EUROGRAPHICS 2025/ D. Ceylan and T.-M. Li

Short Paper

TemPCC: Completing Temporal Occlusions in Large Dynamic Point
Clouds Captured by Multiple RGB-D Cameras

Andre Mﬁhlenbrock1®, Rene Weller! © and Gabriel Zachmann' @

!Computer Graphics and Virtual Reality Research Lab, University of Bremen, Germany

Figure 1: Our temporal point cloud completion applied to a synthetic dynamic scene where a rotating dragon figure was captured by three
virtual RGB-D cameras. On the left is the original scene created in Unreal Engine 5, in the center is the incomplete point cloud (notably due
to self-occlusions), and on the right is the completed point cloud using our approach.

Abstract

We present TemPCC, an approach to complete temporal occlusions in large dynamic point clouds. Our method manages a
point set over time, integrates new observations into this set, and predicts the motion of occluded points based on the flow
of surrounding visible ones. Unlike existing methods, our approach efficiently handles arbitrarily large point sets with linear
complexity, does not reconstruct a canonical representation, and considers only local features. Our tests, performed on an
Nvidia GeForce RTX 4090, demonstrate that our approach can complete a frame with 30,000 points in under 30 ms, while,
in general, being able to handle point sets exceeding 1,000,000 points. This scalability enables the mitigation of temporal
occlusions across entire scenes captured by multi-RGB-D camera setups. Our initial results demonstrate that self-occlusions
are effectively completed and successfully generalized to unknown scenes despite limited training data.

CCS Concepts

e Computing methodologies — Point-based models; * Information systems — Spatial-temporal systems;

1. Introduction

The complete capture of dynamic 3D scenes in real-time is crucial
for many applications, such as point cloud avatars in VR [GCC*20,
YGE*21], VR tele-assistance [RYP*21,GJS*21,FMK*22], perfor-
mance capture systems, or context-aware applications that rely on
occlusion cues—such as autonomous surgical lighting systems that
dynamically redistribute brightness across unoccluded light mod-
ules, where failing to detect transient occlusions leads to subopti-
mal illumination [MHU*25]. However, even with multiple RGB-D
cameras, fully capturing such dynamic scenes in real-time remains
challenging. Objects often obstruct each other, the backsides of ob-
jects are not captured, and pixels may be invalid.

Depth completion has achieved notable successes in filling holes

© 2025 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20251039

across general scenes and practical settings, but fails to recon-
struct occluded or rear parts of objects. Dynamic scene reconstruc-
tion methods, such as DynamicFusion [NFS15], VolumeDeform
[IZN*16], and SobolevFusion [SBI18], build a canonical model
continuously aligned to new observations, but continue to struggle
with arbitrary topology changes in complex multi-person interac-
tions. In contrast, FunctiondD [YZG*21] employs multi-RGBD-
camera setups and fuses only three consecutive frames to mitigate
topology-change-induced artifacts, but fills occlusions with learned
implicit priors rather than true scene context. Point cloud comple-
tion, especially advanced by seminal contributions such as PCN
[YKH*18], SnowflakeNet [XWL*23], and PointAttN [WCG*24],
leveraging learned geometric priors. While these methods have
shown remarkable results in reconstructing individual static ob-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-7836-3341
https://orcid.org/0009-0002-2544-4153
https://orcid.org/0000-0001-8155-1127
https://doi.org/10.2312/egs.20251039

20f4 A. Miihlenbrock, R. Weller & G. Zachmann / TemPCC

3 B3| Flow Prediction
St St-1 # (via TinyFlowNet's) St
[N @ i 1) (6)
@) ==p (2) 1 I Merge point
@) Ny Image Flow Prediction L I:I — T i sets
RGB-D (CEHEEETEER) shared b
Sensors ¥ |- (pointwise) o v
§|% Voxel-based point filtering
= — 1
Scene Flow Ft-1 <~ 5|< I ¥
i]
PointCloud Xt

PointCloud Xt-1

PointCloud Kt

PointCloud Kt

(4)

e Al Translate points Eopuees 4

i

(s) j

P £
- -
s x"';{?’ 7

Figure 2: Conceptual overview of our pipeline: Structured point clouds from multiple RGB-D cameras serve as input. An image flow
algorithm (e.g., PDFlow [JSGJC15]) estimates motion for visible points (1). Occluded point flow is predicted using TinyFlowNet (TFN),
which samples multiple visible points per occluded one (2) and is trained to predict the motion of occluded points based on visible ones (3),
enabling the dynamic update of occluded points (4). On the right, the point set X; is updated by removing duplicates and divergent points
(5), integrating new observations S; (6), and applying voxel grid filtering to ensure uniform density (7), yielding the final point cloud X;.

jects consisting of a few thousand points, they fall short in scenar-
ios involving larger scenes with multiple objects that total several
hundred thousand points. This highlights the need for methodolo-
gies that can scale more effectively to manage more complex point
clouds that represent entire dynamic scenes.

In this paper, we introduce a novel, fully temporal approach
to point cloud completion that works without learning object ge-
ometry and without reconstructing a canonical representation. Our
methodology employs tiny, point-wise neural networks that dynam-
ically predict the motion of occluded points based on visible neigh-
boring points captured in camera images. Our pipeline manages a
set of points representing the scene over time in which new points
are inserted when observed or removed when density constraints
are violated. Key innovations of our approach include the ability to
manage point clouds of arbitrary sizes and complexities, even ex-
tremely large ones, by individually predicting the flow of each hid-
den point. We achieve linear complexity relative to the number of
points, natively preserve color information throughout the pipeline,
and allow flexible control over the point cloud density.

2. Our Approach
Pipeline Overview

Our pipeline processes structured point clouds from multiple cam-
eras as input at each time ¢, denoted as S;. In addition to manag-
ing the structured point clouds of all currently visible points, our
pipeline also handles an unordered set X; that represents all scene
points at frame 7, including temporally completed ones. To obtain
X;, the unordered set X; _ is transformed according to the flow of
the visible points from S;_; to S;, and then combined with S;. By
avoiding the explicit reconstruction of a canonical model, our ap-
proach aims to mitigate artifacts resulting from dynamic topology
changes. An overview of the pipeline is illustrated in Figure 2.

TinyFlowNet (TFN)

@ e e ———————— -
< 1 — — — — ——|
x H 1
o ! 1
x :] 0 < |
N)) B :
1 wn wn m 1
&5 i i
i | 3 o] S !
E ! in n n 1
: ol o o o4
L 1
X X 1 1
Sta, Fra [| E’
i 3 =
1 &] 12
AAAA — | 8
Sequence of previously | H 2
2
predicted flows e e &

Figure 3: Our TinyFlowNet (TFN) estimates the flow of a visible
or occluded point p using Gaussian-distributed sample points (yel-
low) from its local neighborhood in the structured point clouds
S;_1 along with the associated flow F,_1. The sampled points
are input relative to point p in camera space, allowing the TFN
to be trained independently of camera perspective. Spatial inputs
are processed through a Scaled-Dot-Product-Attention (S.D.P. Att.)
layer (input and embedding size = 6), while temporal inputs are
handled by a Gated Recurrent Unit (GRU). Finally, the data is pro-
cessed by Fully Connected layers to predict the flow vector.

Flow Prediction

To facilitate the transformation of occluded points alongside visi-
ble ones, our TinyFlowNet (TFN) plays a crucial role, depicted in
Figure 3. In order to make our approach suitable for the GPU, each
point x is processed independently by a TFN; the inputs are the
visible points S; and their image flows. Each point x from X;_ is
projected into the 2D image of the previous structured point clouds
S;—1, and around each projected point, n points are randomly sam-
pled from a Gaussian distribution centered at the current point (we
used n = 49), thereby introducing a spatial bias toward nearby re-
gions. TEN processes not only the sampled relative positions and
flow vectors of nearby visible points, but also the last m flow vec-
tors previously predicted (we used m = 30), which are passed into

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

A. Miihlenbrock, R. Weller & G. Zachmann / TemPCC 30f4

P]
u =] m Diverging points in front
of camera points which
are removed

O
O
[}
[m]
O

. D
o |
]

O]

Undetected
diverging point

v

Points only in Xt —» M]

= u
Camera Points in St ——» []

Figure 4: Removal of diverging points in X; based on the reliable
representation Sy.

a GRU layer. This method ensures that we can track motion even
when a point is temporarily occluded and lacks neighboring points
for prediction. For every x € X;_, we generate a flow, updating the
point set to X;. By merging X; and the current observations Sy, we
obtain X;.

In scenarios involving multiple cameras, each point x € X;_|
is projected into each camera-specific structured point cloud S;_,
and TFN runs independently for each camera. Each camera ¢ pro-
duces a flow vector f_;, which is averaged using a weighting func-
tion w = 27" where r is a constant (we used 20, resulting in the
exponential function halving every 0.05m), and d represents the
average distance of the occluded point x to surrounding points. This
weighting favors flow vectors from cameras closer to the occluded
point, enhancing accuracy in predictions from those views.

Point Management

To ensure that the size of point set X remains manageable, we re-
place old points that are very close to new points and remove points
when the density becomes too high or the points diverge signifi-
cantly.

To maintain a specific point density in X, we employ a hashset-
based voxel grid to record whether a voxel is already occupied (we
used a voxel side length of 0.4cm). Using CUDA, we iterate in
parallel over all points x in X, generate a unique hash code for each
voxel, and check if this hash code is already recorded in the hash-
set. If not, the hash code is added; if it is already present, the point
x is removed. This ensures that each voxel cell contains at most one
point. Additionally, by assuming that S; generally provides a reli-
able representation of a visible surface, we can eliminate diverging
points: If a point in X; lies directly in front of a point in S; from the
camera’s perspective, it is deemed non-existent as it would have
otherwise been detected by the camera (see Figure 4).

3. Experiments

To train our TinyFlowNet (TEN), we require the ground truth flow
of occluded points. Since well-known datasets such as the KITTI
Scene Flow dataset [MG15] lack occluded points in their ground

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

P

Figure 5: Plant from Validation Scene B captured by three cam-
eras, shown partly occluded on the left and temporally completed
on the right. Static objects are well completed during occlusion.

truth data, we created our own synthetic dataset to effectively train
our TFN. Our dataset comprises three different scenes (one train-
ing scene and two test scenes), each featuring three virtual RGB-
D cameras at a resolution of 640 x 576 at 30 Hz. In addition to
the images from the RGB-D cameras, ground truth points of visi-
ble meshes including their corresponding flow vectors are sampled,
ensuring that point information of occluded points is also available
even if they are not captured by any of the three virtual cameras, so
we can train and evaluate the TFN.

In our experiments, we trained the network using the L1 loss
function and the Adam optimizer. We evaluated our pipeline on
the scenes of our synthetic dataset (e.g., Figure 5) and on real point
cloud recordings by multiple Azure Kinects using the CWIPC-SXR
dataset [RAJ*21]; see Figure 6. In all datasets, our pipeline was
able to temporally complete the scenes at different levels of detail.
In our synthetic training scenario, occluded points traveled on av-
erage 30.6 cm with an error of 4.5 cm in the Training Scene, 15 cm
with an error of 2.9 cm in Validation Scene A, and 34.6 cm with
an error of 7.7 cm in Validation Scene B. These correspond to rela-
tive errors of 14.8 %, 19.15 %, and 22.33 %, respectively, compared
to the traveled ground truth distances after 30 frames. These results
indicate that TEN is capable of efficiently learning and generalizing
motion patterns using only adjacent visible points. In our Supple-
mental Material, we compare the usage of PDFlow [JSGJC15] with
that of optimal image flow, and also provide a visual ablation study,
analyze runtime performance, and give dataset information.

4. Conclusion

We presented a method for temporally completing dynamic point
clouds using small neural networks that infer the motion of oc-
cluded points from visible point flows. Our approach handles short-
term occlusions effectively, without requiring canonical scene re-
constructions, and generalizes robustly to unseen scenes. The
method supports arbitrary point counts, scales linearly, is archi-
tecturally compatible with multi-GPU inference, and allows for
control over point cloud density. Our LibTorch implementation

40f 4 A. Miihlenbrock, R. Weller & G. Zachmann / TemPCC

No Completion

With Completion

Figure 6: "Completion results on the Scarf scene from the CWIPC-SXR dataset [RAJ*21], which contains dynamic real-world point clouds
captured by seven synchronized Azure Kinects. In our experiments, we used data from only three widely spaced cameras, resulting in large
occluded regions. Temporal self-occlusions are mostly completed effectively, although reconstructed areas may still exhibit some visual noise.

achieves real-time performance for up to 30,000 points, with room
for further optimization.

While our approach effectively completes temporal holes in real-
world data—which is particularly beneficial for non-visual appli-
cations relying on occlusion cues—some visual artifacts, such as
noise and minor inconsistencies, still remain in the reconstructed
regions for visual use cases. To mitigate these artifacts, future work
will explore integrating alternative neural network architectures
into our pipeline, leveraging color and connectivity cues to enhance
robustness and reduce drift, and developing a native CUDA imple-
mentation to further improve performance.

Our datasets and C++ implementation (utilizing LibTorch and
CUDA) are available at Github.

Acknowledgements

This work was partially supported by BMBF grant 16SV9239.

References

[FMK*22] FISCHER R., MUHLENBROCK A., KULAPICHITR F., Us-
LAR V. N., WEYHE D., ZACHMANN G.: Evaluation of point cloud
streaming and rendering for vr-based telepresence in the or. In Proc.
EuroXR (2022), pp. 89-110. 1

[GCC*20] GAMELIN G., CHELLALI A., CHEIKH S., RICCA A., DU-
MAS C., OTMANE S.: Point-cloud avatars to improve spatial communi-
cation in immersive collaborative virtual environments. Pers. Ubiquitous
Comput. 25,3 (2020), 467-484. 1

[GJS*21] GASQUES D., JOHNSON J. G., SHARKEY T., FENG Y.,
WANG R., XUZ., ZAVALA E., ZHANG Y., XIE W., ZHANG X., DAVIS
K., YIP M., WEIBEL N.: Artemis: A collaborative mixed-reality system
for immersive surgical telementoring. In Proc. ACM CHI (2021). 1

[IZN*16] INNMANN M., ZOLLHOFER M., NIESSNER M., THEOBALT
C., STAMMINGER M.: Volumedeform: Real-time volumetric non-rigid
reconstruction. In Proc. ECCV (2016), pp. 362-379. 1

1 https://www.github.com/muehlenb/TemPCC

[JSGJC15] JAIMEZ M., SOUIAI M., GONZALEZ-JIMENEZ J., CRE-
MERS D.: A primal-dual framework for real-time dense rgb-d scene
flow. In Proc. ICRA (2015), pp. 98-104. 2, 3

[MG15] MENZE M., GEIGER A.: Object scene flow for autonomous
vehicles. In Proc. CVPR (2015). 3

[MHU*25] MUHLENBROCK A., HUSCHER H., USLAR V. N., CETIN
T., WELLER R., WEYHE D., ZACHMANN G.: A novel, autonomous,
module-based surgical lighting system. ACM Trans. Comput. Healthcare
(2025). 1

[NFS15] NEWCOMBE R. A., Fox D., SEITZ S. M.: Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In Proc.
CVPR (2015). 1

[RAJ*21] REIMAT I., ALEXIOU E., JANSEN J., VIOLA 1., SUBRA-
MANYAM S., CESAR P.: Cwipc-sxr: Point cloud dynamic human dataset
for social xr. In Proc. ACM MMSys (2021), pp. 300-306. 3, 4

[RYP*21] ROTH D., YU K., PANKRATZ F., GORBACHEV G., KELLER
A., LAZAROVICI M., WILHELM D., WEIDERT S., NAVAB N., ECcK
U.: Real-time mixed reality teleconsultation for intensive care units in
pandemic situations. In Proc. IEEE VRW (2021), pp. 693-694. 1

[SBI18] SLAVCHEVA M., BAUST M., ILIC S.: Sobolevfusion: 3d recon-
struction of scenes undergoing free non-rigid motion. In Proc. CVPR
(2018). 1

[WCG*24] WANG J., Cur Y., Guo D., L1 J., Liu Q., SHEN C.:
Pointattn: You only need attention for point cloud completion. Proc.
AAAI Conf. Artif. Intell. 38, 6 (2024), 5472-5480. 1

[XWL*23] XIANG P., WEN X., L1U Y.-S., CAO Y.-P., WAN P., ZHENG
W., HAN Z.: Snowflake point deconvolution for point cloud completion
and generation with skip-transformer. IEEE Trans. Pattern Anal. Mach.
Intell. 45,5 (2023), 6320-6338. 1

[YGE*21] YU K., GORBACHEV G., ECcK U., PANKRATZ F., NAVAB
N., RoTH D.: Avatars for teleconsultation: Effects of avatar embodi-
ment techniques on user perception in 3d asymmetric telepresence. IEEE
Trans. Vis. Comput. Graph. 27, 11 (2021), 4129-4139. 1

[YKH*18] YUAN W., KHOT T., HELD D., MERTZ C., HEBERT M.:
Pcn: Point completion network. In Proc. 3DV (2018), pp. 728-737. 1

[YZG*21] YU T., ZHENG Z., Guo K., L1U P., DA1 Q., L1U Y.: Func-
tion4d: Real-time human volumetric capture from very sparse consumer
rgbd sensors. In Proc. CVPR (2021). 1

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/muehlenb/TemPCC

