
EUROGRAPHICS 2025/ D. Ceylan and T.-M. Li Short Paper

Multi-Objective Packing of 3D Objects into Arbitrary Containers

Hermann Meißenhelter , René Weller and Gabriel Zachmann

University of Bremen, Germany

(1) (2) (3)

Figure 1: (1) Example containers (Armadillo and Hand) and objects (fruits) to be packed inside, both with high polygon count as well as
arbitrary shapes. (2) We can pack the fruit densely into a container, such that a given fruit distribution is achieved, yet clustering is avoided.
Armadillo distribution with more smaller fruit sizes, and Hand with more larger ones. (3) Final packings: Armadillo (54% volume covered
in 33 min), Hand (54.1% volume covered in 23 min).

Abstract
Packing problems arise in numerous real-world applications and often take diverse forms. We focus on the relatively under-
explored task of packing a set of arbitrary 3D objects—drawn from a predefined distribution—into a single arbitrary 3D
container. We simultaneously optimize two potentially conflicting objectives: maximizing the packed volume and maintaining
sufficient spacing among objects of the same type to prevent clustering. We present an algorithm to compute solutions to this
challenging problem heuristically. Our approach is a flexible two-tier pipeline that computes and refines an initial arrangement.
Our results confirm that this approach achieves dense packings across various objects and container shapes.

CCS Concepts
• Theory of computation → Packing and covering problems; Computational geometry;

1. Introduction

Packing problems have long been studied in computational geom-
etry and operations research, dating back to Kepler’s 1611 conjec-
ture on sphere packing. Packing problems are still an active field of
research, and there exist a lot of open research questions, even for
very simple geometries, such as the sausage catastrophe [TGW89],
not to speak about the packing of arbitrary objects.

Today, the packing of objects with arbitrary shapes, especially in
3D, is of high interest in many practically relevant scenarios. For
instance, it is important in logistics to pack as many objects as pos-
sible inside a container or reduce the number of containers to mini-
mize the shipping costs. In diamond-cutting, it is essential to reduce
the wasted material , and in decorative paving, a closer placement
of differently sized stones increases the surface coverage. A rela-

tively new challenge arises in additive manufacturing: the process
is very time-consuming, so it is more efficient to process many ob-
jects simultaneously and, therefore, pack them together as close as
possible in a container [LtDF12].

While several researchers have addressed the problem of pack-
ing arbitrarily shaped 3D objects into arbitrarily shaped containers
(e.g., [MCHW18,CRCM23]), these methods often focus purely on
maximizing packing density. In contrast, our approach targets addi-
tional objectives that arise in more specialized settings, such as en-
suring a predefined distribution of object types and avoiding visu-
ally unappealing clustering. These considerations emerged from a
practical collaboration with an artist seeking aesthetically pleasing
arrangements for 3D-printed art pieces. Similar constraints arise in
industrial contexts such as cement mixture creation. New mixtures

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20251051 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0001-3584-3281
https://orcid.org/0009-0002-2544-4153
https://orcid.org/0000-0001-8155-1127
https://doi.org/10.2312/egs.20251051

2 of 4 Hermann Meißenhelter & René Weller & Gabriel Zachmann / Multi-Objective Packing of 3D Objects into Arbitrary Containers

of non-uniformly sized particles are often tested through simula-
tion to ensure a uniform spatial distribution with high packing den-
sity [Aa08].

Because we are not aware of an analytical solution to this multi-
objective setting, we present a two-tier heuristic pipeline based on
computer graphics methods—particularly distance computations
and collision detection. In the first phase, we compute a feasi-
ble initial packing; in the second phase, we refine it to achieve
higher density. Our examples demonstrate that this approach yields
dense packings and meets user-defined distribution goals in a rea-
sonable time. The source code is publicly available at: cgvr.cs.uni-
bremen.de/research/packing

2. Related Work

Wäscher’s typology [WHS07] classifies numerous packing prob-
lems; our scenario, involving many “weakly heterogeneous” items
in one large 3D container, falls under the 3D irregular non-
orthogonal Single Large Object Placement Problem (SLOPP). This
class has received relatively little attention, and no analytic solution
is known, so heuristic methods are typically employed to achieve
high-density packings. One such heuristic was presented in addi-
tive manufacturing to optimize the layout of the objects [LtDF12].
Objects are placed randomly, and then vibration is simulated to in-
crease the density. This leads to voids that are filled by smaller
objects (Brazil Nut Effect).

Many algorithms for packing problems can handle only a few
simple, regular shapes such as spheres or boxes. Including other
or arbitrary shapes often fails because these objects are difficult to
treat mathematically. For these reasons, [JW01] uses a voxelization
(i.e., discretization) of complex objects in 3D. This introduces the
problem of choosing the right discretization resolution for a given
application because that will determine accuracy and runtime. The
authors primarily employ a physically-based approach to distribute
the objects in the container using several special movements, such
as a rebounding probability, which allows objects to move diffusely
[GGJW04]. A disadvantage of this approach is the high memory
consumption.

Ma et al. [MCHW18] combined a continuous, local optimization
with a combinatorial optimization. Each object is placed centrally
into cells, and then scaling, rotation, and position are optimized
iteratively until a stopping criterion is met. However, this approach
does not achieve a uniform spatial distribution of the objects and is
computationally very expensive.

Recently, Cui et al. [CRCM23] was able to demonstrate state-of-
the-art performance compared to [MCHW18, RBSP18]. This was
made possible by voxelization of the container and objects and us-
ing the Fast Fourier Transform (FFT) for collision detection. They
limited the degree of rotations, which was remedied by simulating
container-shaking [ZCH∗24]. However, it remains unclear how ef-
ficient the FFT approach is for arbitrary container shapes compared
to rectangular ones, as [CRCM23] provided computation time for
only a single example, and rotations were disabled in that case. In
contrast, our work primarily considers arbitrary container shapes
and allows for continuous rotations, addressing these limitations
directly.

Algorithm 1 Initialization: Uniformly Place and Grow
1: sample points P inside container
2: place objects O at P with random rotation
3: while not all object in O grown do
4: search object type T greedily w.r.t. volume and distribution
5: let o be the first ungrown object of type T
6: for s← 0.05 to 1.0 with step 1

30 do
7: scale o to s
8: try to resolve overlap ▷ up to i iterations
9: if overlap not resolved then

10: remove o from O

3. Problem Statement

Given a container C ⊂ R3, and given T = {O1, . . . ,On} a collec-
tion of object types, where each Oi is a given solid shape in R3.
A placement P = (X , t) is a rigid motion X (translation + rotation)
and a pointer t ∈ {1, . . . ,n} to a specific type of object. Find a set
of placements Pi, . . . ,PN so that:

• Xi(Oti)’s do not overlap and are contained in C
• Maximize the density ∑

N
i=1 vol(Xi(Oti))/vol(C)

• Adhere to user-specific frequency in type
• Avoid spatial clustering among objects of the same type

In our evaluation, we quantify distribution accuracy and clustering.

4. Our Approach

Here, we present a set of heuristic algorithms to solve the problem
stated above. In principle, our two-phase pipeline works as follows:

1. Initialization: First, we compute a feasible solution, i.e., all ob-
jects are located inside the container object and not overlapping.

2. Optimization: In the second phase, we try to add more objects
to increase the packing density.

Note that our pipeline design is very flexible in that it allows easy
integration of more heuristics in the future. In the following, we
provide more details of the two phases. Finally, we describe how
object overlaps are solved.

Initialization Given an empty container, the basic idea is to
place objects at potentially feasible positions and resolve conflicts.
Beforehand, a desired, frequency distribution of object types has
to be predefined. We avoid gravitational force or container shak-
ing [LtDF12, ZCH∗24], as it would lead to the mentioned Brazil
Nut Effect and increase clustering by size segregation. With Al-
gorithm 1, we try to achieve all three objectives (non-clustering,
distribution, density) by placing and growing objects inside a con-
tainer. We start by regularly sampling points within the container
at a coarse resolution, aiming for a quick initial solution. Each ob-
ject is placed at one of these sampled points with a randomly as-
signed orientation and a type drawn from the discrete distribution
(e.g., a 10% chance for an apple). Initially, objects are placed in
a “shrunken”, non-colliding state, then grown consecutively. How-
ever, we do not grow all objects simultaneously. Instead, we select
the object type with the largest volume that is currently below its
desired target frequency. If available, we then choose the first non-
grown object of that type; otherwise, we don’t consider this type
anymore and repeat the selection process.

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://cgvr.cs.uni-bremen.de/research/packing
https://cgvr.cs.uni-bremen.de/research/packing

Hermann Meißenhelter & René Weller & Gabriel Zachmann / Multi-Objective Packing of 3D Objects into Arbitrary Containers 3 of 4

Once an object is chosen, we scale it incrementally, starting from
a small factor (0.05) and increasing in uniform steps up to 1.0. Af-
ter each scaling step, we attempt to resolve any overlaps with pre-
viously placed objects, allowing up to 25-30 iterations for this pro-
cess. If overlaps cannot be resolved within i iterations, we remove
the object from the set of placed objects.

Optimization The initial packings often have cavities due to the
finite sampling resolution and removed objects. Obviously, these
voids have different shapes and sizes. With Algorithm 2, we present
a simple heuristic to identify possible voids and try to fill them,
which leads to more packing density. This time, we do the sam-
pling in higher resolution to catch the voids. Since it is difficult to
place objects successfully with already placed objects, we classify
the sampling points. We compute a minimal distance to the near-
est object from each sampling point. To improve placement success
and consider type distribution, we discard cavities falling below a
threshold, which depends on the object type frequency wi. Specifi-
cally, we compute the weighted geometric mean V̄ = ∏i V

wi
i of the

volumes Vi. Let f (x) = 3
√

3x/(4π) (radius from sphere volume).
We then set d = f (V̄) as our distance threshold for cavities. This
volume-based approach ensures elongated shapes can still be cho-
sen to fill a cavity. However, volume scales cubically, which biases
toward larger cavities, so we further refine d by averaging it with
the radius r = f (Vi) of the smallest object volume Vi. The result-
ing distance d+r

2 is then used to reject sampling points that are too
close to existing objects.

For each point, we try to insert the largest type of object that can
fit in the cavity. An object is valid if its volume to radius (f (Vi))
is smaller than the sampling point’s minimal distance. The object
is placed at the current point and gradually scaled up, with overlap
resolutions performed at each scaling step (55-150 iterations). We
move on to the next sample point if the object reaches its full size
without collisions. Otherwise, we retry with a smaller object type
(randomly selected) up to a maximum of two insertion attempts.
If no smaller object can be placed successfully or the maximum
number of attempts is reached, we discard the current point and
proceed with the next one.

Algorithm 2 Optimization: Fill Cavities
1: sample points P inside container with minimum distance d
2: for each p ∈ P do
3: let t be the largest object type fitting the cavity at p
4: scale t and resolve overlap ▷ i iterations
5: if reached full size then ▷ no overlap exists
6: continue ▷ move on to next point
7: tries← 0
8: while tries < 2 and not (full size reached) do
9: tries← tries+1

10: select random smaller object type t
11: if no smaller type t exists then
12: break ▷ smallest type failed, skip point
13: scale t and resolve overlap ▷ i iterations

Testing and Resolving Object Overlap During the place-
ment of objects, we allow overlaps. However, the final packing
should be overlap-free. Hence, we resolve the intersections with
the physically-based approach (custom rigid body simulator). We

use sphere packing approximations of objects for object-object
collision and penalty-force computation as [WZ09] did. Besides
fast computation of penetration volume (penalty force), we also
can do fast distance queries. Intersecting spheres or minimal dis-
tances are computed by traversing both sphere bounding volume
hierarchies. Since the container is more difficult to approximate
with a volumetric sphere packing, we use a k-DOP tree [Zac98]
for object-container intersection instead. A k-DOP tree is a hier-
archical spatial data structure that uses discrete oriented polytopes
(k-DOP) as bounding volumes. SIMD instructions speed up our
bounding volume hierarchies, which use 4-ary trees. After accu-
mulating penalty forces on each object, we normalize them and
scale them by a spring-like object stiffness (giving each object-
object collision equal strength). This scaled offset is added to the
velocity. For object–container collisions, we compute the average
normal from the intersecting container triangles, scale it by a con-
tainer stiffness, and add it to the velocity. We then integrate the
velocity and damp it to zero, causing objects to move only a fixed
amount and stop when no collision exists. This design simplifies the
tuning of penalty stiffness for both collision types and accelerates
collision detection through temporal coherence (unmoved objects
remain out of further checks). There is, in general, no guarantee
of reaching an overlap-free state or beforehand known how many
iterations i (physics updates) are needed. Therefore, we limit the
iterations to a predefined hyperparameter. Moreover, we save the
previous overlap-free packing in memory before we attempt to add
an object. Therefore, we can quickly recover after a failed insertion
attempt.

5. Results

We benchmarked four cases from the literature [MCHW18,
RBSP18] (uniform type distribution) and additionally our two high-
polygonal containers and fruits with regard to total computation
time and the resulting packing density. Our PC had an Intel®

Core™ i7-12700K CPU with 32 GB RAM. In Fig. 2 and Tab. 2, we
compare our results in a similar manner to [CRCM23, ZCH∗24],
which also listed computation times from the original references.
Our method achieves the fastest computation time while aiming
for additional objectives like distribution and non-clustering, at the
cost of slightly lower packing density (see Tab. 2). The initialization
took up to 19% of total time and was up to 13% below optimized
packing density. We compute the difference between our target ob-
ject type distribution q and the actual distribution p using the total
variation distance (TVD), which satisfies 0 ≤ TVD(p,q) ≤ 1 and
represents the fraction of the total probability mass that must be
redistributed to make the two distributions identical. We achieve
almost identical distributions for initialization, and low differences
after the optimized packing, except for one case (see Tab. 1). We
hypothesize that the many fine-detail parts of the Armadillo make it
difficult to place medium- to large-sized fruit objects, thus leading
to more distribution differences. The initialization performs very
well because it mainly focuses on distribution. We evaluate the spa-
tial distribution using the nearest neighbor index (NNI), which al-
lows us to determine whether there is any clustering (NNI < 1),
random placement (NNI ≈ 1), or regularities (NNI > 1). Results
show that our approach avoids spatial clustering of object types on
average across all use cases.

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 4 Hermann Meißenhelter & René Weller & Gabriel Zachmann / Multi-Objective Packing of 3D Objects into Arbitrary Containers

Metric Arma. Box Chess Hand Torus Vase

TVDinit 0.15 0.07 0.01 0.02 0.00 0.05
TVDopt 0.53 0.18 0.03 0.34 0.00 0.09

NNIinit 1.43 1.17 1.15 1.25 1.20 1.41
NNIopt 1.20 1.14 1.16 1.24 1.25 1.41

Table 1: Results for object type distribution (Total Variation Dis-
tance, TVD) and spatial distribution (Nearest Neighbor Index,
NNI). Initialization (init) and optimization (opt) algorithm results.

Method Number Time[s] Density[%]

Romanova et al. [RBSP18] 80 42950 53.66
Ma et al. [MCHW18] 77 2700 51.3
Cui et al. [CRCM23] 80 329 51.27
Zhuang et al. [ZCH∗24] 86 277 54.47
Ours 78 139 45.5

Table 2: Comparison of time consumption and packing density for
our method vs. others in the polyhedron scenario (see Fig. 2b).

6. Conclusion and Future Work

In this work, we addressed the challenging problem of packing ar-
bitrary 3D objects into arbitrary containers while optimizing for
packing density and a given distribution across object types. Our
heuristic algorithms maintain a cluster-free spatial distribution of
object types and achieve dense packings using a two-phase pipeline
consisting of initialization and optimization.

Results show the reliability and adaptability of our approach,
making it suitable for manufacturing and many other fields. Our
work could be extended by, i.e., a new algorithm searches for
unconnected objects and tries to attach them to the nearest object.
Additionally, we will investigate whether performing consecutive
local optimizations at incrementally increasing sampling resolu-
tions generally outperforms a single high-resolution sampling, as
the actual distances might change.

Acknowledgements This research has been (partially) supported by
the German Research Foundation DFG, as part of Collaborative Research
Center (Sonderforschungsbereich) 1320 “EASE - Everyday Activity
Science and Engineering”. Hand and fruit models are copyright by Peter
Coffin Studio.

References
[Aa08] AMIRJANOV A., AND K. S.: Optimization of a computer simula-

tion model for packing of concrete aggregates. Particulate Science and
Technology 26, 4 (2008), 380–395. 2

[CRCM23] CUI Q., RONG V., CHEN D., MATUSIK W.: Dense,
interlocking-free and scalable spectral packing of generic 3d objects.
ACM Trans. Graph. 42, 4 (July 2023). 1, 2, 3, 4

[GGJW04] GAN M., GOPINATHAN N., JIA X., WILLIAMS R. A.: Pre-
dicting packing characteristics of particles of arbitrary shapes. KONA
Powder and Particle Journal 22 (2004), 82–93. 2

[JW01] JIA X., WILLIAMS R.: A packing algorithm for particles of ar-
bitrary shapes. Powder technology 120, 3 (2001), 175–186. 2

[LtDF12] LUTTERS E., TEN DAM D., FANEKER T.: 3d nesting of com-
plex shapes. Procedia CIRP 3 (2012), 26 – 31. 45th CIRP Conference
on Manufacturing Systems 2012. 1, 2

[MCHW18] MA Y., CHEN Z., HU W., WANG W.: Packing irregular ob-
jects in 3d space via hybrid optimization. In Computer Graphics Forum
(2018), vol. 37, Wiley Online Library, pp. 49–59. 1, 2, 3, 4

(a) (b)

(c) (d)

(e) (f)

Figure 2: Results. (a) Vase filled by 135 hearts (51.7%) in 63 s.
[MCHW18]: (125 hearts, 40.3%, 1740 s). (b) Packing 78 polyhe-
drons (45.5%) in a box within 139 s. (c) Torus filled by 67 dogs
(19.6%) in 112 s. [MCHW18]: (67 dogs, 19.6%, 3480 s). (d) Pack-
ing 62 chess pieces (32.1%) in a box within 86 s. [MCHW18]: (60
pieces, 32.5%, 2400 s). (e) Armadillo filled with 2209 fruits (54%)
in 1984 s. (f) Hand packed with 2557 fruits (54.1%) in 1376 s.

[RBSP18] ROMANOVA T., BENNELL J., STOYAN Y., PANKRATOV A.:
Packing of concave polyhedra with continuous rotations using nonlinear
optimisation. European Journal of Operational Research 268, 1 (2018),
37 – 53. 2, 3, 4

[TGW89] TÓTH G. F., GRITZMANN P., WILLS J. M.: Finite sphere
packing and sphere covering. Discrete & Computational Geometry 4, 1
(1989), 19–40. 1

[WHS07] WÄSCHER G., HAUSSNER H., SCHUMANN H.: An improved
typology of cutting and packing problems. European Journal of Opera-
tional Research 183, 3 (2007), 1109 – 1130. 2

[WZ09] WELLER R., ZACHMANN G.: A unified approach for
physically-based simulations and haptic rendering. In Sandbox: ACM
SIGGRAPH Video Game Proceedings (Aug. 2009), ACM Press. 3

[Zac98] ZACHMANN G.: Rapid collision detection by dynamically
aligned DOP-trees. In Proc. of IEEE Virtual Reality Annual International
Symposium; VRAIS ’98 (Atlanta, Georgia, March 1998), pp. 90–97. 3

[ZCH∗24] ZHUANG Q., CHEN Z., HE K., CAO J., WANG W.: Dynam-
ics simulation-based packing of irregular 3d objects. Comput. Graph.
123, C (Nov. 2024). 2, 3, 4

© 2025 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

