.997864 | 0.000942
MSP 800k 99.542132 | 99.996047 | 100.345711 | 0.117449
MASC 64.8k | 99.994138 | 99.995459 | 100.004137 | 0.001201

II PM 99.993143 | 99.995461 | 99.997864 | 0.000942
MSP 800k 99.590773 | 99.995998 | 100.307859 | 0.111008
MASC 64.8k | 99.994137 | 99.995459 | 100.004158 | 0.001201

For both of our cases, PM delivers the most accurate results (Table 1). The error results from the
shape approximation. It is visualized in Figures 1 and 2. We can see the expected shift from an
almost equal to an unequal surface gravity. In Figure 1 we can also see that the shape
approximation error is larger than the floating-point precision limitation (noisy pattern, Figure 1a).

-1 1 2.79401 2.79414 9999314 99.99786
m1-10-18 m 10-4
Gana +€ [%} 10 [_2] 10 [(Z]

(a) Analytic solution. (b) Solution with polyhedral (c) Relative error between solu-
method. tions.

Figure 2: Comparison of the surface gravity between the analytic solution gun, and polyhedral method
with the core at the center 7 = (0,0, 0). Core density is 0.5g/cm® and outer density is 1.0 g/cm?.
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(a) Analytic solution. (b) Solution with polyhedral (¢) Relative error between solu-
method. tions.

Figure 3: Comparison of the surface gravity between the analytic solution and polyhedral method with
the moved core from center = (—100, —100,0). Core density is 0.5 g/cm® and outer density is 1.0 g/cm?®.

The MSP method creates a noisy overshooting pattern (see Figures 4b and 4c), which results from
the spheres near the surface and the heuristic. Large spheres lead to a circular artifact at the
surface. Observable at the center of Figures 4b and 1la. It is a similar pattern for Case II. The MASC
error results from the subdivision in spherical coordinates. At the poles the number of tesseroids
increases, which leads to a circular overshoot at two sides. It is also true for the shifted core (see

Figure 4a). The computation time for MSP remained the same as for the homogeneous case [4]
while it has doubled for PM and MASC.
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(a) MASC with core at center. (b) MSP with core at center. (c) MSP with moved core.

Figure 4: Relative error between the analytic solutions and the mascon methods (MASC, MSP). Note:
The visual error for MASC is practically identical for both cases.



The three methods presented above for the computation of the gravitational acceleration will be
applied to more complex shapes for irregularly shaped bodies. In addition, different inhomogeneous
density distributions representing the interior will be studied and the according results presented.
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