A Model for the Expected Running Time of Collision Detection using AABB Trees

Gabriel Zachmann
Clausthal University, Germany
zach@in.tu-clausthal.de

EGVE '06, May 2006, Lisbon, Portugal

Motivation

- Collision Detection is ubiquitous in VR and many physically-based simulation apps

- Obviously: worst-case running time is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- But, we all have seen real-world running time behavior like this:

Goal

- Gain (theoretical) understanding of experienced running times
- Utilize to optimize collision detection
- Better heuristics for probabilistic collision detection

Related Work

- Distance of convex polytopes [Dobkin \& Kirkpatrick, 1985]:

$$
O\left(\log ^{2} n\right), n=\text { number of faces }
$$

- Distance of convex polytopes [Lin \& Canny, 1991]:

$$
\begin{aligned}
O(\sqrt{n}) & , \text { worst-case } \\
O(1) & , \text { expected time, bounded rotation }
\end{aligned}
$$

- General polytopes, fixed trajectory [Schömer \& Thiel, 1995]:

$$
O\left(n^{\frac{5}{3}+\varepsilon}\right)
$$

- Alll intersections of n convex polytopes [Suri et al., 1998]:

$$
O\left((n+k) \log ^{2} n\right) \quad, k=\# \text { intersecting pairs }
$$

Hierarchical CD

- Hierarchical CD is most common technique for rigid bodies
- BV hierarchy (BVH) is constructed in preprocessing:

- Simultaneous traversal of two BVHs = single traversal of one BV test tree (BVTT)

- Lots of different BVs have been proposed, e.g.:

- In the following: use AABBs
- The Cost formula [Weghorst et al. 1984; Gottschalk et al. 1996]:

$$
\begin{aligned}
T & =N_{v} C_{v}+N_{p} C_{p}+N_{u} C_{u}+C_{i} \\
N_{V}, C_{V} & =\text { num., costs of } B V \text { overlap test, resp. } \\
N_{p}, C_{p} & =\text { num., costs of primitive intersection test } \\
N_{u}, C_{u} & =\text { num., costs of } B V \text { update, resp. } \\
C_{i} & =\text { initialization costs }
\end{aligned}
$$

- Obviously: $T(n) \sim N_{V}(n)$
- Goal: determine $E\left[N_{V}(n)\right]=\tilde{N}_{V}(n)$
= number of nodes in the BVTT that are visited on average

The Model to Determine $\tilde{N}_{V}(n)$

- Assumption: use AABBs
- Estimate probability of BV overlap on some level /
- Yields product of conditional probabilities
- Estimate conditional probability by geometric reasoning

Terminology

- $P\left[A^{(1)} \cap B^{(I)} \neq \varnothing\right]=$ probability that two AABBs on level / overlap each other
- In the following, just write $P\left[A^{(I)} \cap B^{(1)}\right]$
- X-Overlap o_{X} := length of overlap of slabs of AABBs

X axis

The Chain of Probabilities

- Obviously, the expected total number of BV overlaps is

$$
\begin{equation*}
\tilde{N}_{V}(n)=\sum_{l=1}^{d} \tilde{N}_{V}^{(l)}=\sum_{l=1}^{d} 4^{\prime} P\left[A^{(l)} \cap B^{(l)}\right] \tag{1}
\end{equation*}
$$

- Recall that $X \subseteq Y \Rightarrow P[X]=P[Y] \cdot P[X \mid Y]$
- Turn $P\left[A^{(1)} \cap B^{(1)}\right]$ into conditional probability that "defers" the probability up one level in the hierarchy:

$$
\begin{aligned}
P\left[A^{(I)} \cap B^{(I)}\right]= & P\left[A^{(I)} \cap B^{(I)} \mid A^{(I-1)} \cap B^{(I-1)} \wedge O_{X}^{(I)}>0\right] \\
& \cdot P\left[A^{(I-1)} \cap B^{(I-1)} \wedge o_{X}^{(I)}>0\right]
\end{aligned}
$$

- Resolve further:

$$
\begin{aligned}
P\left[A^{(I)} \cap B^{(I)}\right]= & P\left[A^{(I)} \cap B^{(I)} \mid A^{(I-1)} \cap B^{(I-1)} \wedge o_{X}^{(I)}>0\right] \\
\cdot & P\left[A^{(I-1)} \cap B^{(I-1)}\right] \\
\cdot & P\left[o_{X}^{(I)}>0 \mid A^{(I-1)} \cap B^{(I-1)}\right]
\end{aligned}
$$

- "Unroll" recurrence:

$$
\begin{aligned}
& P\left[A^{(I)} \cap B^{(I)}\right]= \\
& \qquad \begin{array}{ll}
\prod_{i=1}^{\prime} P\left[A^{(i)} \cap B^{(i)} \mid A^{(i-1)} \cap B^{(i-1)} \wedge o_{x}^{(i)}>0\right] \\
& \prod_{i=1}^{l} P\left[o_{x}^{(i)}>0 \mid A^{(i-1)} \cap B^{(i-1)}\right]
\end{array}
\end{aligned}
$$

The Geometric Probability

- Goal: estimate $P\left[A^{(I)} \cap B^{(I)} \mid A^{(I-1)} \cap B^{(I-1)} \wedge o_{X}^{(I)}>0\right]$
- Terminology:
- Denote parent boxes by A, B
- Denote extents by $a_{x}, a_{y}, b_{x}, b_{y}$
- Denote child boxes by $A_{1}, A_{2}, B_{1}, B_{2}$
- Denote child box extents by $a_{x}^{\prime}, a_{y}^{\prime}, \ldots$

- Re-stated goal: estimate

$$
p_{i j}:=P\left[A_{i} \cap B_{j} \mid A \cap B \wedge o_{x}>0\right]
$$

- Assumptions for now:
- BV diminishing factor: $\quad a_{x}^{\prime}=\alpha_{x} a_{x}, \quad a_{y}^{\prime}=\alpha_{y} a_{y}, \quad$ etc.
- BVs on same scale, i.e.: $\quad b_{x} \approx a_{x}, \quad b_{x}^{\prime} \approx a_{x}^{\prime} \uparrow$ etc.
- Look at p_{11} first:
- Preconditions:
- x-overlap $o_{X}>0$, and
- parent boxes overlap
- Probability:

$$
p_{11}=\frac{\operatorname{area}\left(L^{\prime}\right)}{\operatorname{area}(L)}=\ldots=\alpha_{y} \alpha_{z} .
$$

- Good news:

$$
p_{22}=p_{12}=p_{21}=\alpha_{y} \alpha_{z}
$$

- By analogous reasoning, we get:

$$
P\left[o_{X}^{(I)}>0 \mid A^{(I-1)} \cap B^{(I-1)}\right] \approx \alpha_{X}
$$

- Plug all this into Equation (1):

$$
\tilde{N}_{V}(n) \leq \sum_{l=1}^{d}\left(4 \alpha_{x} \alpha_{y} \alpha_{z}\right)^{\prime} \in O\left(n^{\lg \left(4 \alpha_{x} \alpha_{y} \alpha_{z}\right)}\right)
$$

- Effect of diminishing factor α :

α	$T(n)$
$1 / 4$	$O(\lg n)$
≈ 0.35	$O(\sqrt{n})$
$3 / 4$	$O\left(n^{1.58}\right)$

Experiments

- Experiment:
- Construct simple AABB over CAD objects
- Count number of nodes in BVTT visited by simultaneous traversal

- Experiments utilizing artificial BVHs:
- Controlled "layout" and diminishing factor α
- Experimental versus theoretical estimates:

- Interdependence between α and root BV overlap δ :

Application

- Time-critical collision detection
- Probabilistic collision detection:
- Store average α at root of every sub-tree
- Estimate \# BV overlap tests using our model
- Prioritize traversal based on this number

Future Work

- Improve model:
- variable BV diminishing factor (probably easy)
- integrate root BV overlap into model
- Consider other BV types (possibly hard)
- Utilize for probabilistic collision detection
- Derive method for average-case analysis of running time for concrete BVHs

Acknowledgements

- Jan Klein, MeVis, Bremen, Germany (formerly PhD student with Paderborn University, Germany)
- René Weller, PhD student, TU Clausthal
- DFG grant ZA 292/1-1 ("Aktionsplan Informatik")
- Anonymous reviewer

