
G E O M E T R I C C O M P U T I N G F O R
S I M U L AT I O N - B A S E D R O B O T P L A N N I N G

... and more

Dem Fachbereich Informatik
der Universität Bremen

eingereichte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Toni Tan, M.Sc

Referenten der Arbeit: Prof. Dr. Gabriel Zachmann
Prof. Michael Manzke PhD

Tag der Einreichung: April 04, 2024
Tag des Kolloqiums: July 03, 2024

Toni Tan: Geometric Computing for Simulation-Based Robot Planning,

To both my children, Rayleigh and Raelyn:
Without whose interruptions, detours, and constant questions, this

thesis would have been finished years earlier.

D E C L A R AT I O N

I hereby declare that I am the legitimate author of this Dissertation and
that it is my original work. No portion of this work has been submitted
in support of an application for another degree or qualification of this
or any other university or institution of higher education. I hold the
University of Bremen harmless against any third party claims with
regard to copyright violation, breach of confidentiality, defamation
and any other third party right infringement.

Bremen, April 04, 2024

Toni Tan

A B S T R A C T

Simulation-based robot planning is a popular approach in robotics
that involves using computer simulations to plan and optimize robot
motions by envisioning the outcome of generated plans before their
execution in the real world. This approach offers several benefits, in-
cluding the ability to evaluate multiple motion plans, reduce trial-and-
error in physical experimentation, and enhance safety by identifying
potential collisions and other hazards before executing a motion.

Although this approach can significantly benefit robotic manip-
ulation tasks, such simulations are still computationally expensive
and may require more computing power than the robotic agents can
provide. In addition, uncertainties arising from, i.e., perception or sim-
ulation models must be taken into account. Current approaches often
require running simulations multiple times with varying parameters
to account for these uncertainties, making real-time action planning
and execution difficult.

This thesis presents an accelerated geometric computation, i. e.,
Collision Detection (CD) methods for such simulation, precisely an
algorithm based on Bounding Volume Hierarchies (BVHs) and Single
Instruction Multiple Data (SIMD) instruction sets. The main idea is to
increase the branching factor of Bounding Volume Hierarchy (BVH)
according to available SIMD width and simultaneously test Bounding
Volume (BV) nodes for intersection in parallel. In addition, this thesis
presents compression strategies for BVH-based CD implemented on
two existing CD algorithms, namely Doptree and Boxtree. The idea
is to remove redundant information from BVHs, and compress 32-
bit floating points used to represent BVHs. This greatly increases the
number of simultaneous simulations done in parallel by robotic agents,
with most benefitting remote robots, as their computing power is often
limited.

Furthermore, this thesis presents an idea of benchmarking as an
online service. In the literature, it is quite often that the results of pro-
posed algorithms are difficult to replicate due to missing hardware/-
software and different computing configurations. Combined with the
idea of using a virtual machine to safely execute user-uploaded algo-
rithms makes it possible to safely run benchmarks as an online service.
Not only are the results reproducible, but they are also comparable,
as they are done within the same hardware/software configurations.

Finally, this thesis investigates an idea to address uncertainties by
incorporating them into simulations. The main concept is to integrate
uncertainty as a a probability distribution into CD algorithms. In
this sense, CD algorithms will not only report collisions but also the

vii

probability when a collision occurs. The outcome is not a simple
final state of the simulation but rather a probability map reflecting a
continuous distribution of final states.

viii

Z U S A M M E N FA S S U N G

Die simulationsbasierte Roboterplanung ist ein beliebter Ansatz in
der Robotik, der Computer-Simulationen nutzt, um Roboterbewegun-
gen zu planen und zu optimieren, indem das Ergebnis generierter
Pläne vor ihrer Ausführung in der realen Welt vorhergesagt wird.
Dieser Ansatz bietet mehrere Vorteile, darunter die Möglichkeit, meh-
rere Bewegungspläne zu bewerten, Versuchs-und-Irrtum-Methoden
bei physischen Experimenten zu reduzieren und die Sicherheit zu
erhöhen, indem potenzielle Kollisionen und andere Gefahren vor der
Ausführung einer Bewegung identifiziert werden. Obwohl dieser An-
satz für robotische Manipulationen von großem Nutzen sein kann,
sind solche Simulationen immer noch rechenintensiv und erfordern
möglicherweise mehr Rechenleistung, als die Roboter bereitstellen
können. Darüber hinaus müssen Unsicherheiten, die aus der Wahr-
nehmung oder den Simulationsmodellen resultieren, berücksichtigt
werden. Aktuelle Ansätze erfordern oft das mehrfache Ausführen
von Simulationen mit variierenden Parametern, um diese Unsicher-
heiten zu berücksichtigen, was eine Echtzeit-Aktionsplanung und
-ausführung erschwert.

Diese Arbeit präsentiert eine beschleunigte geometrische Berech-
nung, d.h. Methode zur Kollisionserkennung für solche Simulationen,
genau einen Algorithmus basierend auf BVHs und SIMD Befehlssätzen.
Die Hauptidee besteht darin, den Verzweigungsgrad der BVH ent-
sprechend der verfügbaren SIMD-Breite zu erhöhen und gleichzeitig
BV-Knoten parallel auf Schnitt zu testen. Darüber hinaus präsentiert
diese Arbeit Kompressionsstrategien für BVH-basierte Kollisionser-
kennung, die auf zwei bestehenden algorithmen, nämlich Doptree
und Boxtree, implementiert sind. Die Idee besteht darin, redundante
Informationen aus BVHs zu entfernen und 32-Bit-Fließkommazahlen
zu komprimieren, die zur Darstellung von BVHs verwendet werden.
Dies erhöht die Anzahl gleichzeitiger Simulationen, die von Robo-
tern parallel durchgeführt werden, wobei besonders entfernte Roboter
profitieren, da ihre Rechenleistung oft begrenzt ist.

Darüber hinaus präsentiert diese Arbeit die Idee eines Benchmar-
kings als Online-Dienst. In der Literatur ist es häufig so, dass die Er-
gebnisse vorgeschlagener Algorithmen aufgrund fehlender Hardware-
/Software- und unterschiedlicher Rechnerkonfigurationen schwer zu
reproduzieren sind. In Kombination mit der Idee, eine virtuelle Ma-
schine zu verwenden, um benutzerhochgeladene Algorithmen sicher
auszuführen, ist es möglich, Benchmarks sicher als Online-Dienst
durchzuführen. Nicht nur sind die Ergebnisse reproduzierbar, son-
dern sie sind auch vergleichbar, da sie innerhalb derselben Hardware-
/Software-Konfigurationen durchgeführt werden.

ix

Schließlich untersucht diese Arbeit eine Idee, Unsicherheiten anzu-
gehen, indem sie diese in Simulationen integriert. Das Hauptkonzept
besteht darin, Unsicherheit als Wahrscheinlichkeitsverteilung in CD-
Algorithmen zu integrieren. In diesem Sinne werden CD-Algorithmen
nicht nur Kollisionen melden, sondern auch die Wahrscheinlichkeit
angeben, wann eine Kollision auftritt. Das Ergebnis ist nicht nur ein
einfacher Endzustand der Simulation, sondern vielmehr eine Wahr-
scheinlichkeitskarte, die eine kontinuierliche Verteilung von Endzu-
ständen widerspiegelt.

x

A C K N O W L E D G M E N T S

I would like to express my heartfelt gratitude to all those who have
supported and encouraged me throughout my dissertation journey.

Firstly, I would like to thank my supervisor Prof. Dr. Gabriel Zach-
mann and Prof. Michael Manzke PhD for their invaluable guidance,
patience, and expertise. Without their support and feedback, this
dissertation would not have been possible.

Moreover, I wish to thank all my co-authors for the fruitful collabo-
ration without which this thesis undoubtedly would not exist. Namely,
Dr. René Weller, Janis Rosskamp, Franklin Kenghagho Kenfack, and
Michael Neumann.

I would also like to extend my gratitude to the faculty and staff
at Computer Graphics and Virtual Reality Research Lab (CGVR) at
the University of Bremen, who provided me with the necessary re-
sources, opportunities, and a conducive learning environment. In
alphabetical order: Abhishek Srinivas, Andre Mühlenbrock, Christoph
Schröder-Dering, Hermann Meißenhelter, Helga Reinermann, Jörn
Teuber, Maximilian Kaluschke, Philipp Dittmann, Dr. Roland Fischer,
Sabine Dolhs, Tanja Rethemeyer, Thomas Hudcovic, and Dr. Xizhi Li.

I am also indebted to my family and friends who stood by me
during this challenging phase of my life. Their unwavering support,
motivation, and love have been a source of inspiration to me.

Last but not least, I would like to express gratitude for the contribu-
tion of my students who have been a source of intellectual stimulation
and motivation throughout my journey. In alphabetical order: Alexan-
der Schwochow, Anjishnu Mukherjee, Issawat Nilavongse, Jan-Eric
Oltmanns, Paul Duhr, Torben Groß, and Waralee Tanaphantaruk.

Thank you all for your support, encouragement, and patience.

xi

C O N T E N T S

1 Introduction 1
1.1 Thesis Outline . 5

2 Use of Simulation for Robot Planning 7
2.1 Simulation-Based Internal Models for Robots 8
2.2 Motion Planning . 9

2.2.1 Low Dimension Spaces 10
2.2.2 High Dimension Spaces 11
2.2.3 Computational Bottleneck 13

2.3 Envisioning Outcome of Generated Plans 14
2.3.1 Uncertainty in Simulation 15

3 SIMD Optimized Bounding Volume Hierarchies 17
3.1 SIMD Recap . 17
3.2 Implementation Strategies 18
3.3 BVH Construction Based On Batch Neural Gas Cluster-

ing Algorithms . 20
3.4 SIMD Based Simultaneous BVH Traversal 22
3.5 Results . 24
3.6 Extension To Continuous Collision Detection 24

3.6.1 Inner Sphere Tree . 28
3.6.2 BVH Construction . 30
3.6.3 Results . 30

3.7 Conclusion and Future Work 30
4 Memory Efficient Bounding Volume Hierarchies 35

4.1 Memory Efficient Doptree 37
4.1.1 Optimization . 39
4.1.2 Results . 42

4.2 Memory-Efficient Boxtree . 42
4.2.1 Optimization . 43
4.2.2 Optimized Structure 45
4.2.3 Results . 46

4.3 Conclusion and Future Work 47
5 Benchmarking as Online Service 49

5.1 Open Benchmarking for Reproducible and Comparable
Results . 49

5.2 Benchmarking for CD & PQ Algorithms 50
5.2.1 Web-Based Benchmarking Service 51
5.2.2 Heatmap Visualization 53
5.2.3 Safe Execution of User-Uploaded Algorithms . . 58

5.3 Conclusion and Future Work 59
6 Uncertainty in Simulation-Based Robot Planning 65

6.1 Inner Sphere Tree for Geometry With Uncertain Properties 66
6.2 Physics Simulation With Uncertain Properties 69

xiii

xiv contents

6.3 Conclusion and Future Work 70
7 Applications 73

7.1 Collision Detecion For Grasp Type Detection 73
8 Discussion and Conclusion 77

8.1 Limitations and Future Work 78
8.1.1 Simulation of Deformable Components 78
8.1.2 Proper Handling of Uncertainty 79

Fundamental Publications 93
f 1 SIMDop: SIMD optimized Bounding Volume Hierar-

chies for Collision Detection 93
f 2 NaivPhys4RP - Towards Human-like Robot Perception

“Physical Reasoning based on Embodied Probabilistic
Simulation” . 93

f 3 OpenCollBench - Benchmarking of Collision Detection
& Proximity Queries as a Web-Service 94

f 4 A Framework for Safe Execution of User-Uploaded Al-
gorithms . 95

f 5 SIMD optimized Bounding Volume Hierarchies for Col-
lision Detection . 95

Supportive Publications 97
s 1 Grasping for reality-How can we improve the digital

representation of human grasp behaviour? 97
Appendix 99

a 1 Intrinsics Code for SIMD-Based Simultaneous BVH
Traversal . 99
a 1.1 1 vs 16 . 99
a 1.2 4 vs 4 . 99

a 2 16-Bit to 32-Bit Floating Point Conversion 100

A C R O N Y M S

AABB Axis Aligned Bounding Box

ACM Association for Computing Machinery

AVX Advanced Vector Extensions

AVX-512 512-bit Advanced Vector Extensions

BNG Batch Neural Gas

BV Bounding Volume

BVH Bounding Volume Hierarchy

BVHs Bounding Volume Hierarchies

BOS Benchmark as Online Service

CD Collision Detection

CCD Continuous Collision Detection

CPU Central Processing Unit

DoF Degrees of Freedom

DOP Discrete Oriented Polytope

DLL Dynamic-Link Library

GPU Graphics Processing Unit

GUI Graphical User Interface

HRI Human-Robot Interaction

IST Inner Sphere Tree

k-DOP k - Discrete Oriented Polytope

mRBPF marginal Rao-Blackwellized Particle Filter

NEEM Narrative-Enabled Episodic Memory

NG Neural Gas

OBB Oriented Bounding Box

OS Operating System

PQ Proximity Query

PQP Proximity Query Package

PRM Probabilistic Roadmap

RAM Random Access Memory

RCE Remote Code Execution

RRT Rapidly-Exploring Random Trees

SAH Surface Area Heuristic

xv

xvi acronyms

SIMD Single Instruction Multiple Data

SIGGRAPH Special Interest Group on Computer Graphics and
Interactive Techniques

SSE Streaming SIMD Extensions

VC V-COLLIDE

VM Virtual Machine

VR Virtual Reality

1
I N T R O D U C T I O N

In recent years, there have been notable advancements in the field
of robot planning. These advances have introduced new algorithms
and techniques with the goal of creating efficient and effective paths
for robots to navigate within their environments. One specific area
of interest in this field involves the use of mental simulation as a key
component in simulation-based methods for generating motion plans.

Mental simulation, a core concept in cognitive science (Battaglia,
Hamrick, and Tenenbaum, 2013; Hesslow, 2012), has played a critical
role in enabling robots to engage in realistic, robust, and efficient
reasoning about their intended actions. This reasoning process relies
on the use of mental simulations, which employ qualitative reason-
ing techniques to think about actions and their expected outcomes.
This approach involves translating the observed scenes and planned
actions into parametrized simulation problems. Multiple detailed
physics-based simulations are then sampled to simulate the robot’s
action plan, capturing the evolution of states within appropriate data
structures. Subsequently, these sub-symbolic data structures are trans-
formed into interval-based first-order symbolic representations known
as Narrative-Enabled Episodic Memory (NEEM). NEEM serves as quali-
tative representations, providing insights into how the robot’s actions
evolve.

For robots to excel in everyday tasks, they must possess the ability to
think flexibly about the actions they intend to carry out. For example,
when faced with the task of picking up a stack of plates and cups, a
robot should be able to quickly assess the likelihood of objects toppling
over and make appropriate decisions accordingly. Similarly, the robot
should be able to anticipate whether to use one hand or both when
lifting a pile of plates. Moreover, when handling an open ketchup
bottle, the robot should be able to predict the potential consequences
of gripping the bottle too tightly. However, the challenge of performing
such inferences realistically and promptly remains open.

Recent years have also seen significant progress in physically-based
simulation and animation, leading to the creation of increasingly
realistic representations of human motions and the interactions be-
tween physical objects (as shown in Figure 1.1). Physics engines
such as PhysX, Havok, or Bullet, accelerated by Graphics Process-
ing Unit (GPU), have played a pivotal role in these advancements.
Additionally, strides have been made in the development of animation
algorithms. These developments provide valuable resources and open
up opportunities for research in robotics and artificial intelligence

1

2 introduction

to explore prediction and envisioning algorithms that were previ-
ously considered unrealistic but can now be pursued in a much more
realistic setting.

Figure 1.1: Recent advancements in physics-based simulations have led to
significant progress in accurately modeling the behavior of mate-
rials, resulting in more realistic simulations. (Wolper et al., 2019)

Still, using simulation and animation tech for predicting actions of
robots based on physics faces some extra challenges. These challenges
include:

• Partial observability: Robotic agents often encounter situations
where they lack complete information about the physical world
being simulated, resulting in difficulties in deriving a compre-
hensive dynamic model (Richter-Klug et al., 2022).

• Uncertainty arising from sensing and action noise: Estimations
of physical parameters are frequently subject to inaccuracies due
to uncertainties stemming from sensing processes. Consequently,
the parametrizations of simulations may become less accurate.

introduction 3

• Semantic and qualitative events: Robotic agents typically pri-
oritize the detection of specific events and their corresponding
effects rather than attaining precise, quantitative physical state es-
timates. Consequently, simulation methods need to be extended
to detect and capture such events accurately (Haidu and Beetz,
2021).

• Super-realtime and ensemble simulations: Simulation methods
need to operate at significantly faster-than-realtime speeds to
swiftly conduct an ensemble of similar simulated experiments.
This capability allows robotic agents to perform multiple envi-
sionings rapidly. Furthermore, simulation outputs must provide
more comprehensive information beyond just the final configu-
ration, as is commonly required in manual tuning and control
of animations.

To bridge these gaps, this dissertation focuses on investigating and
developing faster-than-realtime simulation methods. By advancing
the current state-of-the-art in simulation techniques, the aim is to
enable robotic agents to perform simulations at accelerated speeds,
surpassing real-time requirements. This allows for the rapid execution
of multiple simulated experiments, enabling the robotic agents to
perform numerous envisionings and obtain valuable insights and
predictions in a timely manner.

Additionally, this dissertation also investigates the uncertainty within
simulation. With a focus on addressing uncertainties arising from sens-
ing and action noise, the research explores techniques and methodolo-
gies to effectively model, quantify, and manage uncertainty within the
simulation framework. By incorporating uncertainty into the simula-
tion process, more accurate and reliable predictions of action effects
can be obtained, enhancing the overall robustness and adaptability of
robotic agents in real-world scenarios.

Through these investigations, this dissertation aims to contribute to
the advancement of physically-based simulation and animation tech-
nologies, providing valuable insights and solutions to the challenges
of super-realtime and ensemble simulations, as well as uncertainties
arising from sensing and action noise. Ultimately, this research endeav-
ors to enhance the capabilities of robotic agents in reasoning, planning,
and executing actions in dynamic and uncertain environments.

• Research Question 1: The CD is the computational bottleneck
in most sampling-based algorithms, that requires up to 90% of
computation time (Reggiani, Mazzoli, and Caselli, 2002). The
majority of CD algorithms are BVHs-based with branching factor
of 2 (binary). According to Zachmann and Langetepe (2003),
the optimum branching factor can be larger. Additionally, the
parallelization of the simultaneous traversal for CD is not obvi-
ous. Actually, due to their recursive nature, it is not very well

4 introduction

suited for massively parallel acceleration on the GPU (especially
BVHs-based). Furthermore, particularly in the context of online
planning, powerful GPU is typically unavailable.

Therefore, Research Question 1 investigates: How to find optimal
branching factor for CD algorithms and employ it for paralleliza-
tion suitable for online planning?

• Research Question 2: CD algorithms are influenced by various
factors, including object shape, relative size, distance between
objects, and distributions of geometric primitives. However, these
factors are often not thoroughly discussed in existing algorithm
proposals. Benchmarking in CD is typically performed using
self-defined objects and scenarios, which may not provide a fair
evaluation of existing algorithms. This approach not only makes
it challenging to effectively compare different algorithms, but
it also presents technical difficulties, such as the availability of
existing algorithms over time.

Additionally, the large number of parameters involved and the
integration of existing CD algorithms contribute to the complex-
ity and time-consuming nature of benchmarking. As a result,
there is an insufficient understanding of why a particular algo-
rithm performs better or worse in a given scenario. Even minor
changes in transformations or object properties, such as a slightly
modified polygonization of an object, can lead to significantly
different results.

Therefore, Research Question 2 aims to investigate how to design
a benchmark that enables fair and reproducible comparisons of
CD algorithms. The goal is to address the challenges of parameter
selection, scenario design, and result interpretation to provide
meaningful insights into algorithm performance. By developing
a comparable and reproducible benchmark, researchers can gain
a better understanding of the strengths and weaknesses of dif-
ferent algorithms and identify the factors that contribute to their
performance variations.

• Research Question 3: The current state of physically-based sim-
ulation development is well-known to produce plausible effects
for physics simulation. Although the result is convincing, sim-
ulation is subject to uncertainty. In a general sense, uncertainty
can arise from three sources, lack of knowledge about the system
being simulated (simulation uncertainty), uncertainty in the input
data (input uncertainty), and, the choice of model and assump-
tions (structural uncertainty) (McKay, Morrison, and Upton, 1999).
All of these can lead to errors in the results of the simulation.

Therefore, Research Question 3 investigates: how to simulate by
drawing samples from probabilistic distributions over physics

1.1 thesis outline 5

parameters? The outcome is not a simple final state of the sim-
ulation but rather a probability map reflecting a continuous
distribution of final states.

1.1 thesis outline

This thesis is organized as follows: In Chapter 2, we provide an
overview of simulation-based robot planning, focusing on the chal-
lenges involved. In Chapter 3, we introduce an optimized method
for improving the performance of BVH-based CD, demonstrating our
method’s ability to meet real-time requirements in simulation-based
robot planning. In Chapter 4, we present techniques for reducing
memory footprint for BVH, allowing robot agents to perform more
computations simultaneously within their computational limits, which
is crucial for online robots.

Moving on to Chapter 5, we explore the concept of online bench-
marking to ensure reproducible and comparable benchmark results.
By adopting this approach, we aim to enable fair comparisons and im-
prove our understanding of existing algorithms for CD and Proximity
Query (PQ).

In Chapter 6, we propose an innovative method to address uncer-
tainty in simulation-based motion planning. We suggest integrating
continuous probability distributions into CD algorithms to handle
uncertainty effectively. This new approach reduces the number of
simulations needed to obtain reliable results significantly. Addition-
ally, Chapter 7 presents applications developed using CD algorithms.
Finally, in Chapter 8, we conclude this dissertation by discussing
the encountered limitations during the research and outlining future
directions for further investigation.

2
U S E O F S I M U L AT I O N F O R R O B O T P L A N N I N G

Robots have evolved beyond their rigid existence on assembly lines,
where they were once limited to following scripted instructions. Thanks
to advancements in artificial intelligence, the next generation of robots
will possess enhanced mobility and decision-making abilities. These
robots will be flexible, adaptable, and capable of interacting with hu-
mans, operating in dynamic and unpredictable environments. They
will assist social workers in nursing homes (Huisman and Kort, 2019;
Kyrarini et al., 2021), tutor students in schools (Konijn et al., 2022;
Pasalidou, Fachantidis, and Koiou, 2023), autonomous shelf refilling
(Cavallo et al., 2022), detect gas and oil leaks underwater (Hu et al.,
2022; Wu et al., 2023), take part in search-and-rescue missions (Han
et al., 2022; Lindqvist et al., 2022), and even assist in surgical proce-
dures (Püschel, Schafmayer, and Groß, 2022; Zhao et al., 2022), even
in challenging and cluttered environments.

Creating a new robot involves two slow parts: the engineering
design and the control policy design. Even though it’s crucial to test
these robots in the real world, simulation can speed up and make the
engineering design process cheaper. Simulations let us thoroughly test
and improve what robots can do, paving the way for new uses and
building safer, more effective robotic systems.

In control policy design, there’s a special focus on using mental
simulation in simulation-based methods to come up with motion
plans. This helps robots imagine and think through the actions they
want to take.

Additionally, simulation offers various benefits and opportunities,
including:

• Generating training data: Simulation allows for the generation
of large amounts of training data quickly and cost-effectively.
Machine learning algorithms often require extensive data for
training, and simulations provide an ideal platform to generate
diverse scenarios and annotations for training robots. This en-
ables systems to learn from their mistakes and improve their
performance (Mania and Beetz, 2019).

• Facilitating understanding of Human-Robot Interaction (HRI): HRI is
a crucial aspect of robotics (Fong, Nourbakhsh, and Dautenhahn,
2003). Simulation tools can be developed to better represent the
psycho-social nature of HRI, enabling the study of human-robot
collaboration and decision-making processes. By creating simu-
lated environments, researchers can explore different scenarios,

7

8 use of simulation for robot planning

analyze the impact of various factors on trust and collabora-
tion, and establish a baseline for more effective human-robot
interaction (Metcalfe et al., 2017).

• Accelerating engineering design and reducing costs: Simulation sig-
nificantly speeds up the engineering design cycle. Instead of
physically testing each iteration, simulations allow for quick
and parallel evaluation of candidate solutions (Chinesta et al.,
2020). This reduces time, costs, and potential risks associated
with physical testing. Additionally, simulations enable testing in
environments that are impractical or inaccessible for real-world
testing, such as extreme conditions or remote locations.

• Safe and controlled virtual testing: Simulations provide a safe and
controlled environment for testing robots. In complex scenar-
ios involving multiple robots or human-robot interactions, de-
signing and verifying these systems can be challenging and
time-consuming in the physical world. Simulation allows for sys-
tematic testing and evaluation of multi-robot systems, facilitating
the design of collaborative behaviors, coordination strategies,
and decision-making algorithms (Burgard et al., 2005; Tan and
Zheng, 2013). It also enables the exploration of scenarios that are
difficult to replicate physically, such as environmental monitor-
ing, surveillance, or infrastructure management.

2.1 simulation-based internal models for robots

Internal models in robotics can be classified into two main types:
forward models (predictors) and inverse models (controllers), sup-
plemented by models that predict physical properties of the envi-
ronment. Forward models anticipate future sensory inputs based on
motor inputs, while inverse models generate motor commands to
achieve desired sensory inputs. These models enable the generation
and testing of hypotheses about the consequences of future actions
and facilitate the recognition of other agents’ behavior. Anticipation
can enhance navigation performance in complex tasks, with the qual-
ity of predictions being a crucial factor (Johansson and Balkenius,
2006). Additionally, the optimal amount of time predicted into the
future strikes a balance between insufficient and excessive prediction,
affecting performance improvement (Johansson and Balkenius, 2008).
Achieving a balance in prediction capabilities empowers robots to ef-
fectively plan and adapt their actions, thereby enhancing their overall
performance and efficiency across a range of tasks.

With the steady increase in computational power, there is growing in-
terest in using actual simulators instead of learned models in robotics.
For instance, Bongard, Zykov, and Lipson (2006) demonstrated a four-
legged robot that utilized an internal simulation to self-model and

2.2 motion planning 9

generate actions for locomotion. Additionally, Millard, Timmis, and
Winfield (2014a,b) investigated the application of simulation-based
internal models for detecting faults in swarm robotics systems. These
studies showcase the potential of using simulation-based internal
models to enhance robot capabilities in tasks such as self-modeling,
locomotion, and fault detection.

The use of simulation-based internal models in robots is also re-
garded as a promising approach for enhancing safety in highly dy-
namic environments. Blum, Winfield, and Hafner (2018) propose a
concept where a robot incorporates a simulation of itself, other dy-
namic actors, and its environment within its own system. This internal
model operates in real-time and enables the robot to anticipate and
predict the outcomes of its own actions as well as the actions of other
actors in its surroundings. Consequently, the robot can dynamically
adjust its actions to actively ensure its own safety while simultaneously
achieving its intended goals.

Notable robotic simulation platforms, such as Gazebo (Koenig and
Howard, 2004), Webots (Michel, 2004), Player-Stage (Vaughan and
Gerkey, 2007), and Morse (Echeverria et al., 2011), provide valuable
environments for evaluating and optimizing robot systems, but the
computationally expensive nature of simulation-based based, making
a fully embodied implementation challenging.

2.2 motion planning

Motion planning is a crucial aspect of robotics, involving the determi-
nation of a feasible path or trajectory for a robotic agent to transition
from its current position to a predefined desired goal position This
process necessitates the ability to circumvent obstacles and adhere to
various operational constraints. The robot’s physical attributes, such as
its size, shape, and the placement of obstacles within its environment,
are typically specified within either a two-dimensional (2D) or three-
dimensional (3D) workspace. In contrast, when considering the robot’s
movement, it is useful to conceptualize it as a path within a config-
uration space. This configuration space might encompass additional
dimensions beyond the spatial dimensions of the workspace, allow-
ing for a more comprehensive representation of the robot’s possible
configurations and movements.

Key components in motion planning include:

• Configuration space, encapsulates the entirety of conceivable robot
poses. In essence, it is a mathematical abstraction representing
all possible configurations the robot can assume. The primary
objective of motion planning is to identify a continuous and
obstacle-free path within this configuration space, connecting
the robot’s initial configuration to its desired goal configuration.

10 use of simulation for robot planning

• Free space, constitutes the subset of configurations within the
configuration space where the robot can operate without en-
countering collisions with obstacles. Identifying and mapping
out this free space is critical for the successful execution of mo-
tion planning algorithms.

• Target space, a distinct subset of the configuration space that
defines the permissible locations for the robot’s end-effector or
target position. It specifies the region where the robot should
ultimately reach, and the motion planning process aims to deter-
mine a suitable path to navigate the robot to this target location
while avoiding obstacles.

• Obstacle space, characterizes the spatial distribution of obstacles
within the workspace. This information is crucial for motion
planning as it defines the regions within the configuration space
that the robot must avoid to prevent collisions. Effectively repre-
senting and managing obstacle information is fundamental to
ensuring safe and efficient robotic navigation.

2.2.1 Low Dimension Spaces

In scenarios with lower dimensions, like those encountered by self-
driving cars in 2D or 3D environments, grid-based algorithms are
commonly used. These algorithms involve overlaying a grid onto the
configuration space, facilitating efficient path planning and collision
detection.

However, in situations where a more detailed understanding of
the environment is necessary, geometric algorithms come into play.
These algorithms are tailored to compute the shape and connectivity
of the free configuration space. Notable examples include the Visibility
graph (Lubiw, Snoeyink, and Vosoughpour, 2017; Niu et al., 2019),
extensively studied and applied in contexts such as coverage planning.
Other techniques like Cell decomposition (Choset, 2000), Minkowski
sum, and farthest ray tracing offer valuable insights into the geometry
and topology of free configuration space, enabling more sophisticated
and precise path planning and analysis. Geometric algorithms prove
particularly useful when the complexity of the environment calls for a
more nuanced approach beyond grid-based methods.

2.2.1.1 Grid-based search

In grid-based search algorithms, the grid overlay on the configuration
space transforms it into a graph, as shown in Figure 2.1. The pri-
mary goal of this representation is to facilitate efficient path planning.
Planners typically employ graph search algorithms, with A* being a
popular choice, as introduced by Hart, Nilsson, and Raphael (1968).

2.2 motion planning 11

collision

no collision

Figure 2.1: In low-dimensional environments, grid-based algorithms overlay
a grid onto the configuration space, which enables efficient colli-
sion detection and path planning.

What makes A* stand out from methods like Dijkstra is its use of
heuristics to estimate the distance from the current state to the goal,
enhancing exploration. The search algorithm ultimately provides the
optimal path to guide the robot to its destination.

However, to ensure the final path is collision-free and safe, planners
must frequently perform CD operations, as depicted in Figure 2.1.
CD involves checking if, in a given state, the robot would collide
with any obstacles in the environment. Notably, CD often becomes a
significant performance bottleneck in these algorithms. Recent studies,
like Bakhshalipour, Likhachev, and Gibbons (2022), have revealed that
over 65% of the entire execution time is consumed by CD operations,
underscoring its critical role and the need for optimization in this area.

2.2.2 High Dimension Spaces

Navigating through high-dimensional configuration spaces, such as
those found in stationary robotic arm manipulators with multiple
Degrees of Freedom (DoF), poses a significant and time-consuming
challenge in the field of robotics. The dimension of the configuration
space corresponds to the number of DoF, making it impractical to
represent the entire space graphically. This challenge has prompted
focused attention and solutions across various levels, encompassing
algorithmic approaches and architectural innovations (Lian et al., 2018;
Murray et al., 2016, 2019).

In managing these high-dimensional spaces, commonly employed
algorithms for path planning include Rapidly-Exploring Random
Trees (RRT) and Probabilistic Roadmap (PRM).

2.2.2.1 Static Environment

In static environments, PRM planning, such as those by Baek et al.
(2018), Chen et al. (2021), Kavraki et al. (1996), and Santiago et al.
(2017), emerges as a fundamental algorithm for navigating high-

12 use of simulation for robot planning

A3

A6

A1

A7

A8

A2

A5

A9

A4

A10

Figure 2.2: Probabilistic Road Map (PRM) algorithms draw random samples
from the configuration space, evaluate them for collision-free
properties, connect them to form a graph, and then utilize search
algorithms to find a path from the start to the goal.

dimensional configuration spaces. PRM operates in two distinct phases:
offline and online. In the offline phase, random samples are drawn
from the robot’s configuration space, assessed for collision-free prop-
erties, and connected to form a graph. The online phase introduces
the start and goal configurations to this graph and employs search
algorithms such as A☆ to uncover a path from the start to the goal.
The resulting path, illustrated as the green trajectory in Figure 2.2,
represents the robot’s route.

2.2.2.2 Dynamic Environment

Utilizing RRT (Cao et al., 2019; Denny et al., 2020; LaValle, 1998) in
dynamic environments provides a significant advantage over PRM,
especially in scenarios with frequent environmental changes. The
adaptability of RRT to evolving surroundings is crucial for overcoming
the limitations associated with static graph-based methods.

In dynamic environments where layouts may change unpredictably,
PRM faces challenges due to its dependence on a predefined graph that
quickly becomes outdated. In contrast, RRT excels in such scenarios.
Dynamically extending its tree from the start to the goal configuration
through random sampling allows RRT to effectively accommodate
changes in the environment.

The real-time approach of randomly sampling and checking col-
lision status enables RRT to respond promptly to alterations in the
surroundings. This capability proves particularly valuable in appli-
cations where the robot or system needs to navigate through spaces
with varying obstacles or configurations.

The introduction of RRT* adds an optimization layer to the path
planning process by aiming for asymptotically optimal paths. This is
achieved through the rewiring of the tree, adjusting connections to
reduce the overall path cost. While RRT* does generate shorter paths
on average, its computational demands, significantly higher than those

2.2 motion planning 13

of RRT, pose challenges in terms of execution time (Bakhshalipour,
Likhachev, and Gibbons, 2022).

The challenges associated with high collision detection and nearest
neighbor search latency in both RRT* and RRT emphasize the impor-
tance of addressing these issues for practical implementation. The
substantial portion of execution time dedicated to frequent rewiring
operations in RRT* emphasizes the need for optimizations in this area.

2.2.3 Computational Bottleneck

CD indeed poses a common challenge in both PRM and RRT, and recent
study (Bakhshalipour, Likhachev, and Gibbons, 2022), underscore its
significant impact on overall execution time. With up to 65% of the
total execution time dedicated to CD operations, the imperative need
for optimization in this domain becomes apparent. As highlighted
by Reggiani, Mazzoli, and Caselli (2002), collision computations can
consume up to 90% of the overall computation time in sampling-based
algorithms.

The decision between approximate and exact collision detection
methods is crucial and depends on the complexity of the environment
and the specific requirements of the application. Approximate CD

offers faster computation by approximating the intersection between
the robot’s path and obstacles, albeit at the potential cost of accu-
racy in certain scenarios. On the contrary, exact CD provides precise
calculations but incurs a higher computational cost.

Algorithm 1: BVHtraversal(BV a, BV b)

if a and b are both leaves then
checkPrimitives(a, b)

else if a is leaf then
forall children bi of b do

if a and bi intersect then
BVHtraversal(a, bi)

else if b is leaf then
forall children ai of a do

if ai and b intersect then
BVHtraversal(ai, b)

else
forall children ai of a and bi of b do

if ai and bi intersect then
BVHtraversal(ai, bi)

For algorithms working with polyhedral models, the use of BVHs for
exact collision detection emerges as a popular and effective strategy.
The hierarchical structure of BVHs, employing bounding volumes such
as spheres, Axis Aligned Bounding Box (AABB), Oriented Bounding

14 use of simulation for robot planning

Box (OBB), or k - Discrete Oriented Polytope (k-DOP), facilitates accel-
erated intersection queries. In this structure, a large bounding volume
at the root encompasses all geometric primitives, and the primitives
themselves serve as leaves in the BVH. Traversal involves recursively
exploring the children of BVHs when their bounding volumes intersect,
as illustrated in algorithm 1 and Figure 2.3.

A

B B C C

D D E E D D E E F F G G F F G G

1

2 3 2 3

4 5 4 5 6 7 6 7 4 5 4 5 6 7 6 7

(a)

2

1

3

4 5 6 7

(b)

D E F G

C

A

B

(c)

Figure 2.3: The simultaneous recursive traversal of two binary BVHs during
the collision check results in a bounding volume test tree.

2.3 envisioning outcome of generated plans

In their work, Kunze and Beetz (2017) propose a framework enabling
robots to anticipate the physical consequences of their intended manip-
ulation actions through simulation-based projections. This framework
empowers a robot to predict potential outcomes when executing a
task in a specific manner.

The process begins by translating a qualitative physics problem
into a parameterized simulation problem. A detailed physics-based
simulation of the robot’s plan is then conducted, with the state evo-
lution logged into appropriate data structures. Subsequently, these
sub-symbolic data structures are translated into interval-based first-
order symbolic, qualitative representations known as timelines. The
outcome of this envisioning process is a collection of detailed nar-
ratives represented by timelines, which are subsequently utilized to
deduce answers to qualitative reasoning problems. By envisioning the
potential outcomes before execution, a robot can engage in reasoning
about physical phenomena, thereby avoiding undesirable situations.
This approach allows robots to execute manipulation tasks with en-
hanced efficiency, robustness, and flexibility, even enabling them to
successfully adapt to previously unknown variations of tasks.

2.3 envisioning outcome of generated plans 15

2.3.1 Uncertainty in Simulation

Despite the advantages of physics simulations, they are inherently
susceptible to uncertainty stemming from three primary sources: sim-
ulation uncertainty, arising from a lack of knowledge about the system
being simulated; input uncertainty, related to uncertainties in the in-
put data; and structural uncertainty, associated with the choice of
model and assumptions (McKay, Morrison, and Upton, 1999). All
these sources can introduce errors in simulation results.

Among these, input uncertainty stands out as a significant contribu-
tor to simulation errors, as even slight changes in input can lead to
substantial variations in output. Various factors contribute to input
uncertainty, with measurement errors being one of the most common.
Measurement errors can occur when determining the position, ve-
locity, or other properties of particles within a system. Additionally,
imprecise knowledge of the laws of physics can contribute to input
uncertainty. For instance, in simulating planetary motion, the gravi-
tational force between planets is typically calculated using Newton’s
law of gravity, which is an approximation with unknown precision.

While literature contains approaches that specifically address input
uncertainty, many of these methods focus on discretely sampling input
parameters (Kurniawati et al., 2011; Santolaria and GinéS, 2013). How-
ever, these approaches often necessitate multiple simulation instances
to draw conclusions, presenting a notable limitation.

3
S I M D O P T I M I Z E D B O U N D I N G V O L U M E
H I E R A R C H I E S

Following the trend of acceleration by parallelization it is obvious to
apply this idea also to CD. Unfortunately, the parallelization of the
simultaneous traversal for CD is not obvious. Actually, due to their
recursive nature, BVHs are not very well suited for massively parallel
acceleration on the GPU. Moreover, especially for online planning,
robotic agents are often not equipped with powerful GPU.

However, the simultaneous traversal required in BVH-based CD can
still benefit from the SIMD instruction sets of modern Central Process-
ing Units (CPUs).

3.1 simd recap

Originally, SIMD instruction sets had been introduced to support in-
teger computation for intensive multimedia applications, but later
they have been extended to support floating point computation which
extends the usefulness also for scientific computations. The idea is
that a single instruction operates on different input data values (e.g. 4,
8 or 16 floating point values) simultaneously (See Figure 3.1).

Figure 3.1: Vectorized operations on SIMD architectures support multiple
input data values simultaneously in a single operation.

Several slightly different SIMD instruction sets are available for var-
ious CPUs; e.g. NEON for Arm based CPUs and Streaming SIMD
Extensions (SSE)/Advanced Vector Extensions (AVX) for both Intel
and AMD CPUs (see Table 3.1 for a list of available SIMD instruction
sets and the supported data types). The latest 512-bit Advanced Vec-
tor Extensions (AVX-512) instruction set supports computation of 16

17

18 simd optimized bounding volume hierarchies

single precision-float in parallel (see Figure 3.2). In this thesis, the
implementation is done with AVX-512, however the idea can be easily
implemented on other SIMD instruction sets such as SSE, AVX, and
NEON.

Figure 3.2: The latest AVX-512 registers, with a width of 512 bits, support
the operation of 16 floating-point values at one time.

Name Width Types supported CPUs

NEON 128 bits
4x single

2x double∗
Armv7-A/R and above
∗only available for Armv8-A

SSE 128 bits 4x single
Intel Pentium III and above

AMD Athlon XP and above

SSE2

SSE3

SSE4

128 bits
4x single

2x double

Intel Pentium 4 and above

AMD Athlon XP and above

AVX

AVX2
256 bits

8x single

4x double

Intel Sandy Bridge and above

AMD Bulldozer and above

AVX-512 512 bits
16x single

8x double
Intel Skylake-X and above

Table 3.1: Floating-point support for various SIMD architectures

3.2 implementation strategies

To take advantage from parallel operations offered by SIMD, we can:

1. simply switch on a compiler option and hope that the compiler
will do the optimization,

2. optimize the traversal function manually, depending on the cho-
sen BVH,

3. or adapt the complete BVH structure which additionally requires
a redesign of the BVH construction.

3.2 implementation strategies 19

In this thesis we have implemented and tested all of these three
possible implementations. There is only one suitable function in algo-
rithm 1 to optimize the traversal without changing the tree structure:
the test for intersection of a pair of BVs. Hence, the benefit of SIMD

optimization relies heavily on the type of the BV. For two spheres, we
simply have to compute the distance of two points and compare it to
the sum of the spheres’ radii. This is not very well suited for the for
SIMD parallelization because of the length of current AVX-512 registers
that are able to store 16 floating point values. As a consequence, the
intersection test for two spheres can be hardly optimized for SIMD.
Similarly, the intersection test for AABB requires four comparisons.
Modern AVX-512 registers compare 16 float value in a single instruction
and this number will increase with upcoming CPU generations. Hence,
these BVs could benefit only from the third method, an optimized BVH,
but hardly from a simple optimization of the traversal.

Consequently, we decided to use a BV that naturally supports all
three methods: the k-DOP. Basically, k-DOP are an extension of AABB to
arbitrary orientations (Zachmann, 1998). They offer a natural trade-off
between tightness of the BV and computation time for the intersection
test. They show comparable performance to other kinds of bounding
volumes (Trenkel, Weller, and Zachmann, 2007). By choosing the
number of orientations k according to the SIMD instruction set, it is
straightforward to adapt this BV-type to further SIMD developments.

However, this simple SIMD-parallelization still tests only two BVs in
one instruction (see Figure 3.4a). Hence, it can be applied to almost all
existing k-DOP-based BVHs that typically rely on a binary tree. However,
we can also parallelize it in a way that one BV of the first BVH is tested
simultaneously against all children of the other BVH (see Figure 3.4a).

In order to take full advantage of SIMD in this case we additionally
have to change the branching factor of the tree. This is non trivial
because traditional BVH construction methods, like the Surface Area
Heuristic (SAH), median-, or mid point-split, that assign the primitives
into the sub-trees are not suitable for higher branching factors. Con-
sequently, we have developed new BVH construction methods, this
includes simple heuristics but also a new method that is based on
Batch Neural Gas (BNG) clustering. The advantage of such n-ary trees
is not only the SIMD accelerated traversal. Additionally, we get less
children than with binary trees and the children are also smaller.

To summarize, the main idea of SIMD optimized data structure is
to construct BVHs with higher branching factor that can be later used
during run-time in a SIMD optimized traversal algorithm. Hence, the
core is the construction that is typically done in a pre-processing step.

20 simd optimized bounding volume hierarchies

3.3 bvh construction based on batch neural gas clus-
tering algorithms

Usually, a BVH is constructed in a pre-processing step that can be
computationally more or less expensive. Basically, there exist two
major strategies to build BVHs: bottom-up and top-down. The bottom-
up approach starts with elementary BVs of leaf nodes and merges
them recursively together until the root BV is reached. A very simple
merging heuristic is to visit all nearest neighbours and minimize the
size of the combined parent nodes in the same level (Roussopoulos
and Leifker, 1985). Less greedy strategies combine BVs by using tilings
(Leutenegger, Edgington, and Lopez, 1997).

However, the most popular method is the top-down approach. The
general idea is to start with the complete set of elementary BVs, then
split that into some parts and create a BVH for each part recursively.
The main problem is to choose a good splitting criterion. A classi-
cal splitting criterion is to simply pick the longest axis and split it
in the middle of this axis. Another simple heuristic is to split along
the median of the elementary bounding boxes along the longest axis.
However, it is easy to construct worst case scenarios for these simple
heuristics. SAH tries to avoid these worst cases by optimizing the sur-
face area and the number of geometric primitives over all possible
split plane candidates (Goldsmith and Salmon, 1987). Originally devel-
oped for ray tracing, it is today also used for collision detection. The
computational costs can be reduced to O(n log n) (Wald, 2007; Wald
and Havran, 2006) and there exists parallel algorithms for the fast
construction on the GPU (Lauterbach et al., 2009). Many other splitting
criteria were compared in (Zachmann, 2000).

We decided to use a top-down approach for the hierarchy construc-
tion. The general idea is to start with the complete set of elementary
BVs, then split that into some parts and create a BVH for each part
recursively. Moreover, we use a wrapped hierarchy according to the
notion of Agarwal et al. (2001), where inner nodes are tight BVs for all
their leaves, but they do not necessarily bound their direct children.
Compared to layered hierarchies, the big advantage is that the inner
BVs are tighter. The main challenge is to choose a good splitting cri-
terion especially, because traditional splitting criteria like SAH do not
work for n-ary trees. We propose splitting criteria based on clustering
algorithms, namely BNG.

The Neural Gas (NG) clustering algorithm was initially proposed
with the task of minimizing the distortion error of vector quantization
coding (Martinetz, Berkovich, and Schulten, 1993). NG does not require
any prior knowledge of the set of data points and quickly converges
to near optimal distortion errors.

The originally proposed idea iterates through all data points un-
til a stop criterion is met. First, for every presented data vector v, a

3.3 bvh construction based on batch neural gas clustering algorithms 21

neighborhood-ranking is determined, which means, that the proto-
types wi are sorted by their distance to v into (wi0 , wi1 , ..., wiN−1).

Therefore, for every k ∈ {0, ..., N − 1}, there are k prototypes wj with∣∣v −wj∣∣ < ∣∣v −wik ∣∣.
Let us denote k = ki(v, w) for every prototype, which depends on

both v and the whole set of prototypes w. Then, each prototype wi is
adjusted by:

∆wi = ϵ ⋅ hλ(ki(v, w)) ⋅ (v −wi) i ∈ 1, .., N (3.1)

ϵ ∈ [0, 1] represents the overall extent of the modification. The
heuristic hλ(ki(v, w)) is used to describe the amount of change for
each prototype, where λ denotes a constant. Martinetz, Berkovich, and
Schulten (1993) proposes hλ(ki(v, w)) = eki(v,w)/λ . If the constant λ is
set to zero, Equation 3.1 becomes equivalent to the k-means adaptation
rule. For every λ ≠ 0, not only the closest, but every other prototype is
updated, too. (Martinetz, Berkovich, and Schulten, 1993, p. 559)

The proposed adaptation (Weller and Zachmann, 2011) involves
introducing an adaptive version of the algorithm, which halts the iter-
ation process when the movement of the prototypes becomes smaller
than a certain threshold represented by ϵ. In this context, the value
of ϵ is approximately set to 105 times the size of the bounding box.
This modification significantly accelerates the hierarchy’s construction
without substantially compromising the resultant quality (Weller and
Zachmann, 2011, p. 7).

(a) BNG 4 (b) BNG 16

Figure 3.3: 1st Level BVH visualization based on BNG splitting criteria with
branching factors of (a) 4 and (b) 16.

Clustering algorithms, especially BNG, have shown to be very effi-
cient for BVH constructions of 4-ary trees (Weller et al., 2014). A nice
property of BNG is that it exhibits very robust behavior with respect
to the initial cluster center position in contrast to other clustering
algorithms like k-means. However, in the original work, the authors
used spheres as basic primitives instead of more usual polygonal rep-
resentations. We simply used the centers of the polygons instead of the

22 simd optimized bounding volume hierarchies

spheres’ centers reported in the original work in our polygonal imple-
mentation. We did not use magnification control, which additionally
considers the size of the spheres to produce better clustering results.
However, this can be easily added in the future to our polygon-based
BNG.

Figure 3.3 shows the first hierarchy level for BNG splitting with
different branching factors.

3.4 simd based simultaneous bvh traversal

(a) 1 vs 1

(b) 1 vs 16

(c) 4 vs 4

Figure 3.4: Different strategy to compute intersections of the child nodes in
the simultaneous traversal algorithm: (a) classic collision query
tests only one pair of nodes. With SIMD, assuming 16 registers,
we can (b) test one node of the left BVH against 16 nodes of the
right BVH simultaneously in the case of a branching factor of 16
or (c), in case of a branching factor of 4, test all nodes from same
level at one time.

The key part to optimize the traversal in algorithm 1 is the test for
intersection of the child bounding volumes. For binary trees, the four
possible combinations of child pairs are usually traversed sequentially.
SIMD enables us to accelerate this intersection test in several ways:

• We can use a SIMD instructions to replace a single test of a pair
of BVs (see Figure 3.4a). This would leave the for-loop untouched
and just replace the intersection method.

3.4 simd based simultaneous bvh traversal 23

• We can also remove the first part of the for-loop and test one BV

of the first BVH simultaneously against all children of the other
BVH (see Figure 3.4b). For AVX-512 this results in a 1 vs 16 check.

• Finally, we can remove all for-loops and test all nodes from the
same level at one time (see Figure 3.4c). With AVX-512 this results
in a 4 vs 4 test.

An implementation of the first idea is straight forward, it requires a
simple replacement of the comparison inside the intersection function.

Algorithm 2: _m512 intersect(DOP a, DOP b1,...,b16)
Input : DOP a, DOP b1, . . . , b16
Output : Intersection result stored in 512-bit vector endResult
endResult ← Initialize a 512-bit vector with all elements set to zero
for i ← 0 to k/2− 1 do

oriAL ← Initialize a 512-bit vector with all elements set to a[i]
oriBL ← pack b1[i], . . . , b16[i] into a 512-bit vector
resL ← compare elements in oriAL and oriBL for less-than

condition
oriAH ← Initialize a 512-bit vector with all elements set to a[k/2+ i]
oriBH ← Initialize a 512-bit vector and set element of

b1[k/2+ i], . . . , b16[k/2+ i] into it
resH ← compare elements in oriAH and oriBH for greater-than

condition
tempRes ← bitwise OR operation between resL and resH
endResult ← bitwise OR operation between endResult and tempRes
if all elements of endResult are set to 1 then

Break from the loop
return endResult

Removing both loops for the 4 vs 4 test, i.e. testing all n child BVs of
object A against all n child BVs of object B for a pair of nodes requires
just a slightly different ordering of the Dop values which results in the
AVX-512 implementation that is shown in algorithm 8 (See Appendix
A 1 for Intel Intrinsics code).

(a)

(b)

Figure 3.5: Permutation of the values for the for DOPs a1, ..., a4 of an object
A and the four DOPs b1, ..., b4 of an object B to produce a single
512 Bit AVX register for comparing all 4× 4 possible combinations
in algorithm 8.

24 simd optimized bounding volume hierarchies

Algorithm 3: _m512 intersect(DOP a1,..,a4, DOP b1,..,b4)
Input : DOP a1, . . . , a4, DOP b1, . . . , b4
Output : Intersection result stored in 512-bit vector endResult
endResult ← Initialize a 512-bit vector with all elements set to zero
for i ← 0 to k/2 do

oriAL ← pack a1[k/2+ i], a2[k/2+ i], a3[k/2+ i], a4[k/2+ i] into a
512-bit vector according to Figure 3.5a

oriBL ← pack b1[i], b2[i], b3[i], b4[i] into a 512-bit vector according
to Figure 3.5b

resL ← compare elements in oriAL and oriBL for less-than
condition

oriAH ← pack a1[i], a2[i], a3[i], a4[i] into a 512-bit vector according
to Figure 3.5a

oriBH ← pack b1[k/2+ i], b2[k/2+ i], b3[k/2+ i], b4[k/2+ i] into a
512-bit vector according to Figure 3.5b

resH ← compare elements in oriAH and oriBH for greater-than
condition

tempRes ← bitwise OR operation on resL and resH
endResult ← bitwise OR operation on endResult and tempRes
if all elements of endResult are set to 1 then

Break from the loop
return endResult

3.5 results

We have implemented our algorithms using C++ and Intel Intrinsics
functions using Visual Studio 2017. We focused our implementation on
the most recent AVX-512 instruction sets.

All tests were performed on a system with an Intel I7 7800X CPU,
64GB of main memory and a NVIDIA Geforce GTX 980 GPU with 4GB
of memory.

The benefit of the clustering increases with and increasing number
of branches in the tree. In term of BVH construction time, the BNG
clustering-based SIMDop for both degree of 4 and 16 can be con-
structed almost as fast BVH constructed using V-COLLIDE (VC) and
binary DOP tree (see Figure 3.7).

We also compared our SIMDop to the VC library that is often used
for sample-based path planning tasks. An experimental compara-
tive analysis has shown that VC outperforms other CD libraries like
Proximity Query Package (PQP) (Reggiani, Mazzoli, and Caselli, 2002).
Figure 3.6 shows that our 4 vs 4 test is able to outperform VC by a
factor of up to 8 for the female robot and up to 13 for quadripod robot
object.

3.6 extension to continuous collision detection

Standard CD techniques that check for collisions at a single point in
time, also known as discrete CD, can lead to inaccurate results and

3.6 extension to continuous collision detection 25

20 40 60 80 100 120 140 160 180 200 220
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

polygon count / 10−4

ti
m

e
/

m
ili

se
c

vc 4x4
1x16

(a)

40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

polygon count / 10−4

ti
m

e
/

m
ili

se
c

vc 4x4
1x16

(b)

Figure 3.6: A comparison of our proposed algorithms with V-COLLIDE
library for (a) female robot, and (b) quadripod robot. The re-
sults show that our 4 vs 4 test performs best and faster than
V-COLLIDE by up to eight times for (a) female robot and by a
factor of up to 13 for (b) quadripod robot.

26 simd optimized bounding volume hierarchies

0 20 40 60 80 100 120 140 160 180 200 220

0

0.2

0.4

0.6

0.8

1

⋅104

polygon count / 10−4

co
ns

tr
uc

ti
on

ti
m

e
/

m
ili

se
c

vc do
bng4 bng16

(a)

Figure 3.7: A comparison of BVH construction time of BNG clustering algo-
rithm compared with V-COLLIDE and binary DOP tree for object
nao.

3.6 extension to continuous collision detection 27

unexpected behavior, known as the tunnel problem. The problem
arises because standard CD algorithms operate on a per-frame basis,
checking for collisions between objects at a single point in time. If
two objects are moving quickly and pass through each other between
frames, the CD algorithm may not detect the collision, resulting in
the objects passing through each other and potentially causing visual
glitches or other issues.

For example, consider a game where a player is controlling a fast-
moving character that collides with walls and other objects in the
environment. If the character moves too quickly, it may pass through
a wall without being detected by the CD algorithm, resulting in the
player being able to move through solid objects (See Figure 3.8), and
potentially breaking the game’s mechanics.

T0 T0.5 T1

Figure 3.8: The ball’s trajectory spans from time T0 to time T1, failing to
intersect with the grey rectangle, which should have been col-
lided with at time T0.5. This occurrence exemplifies a common
linear penetration phenomenon resulting from an excessive linear
velocity.

One solution to the tunnel problem is to use Continuous Collision
Detection (CCD) algorithms, which check for collisions over a range of
time rather than at a single point in time. CCD algorithms can detect
collisions even if the objects are moving quickly and can prevent the
tunnel problem from occurring.

Another approach is to reduce the speed of the objects in the sim-
ulation, so that they do not move fast enough to pass through each
other between frames. However, this can result in less realistic and
engaging simulations, especially in games where fast movement is an
essential part of the gameplay.

The concept of CCD, as first applied by Eckstein and Schömer (1999),
addresses these issues in exchange for an increase in running time. In
CCD, instead of only comparing objects at their respective start and end
position, their entire path is considered. Therefore, it is impossible to
miss collisions and the exact moment of collision is always determined
perfectly.

28 simd optimized bounding volume hierarchies

Held, Klosowski, and Mitchell (1996) introduced a pseudo-CCD

approach, employing static CD with smaller time steps to diminish
the likelihood of overlooking actual collisions. Despite this improve-
ment, the possibility of missed collisions still exists. To address this
issue, Mirtich (2000) proposed the technique of conservative advance-
ment. This method involves iteratively advancing objects by a certain
timestep to ensure that no object penetrates another. Additionally,
Zhang, Lee, and Kim (2006) presented a method for iteratively com-
puting new maximum limits for advancement based on the object’s
minimum distance.

A reliable approach to CCD involves enclosing the given BV at the
beginning and end of the movement step within a swept volume and
then testing for collisions within this volume. This methodology has
been explored extensively across various types of bounding volumes.
For instance, it has been applied to AABB (Eckstein and Schömer, 1999),
velocity-aligned Discrete Oriented Polytope (DOP) with swept volumes
based on underlying spheres (Coming and Staadt, 2008), OBB (Redon,
Kheddar, and Coquillart, 2002), sphere swept convex hulls (Taeubig
and Frese, 2012), and even ellipsoids (Choi et al., 2009).

CCD has also been presented for articulated (Zhang et al., 2007) and
deformable (Tang et al., 2008) models. Additionally, a technique for
interactive CCD for topology changing models has been proposed by
He et al. (2015). Redon, Lin, and Manocha (2004) presented an CCD

approach for articulated models combining BVHs and swept volumes.
Kim et al. (2009a) utilized both the CPU and GPU in a hybrid paral-

lel CCD approach. To support non-linear movements of rigid bodies
during CD, Buss (2005) presented a robust approach for CCD using
relative screw motion.

Merkt, Ivan, and Vijayakumar (2019) proposed CCD into collision
avoidance for robotic agents.

3.6.1 Inner Sphere Tree

Weller and Zachmann (2011) presented the novel data structure of
Inner Sphere Tree (IST), which was used for discrete CD. The theoretical
background for CCD using IST was given as well.

For the linear movement case, a moving sphere creates a capped
cylinder. The test between two capped cylinders can be defined as
follows:

Let the center move from Pt to Pt+1 for the first sphere and from Qt to
Qt+1 for the second sphere. Let rp denote the radius of the first sphere
and rq denote the radius of the second sphere. Our task is to determine
whether the distance between the line segments (Pt, Pt+1) and (Qt,
Qt+1) is less than the sum of the radii rp and rq. Instead of dealing
with intersecting two capped cylinders, our focus lies on tracking
the movement of two spheres along their respective line segments.

3.6 extension to continuous collision detection 29

Given that both spheres move with the same relative normalized
distance toward their respective destinations, we can make further
simplifications. Thus, the closest distance is given by:

rtoi = ±
¿ÁÁÀr2 −∆P2

∆m2 + (∆P ⋅∆m
∆m2)2 − ∆P ⋅∆m

∆m2 (3.2)

with r = rp + rq, ∆P = Pt −Qt, mp = Pt+1 − Pt, mq = Qt+1 −Qt, and
∆m = mp −mq.

To compare two spheres for collision, both are usually transformed
into their respective coordinate systems, which would result in two
matrix multiplications. However, this can be reduced to only one
matrix multiplication. If the second object is simply not transformed at
all, the first object needs to be transformed by the inverse of the second
object’s model matrix to stay relatively transformed. This reduces the
number of matrix multiplications per sphere to only one.

Let Sp and Sq be the two spheres, Mt,p and Mt,q their starting
transformation matrices, and Mt+1,p and Mt+1,q their destination trans-
formation matrices. Then the matrices Mt,pq and Mt+1,pq, which can
be used to transform Sp into the same coordinate system as Sq, and
Mt,qp and Mt+1,qp analogously, can be calculated as follows:

Mt,pq = Mt,p ⋅M−1
t,q (3.3)

Mt+1,pq = Mt+1,p ⋅M−1
t+1,q (3.4)

Mt,qp = M−1
t,pq (3.5)

Mt+1,qp = M−1
t+1,pq (3.6)

As we never actually need to transform the second sphere, its start
and end positions are the same. Therefore, mq always equates to zero,
which is why we can replace ∆m with mp, resulting in the following
equation:

rtoi = ±
¿ÁÁÁÀr2 −∆P2

m2
p
+(∆P ⋅∆m

m2
p
)2 − ∆P ⋅mp

m2
p

(3.7)

The result must be clamped into the range [0, 1], ensuring that the
closest distance is actually determined within the range of the two
line segments. Also, if both spheres move along parallel paths, ∆m is
zero. This case must be handled separately in the implementation.

30 simd optimized bounding volume hierarchies

3.6.2 BVH Construction

Slightly different from Section 3.3, the original IST take the volume of
the spheres into account during BVH construction. The idea is based
on magnification control (Hammer, Hasenfuss, and Villmann, 2007),
which allows to add weighting factors to increase the space in some
areas and thus consider the actual size of the given spheres. Imple-
menting the weighting factors u(v), equation Equation 3.1 becomes:

∆wi = ϵ ⋅ hλ(ki(v, w)) ⋅ u(v) ⋅ (v −wi) i ∈ 1, .., N (3.8)

As we desire to consider the volume of the spheres, the weighting
factor is simply set to u(v) = 4

3 πr3 (Weller and Zachmann, 2011).

3.6.3 Results

In our test setup, we placed two dragons close to each other and
moved until they swap positions. There is no overlap in the beginning
or end of the simulation, but they fully overlap in the middle. (see
Figure 3.9)

Applying SIMD based simultaneous traversal from Section 3.4 im-
prove the collision timing by up to 2x for branching factor 4 and up to
3x for branching factor of 16 when both objects are heavily collised
given a test setup describen in Figure 3.9.

Both implementations are suitable for faster-than-realtime scenario.

3.7 conclusion and future work

We have presented two versions for a SIMD optimized bounding vol-
ume hierarchy for simultaneous BVH traversal. The main idea is to use
higher n-ary trees instead of classical binary trees. We also presented
BNG-based clustering algorithm for the top-down construction of such
tree data structures with higher branching factor. Even if we tested
only up to 16-ary trees, the clustering-based construction is already
prepared to support higher branching factors following future SIMD

developments.
Our results show that, depending on the object, our SIMD-based

BVHs outperform traditional BVHs by more than an order of magnitude
for static CD.

In case of CCD, applying our proposed SIMD-based traversal im-
proves the collision timing by up to 3x during our test.

Our approach also opens up several directions for future work.
For instance, we would like to include magnification control to the
BNG construction algorithm for static CD. Moreover, other clustering
algorithms than BNG could be considered. In this work, we relied on
DOP as BV because of a fair comparison with the manual optimized

3.7 conclusion and future work 31

Figure 3.9: Two Stanford dragons are placed close to each other and moved
until they swap positions. There is no overlap in their hierarchy
at the beginning or end of the simulation, but they fully overlap
in the middle, enabling evaluation of various traversal depths.
Each time step is repeated 127 times to compute the median
performance, reducing variance significantly. (Groß, 2022)

32 simd optimized bounding volume hierarchies

40 60 80 100 120 140 160

0

2

4

6

8

timestep

ti
m

in
g

/
m

ili
se

c

ist ist-simd

Figure 3.10: The median collision check timing for the test scenario described
in Figure 3.9 is calculated for the BVH with a branching factor
of 4 and SIMD-based simultaneous traversal, as explained in
Section 3.4.

40 60 80 100 120 140 160

0

5

10

15

20

timestep

ti
m

in
g

/
m

ili
se

c

ist ist-simd

Figure 3.11: The median collision check timing for the test scenario described
in Figure 3.9 is calculated for the BVH with a branching factor
of 16 and SIMD-based simultaneous traversal, as explained in
Section 3.4.

3.7 conclusion and future work 33

traversal scheme. However, we would like to investigate also other BV

types that do not have the problem of the later escape of the for-loop.
Also the influence of the number of orientations for the DOP requires
further investigations. Finally, probably other applications using BVH

like ray tracing or occlusion computations could benefit from our
proposed BVH too.

4
M E M O RY E F F I C I E N T B O U N D I N G V O L U M E
H I E R A R C H I E S

better bound, better culling

faster test, less memory

Figure 4.1: Complex BVs such as (c) k-DOP can often provide a better fit for
models, resulting in improved performance compared to less
tight BVs like (a) Sphere or (b) AABB. However, it’s important to
note that the trade-off for this improved fit is a larger memory
footprint.

Chapter 3 presents an order of magnitude acceleration compared
to existing algorithms such as PQP or VC. However, despite the perfor-
mance, BVHs-based collision detection also suffers from a disadvantage:
memory footprint. While a more complex BV like k-DOP can generally
provide a better fit for models and thus yield better performance
compared to less tight BV like Sphere or AABB, it comes at the cost of
a larger memory footprint.

BVs Descriptor Memory Footprints

Sphere center & radius 4 floats

AABB min & max 6 float

k-DOP number of k k float

Table 4.1: Commonly used bounding volumes for BVH and their memory
requirements.

This can be observed in Table 4.1, which showcases the varying
memory requirements for some common used BV types.

For applications like ray tracing, to avoid out-of-core techniques
during large-scale simulations that do not fit into the system’s main
memory, some approaches are employed. These approaches include re-
ducing BVH precision (Vaidyanathan, Akenine-Möller, and Salvi, 2016),

35

36 memory efficient bounding volume hierarchies

using half-precision floating-point (Koskela et al., 2015), compressing
leaf nodes with multiple polygons (Benthin et al., 2018), represent-
ing meshes using alternative representations (Lauterbach, Yoon, and
Manocha, 2007), or utilizing implicit BVH representations (Bauszat,
Eisemann, and Magnor, 2010).

In order to handle large-scale simulations without resorting to out-
of-core techniques, Kim et al. (2009b) propose a method that involves
quantifying BV descriptors and partitioning the BVH into smaller sub-
trees for collision detection purposes. To ensure random access to
BVHs, they compress and store sub-tree information in hash tables.

On the other hand, for general CD scenarios, such as those found
in mental simulations, Koskela et al. (2015) employs half-precision
floating-point representation (16-bit float). Tan, Weller, and Zachmann
(2019) utilize SIMD Instruction Sets, specifically the _mm512_cvtps_ph
instruction, to convert 32-bit floating-point values into half-precision
floating-point representations for the BV descriptors. This conversion
reduces the memory requirements from 4 bytes to just 2 bytes per
value. However, since SIMD does not support direct operations on half
floats, the BV descriptors need to be converted back to full precision
using the _mm512_cvtph_ps instruction during BVH traversal. This ap-
proach instantaneously reduces the memory footprint by half, without
sacrificing performance.

While 16-bit floating-point representation offers a significant reduc-
tion in memory usage, storing BV descriptors beyond that limit is
currently not feasible due to the absence of SIMD instruction sets de-
signed for such purpose. Moreover, as the compression level increases,
the reconstructed BVs may suffer from substantial loss of precision.
Another possibility to reduce memory footprint is by eliminating leaf
nodes, as they can account for up to 50% of the memory footprint
in the case of complete binary BVHs. This proportion becomes even
higher when dealing with higher branching factors. By removing leaf
nodes, significant memory savings can be achieved.

Surprisingly, the impact of reducing memory footprint is often over-
looked in the literature concerning CD. Most authors tend to prioritize
the evaluation of their CD algorithms based on their running time,
with little attention given to memory considerations. To the best of
our knowledge, there is currently no research exploring quantification
beyond 16-bit for CD purposes.

This is primarily due to the fact that most models typically involve
a relatively small number of polygons, or the environments consist
of only a few objects. However, the situation can be quite different
for robotic mental simulations, where multiple instances need to run
simultaneously. While it is possible to offload computationally ex-
pensive and resource-intensive simulations to cloud computing, as
discussed in Bozcuoğlu and Beetz (2017), the utilization of sophisti-
cated and memory-efficient CD algorithms can greatly enhance the

4.1 memory efficient doptree 37

number of simultaneous simulations that can be performed, leading to
improved performance (Viitanen et al., 2017). This efficiency becomes
even more critical for online robotic agents operating in remote areas,
where access to cloud computing resources may be limited or unavail-
able. By optimizing memory usage in CD algorithms, the capability
for running multiple simulations concurrently can be significantly
increased, enabling more efficient and autonomous robotic systems in
resource-constrained environments.

In this chapter, our focus is on optimizing the memory footprint
of BVH used by existing algorithms, namely Doptree and Boxtree algo-
rithms.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

polygon count / 10−4

ti
m

e
/

m
ili

se
c

without-triangle-test with-triangle-test

(a)

Figure 4.2: Average collision query time for the object Hand with and without
triangle test for Doptree with k = 46

To provide a quick comparison of their performance for CD, Fig-
ure 4.3 is presented. It demonstrates that, in scenarios involving higher
orientation, Doptree outperforms Boxtree in terms of performance. How-
ever, it comes with the trade-off of a larger memory footprint. On the
other hand, Boxtree, known for its space subdivision approach, is
widely recognized for its memory efficiency.

4.1 memory efficient doptree

In general, it is expected that certain parts of the BV are redundant,
as some parts of the child BVs may share the same information as the
parent BV (See Figure 4.4).

38 memory efficient bounding volume hierarchies

10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

k (orientation)

ti
m

e
/

m
ili

se
c

do bx

(a)

10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

k (orientation)

ti
m

e
/

m
ili

se
c

do bx

(b)

Figure 4.3: A comparison between Doptree and Boxtree algorithms for vari-
ous Doptree orientations with (a) single collision option, and (b)
all collision option for object spot

4.1 memory efficient doptree 39

delta

de
lt

a

parent BV
child1 BV
child2 BV

Figure 4.4: The calculation of the delta for bounding volumes (BVs) is based
on the parent-child relationship

In our benchmark, we analyzed the percentage of redundant infor-
mation for different objects, which varied from 38.74% for the object
ds9 to as high as 87.00% for the object eagle. Table 4.3 presents the
percentage of redundant orientations obtained using BNG on k-DOP

with 24 orientations for BVH construction.

Object Redudant BV Ori

ds9 38.74 %

armadillo 42.47 %

eagle 87.00 %

ferrari 75.66 %

grid 57.67 %

happy-buddha 44.20 %

robot-dog 42.92 %

Table 4.2: Percentage of Redundant BV Descriptor for various objects using
BNG for BVH construction.

The percentage of redundant information remains consistent regard-
less of the number of orientations, as illustrated in Table 4.3. This
table specifically showcases the results for object ds9, which consists
of 282,499 polygons. The construction process yielded 139,942 inner
nodes and 282,499 leaf nodes.

4.1.1 Optimization

In the case of Doptree, we chose to compress by quantification. Beside
delta values for each orientation, we calculated additional data re-

40 memory efficient bounding volume hierarchies

Nr Ori BV Memory (MBytes) Redudant BV Ori

6 9.90 41.84%

12 19.80 38.78%

24 39.60 38.74%

36 59.40 38.85%

46 75.90 38.82%

Table 4.3: Percentage of Redundant BVs Descriptor for object ds9 using BNG
during BVH construction.

Min Max d[0] d[1] ... d[k-1] d[k] ∑
DOPTree - - 32 32 ... 32 32 (k * 32) bits

BVHLite 16 16 x x ... x x (k * x) + 32 bits

Table 4.4: Doptree BV Descriptor

quired for the later reconstruction of the BVs, specifically the minimum
and maximum delta values. These values are presented in Table 4.4.

To facilitate the quantification process, we rounded the deltas either
up or down based on the original BV descriptor. The rounding oper-
ation ensures that the reconstructed BVs are slightly larger to avoid
missing collisions.

During the traversal process, before performing the BV overlap test
(as expressed in Equation 4.4), we need to reconstruct the BVs by re-
versing the quantification process. This reconstruction step is essential
for accurately determining BV overlaps and conducting collision tests.

interval = ∣∆max −∆min∣
bits

(4.1)

if d[k]ori > 0:

d[k] = ⌊∆k −∆min

interval
⌋ (4.2)

else:

d[k] = ⌈∆k −∆min

interval
⌉ (4.3)

d[k]ori = d[k]parent − (d[k] ∗ ∣∆max −∆min∣
bits

+ dmin) (4.4)

To accommodate the changes, we need to adjust the BVH traversal
algorithms (See algorithm 4).

4.1 memory efficient doptree 41

Algorithm 4: BVHLiteTraversal(BV a_parent, BV b_parent, BV a,
BV b)

if a and b are both leaves then
checkPrimitives(a, b)

else if a is leaf then
forall children bi of b do

reconstructBV(bi_parent, bi)
if a and bi intersect then

BVHLiteTraversal(a_parent, a, bi_parent, bi)
else if b is leaf then

forall children ai of a do
reconstructBV(ai_parent, ai)
if ai and b intersect then

BVHLiteTraversal(ai_parent, b_parent, ai, b)
else

forall children ai of a and bi of b do
reconstructBV(ai_parent, ai)
reconstructBV(bi_parent, bi)
if ai and bi intersect then

BVHLiteTraversal(ai_parent, bi_parent, ai, bi)

50 100 150 200 250

0.5

1

1.5

2

2.5

3

⋅107

polygon count / 10−4

ti
m

e
/

m
ili

se
c

do 8-bit
6-bit 4-bit

Figure 4.5: Median collision check timing for object Robot Dog for Doptree
algorithms and various compression levels.

42 memory efficient bounding volume hierarchies

100 200 300 400 500

2

4

6

8
⋅107

polygon count / 10−4

ti
m

e
/

m
ili

se
c

do 8-bit
6-bit 4-bit

Figure 4.6: Median collision check timing for object Nao for Doptree algo-
rithms and various compression levels.

4.1.2 Results

As expected, by pushing the BV descriptor to use as few bits as possi-
ble, the timing will suffer since it needs to reconstruct BV before each
overlap test and the reconstructed BVs are slightly bigger (See Fig-
ure 4.6 & Figure 4.5). In comparison with the original implementation,
using 6 bits seems reasonable with little slow down. Beyond that, the
collision check timing will suffer greatly. The original implementation
of Doptree with a branching factor of 4 requires 1600 bits to repre-
sent internal node (32 bits * 46 orientations) + (4 * pointer to child),
whereas our approach using 6-bit quantification and implicit pointer
only requires 340 bits (6 bits * 46 orientations) + (1 * pointer to child).

4.2 memory-efficient boxtree

The Boxtree algorithm (Zachmann, 1995) relies on using boxes as
bounding volumes. It starts with a single box that wraps around
the entire object. Through a repeating process, this box is split into
two new boxes. This division happens until each box contains only
one polygon. At this stage, the boxes hold crucial information about
the enclosed polygons, essential for performing polygon intersection
operations. The structure is a binary tree, where regular boxes are
nodes, and boxes enclosing polygons are leaves.

The original implementation is relative straightforward. Each box
is a separate heap object, serving as either a node or a leaf within

4.2 memory-efficient boxtree 43

the tree structure. Nodes store crucial information about subsequent
boxes’ placement and orientation, represented by two floating-point
values and an integer denoting the cutting plane.

Nodes also maintain two pointers to the next boxes, where a Null-
pointer indicates an empty sub-box.

In contrast, leaf nodes in the Boxtree implementation solely store
information related to the corresponding polygon, including the poly-
gon’s index and the four possible indexes of its constituent points. As
the actual 3D point coordinates are stored in the geometry, a pointer to
this array is also stored alongside the indexes for coordinate retrieval.
Although leaf nodes have an integer for the cutplane, it’s not utilized
in the present context.

To differentiate between nodes and leaves, both using a union to
accommodate both sub-types, the upper bits of the cutplane are used
as a marker to indicate the type.

The theoretical representation of each number as 4 bytes suggests
a total size of 32 bytes. However, practical considerations introduce
additional factors, including an unused virtual destructor, padding
requirements, and the behavior of the malloc function, which may
allocate more bytes than strictly necessary. While this over-allocation
is specific to the implementation and may not be consistent across
all compilers or Standard Libraries, it’s a noticeable consequence of
this particular implementation style observed on multiple machines.
Detecting this over-allocation can be done by observing unexpectedly
high memory usage and confirmed using the malloc usable size()
function, providing information about the actual allocated bytes per
allocation.

Considering all factors, such as the unused virtual destructor, padding
requirements, and possible over-allocation by the malloc function, the
size of a Boxtree box nearly doubles. Consequently, the total size of
a Boxtree box is 56 bytes. Therefore, the resulting representation of a
Boxtree box is as follows:

4.2.1 Optimization

Even though Boxtree inherently exhibits memory efficiency, there
remains an opportunity for further enhancement.

4.2.1.1 Moving Constant Numbers

Each leaf in the Boxtree holds a 64-bit pointer pointing to its geometry
points. Although this pointer could be redundant, it is necessary
because every main Boxtree object requires all the details to compare
against another Boxtree. To optimize the redundant pointers, we add
a header to the overall Boxtree. This header becomes the first point of
reference when comparing two Boxtrees. It allows us to store constant

44 memory efficient bounding volume hierarchies

Boxtree

virtual destructor 8

cutting plane 4

padding 4

Union

Node Leaf

left-node-ptr 8 polygon-index 4

right-node-prt 8 padding 4

cutp 4 4x point-index 16

cutr 4 points ptr 8

padding 8

malloc overhead 8

Table 4.5: Original Boxtree structure on a x64 system (size in Bytes) (Schwo-
chow, 2021)

information once and pass it to the checking method during collision
checks.

4.2.1.2 Indexing

In Boxtree, nodes and leaves are allocated as heap objects. Each node
requires two 64-bit pointers to the next heap object, as well as an
additional 64-bit for every allocation. To optimize this, we can store
nodes and leaves in an array. Instead of using 64-bit pointers, only
32-bit indices are needed. The resulting array will be stored in and
read from the header.

4.2.1.3 Merge Leaves

Additionally, it is also possible to reduce the number of references,
especially to leaves, by merging leaves with their parent nodes. This
results in four different types of nodes, depending on the amount and
placement of the merged leaves.

The ratio of original nodes to optimized nodes is almost the same
across various objects and resolutions (See Table 4.6).

4.2.1.4 Minimize Leaves

The leaves consist of a pointer to an array of 3D coordinates, or points,
of the geometry, which is assigned during BVH construction and used
during collision checks. However, there is also the index of the polygon
in each leaf, which refers to the polygon in the geometry. With this,
the entire polygon can be read at runtime from the geometry, as long
as the pointer to the polygon array in the geometry is stored. The
only difference between the polygons in the geometry and those in

4.2 memory-efficient boxtree 45

the leaves is that during construction, the last of the indexes in the
leaves would be marked when the polygon is a triangle. However, this
information can also be obtained directly from the polygon pointer,
reducing the size of a leaf to just one integer representing the polygon
index. As nodes now either have an index to refer to another node or
refer to a polygon with an index, these two can be represented by a
single union, resulting in the same size for all node types. For this to
work, the type of the index has to be stored, which will be done in the
cutplane integer that is not fully used. Having the same size allows
the use of only one array to hold all nodes, without any space wasted
for padding.

Object Original Nodes Optimized Nodes %

ATST-4252 11623 7419 63,83

ATST-152944 417155 266924 63,98

Castle-14871 39630 25011 63,11

Raptor-40000 1172783 772783 65,89

Table 4.6: Nodes count in comparision to original implementation.

4.2.1.5 Cuts

The only part of the Boxtree that hasn’t been optimized yet is the cut
information in every node. This includes the cutplane orientation (x, y,
z) and two floats marking where the box is split. Because this info is
exactly what’s gained when building the Boxtree and is essential for
every check, it’s trickier to optimize.

To compress the floats, the simplest choice is to use 16-bit floats,
which are converted to and from 32-bit floats when stored and read.
Converting from 16-bit floats involves just 3 instructions Section A 2
and maintains the same performance level.

4.2.2 Optimized Structure

With these optimizations, the resulting Boxtree achieves a size reduc-
tion of about 71% compared to the original representation, resulting
in a size of 16 bytes per node. This memory-efficient design enables
multiple nodes to fit within a single cache line without overlap. In typ-
ical systems, a cache line represents 64 consecutive bytes of memory,
read and cached as a whole for improved performance Drepper, 2007.

The precise layout of the four resulting Boxtree types is as follows:
These optimized Boxtree types ensure efficient memory usage and

alignment, maximizing cache utilization for improved performance
during memory access and traversal operations.

46 memory efficient bounding volume hierarchies

cutplane 1. type 2. type 2x indices 2x 16-bit floats total

two leaves 4 - - 8 4 16

left leaf 4 0 - 8 4 16

right leaf 4 - 0 8 4 16

no leaf 4 0 0 8 4 16

Table 4.7: Optimized Boxtree structure on a x64 system (size in Bytes) (Schwo-
chow, 2021)

4.2.3 Results

The optimized implementation of the Boxtree introduces changes that
are expected to result in minimal performance penalties. The most
significant impact is likely the removal of polygons from the leaf
nodes. Instead of accessing the polygons from the node itself, they
need to be read from the polygon vector in the geometry, resulting in
additional memory accesses. Converting a 16-bit float to a 32-bit float
typically requires only three instructions using Intel Intrinsics, but
these instructions can accumulate over the runtime. On the other hand,
moving constant information into a header has almost no performance
cost since this information is likely to be cached after accessing the
first node.

Storing nodes in an array can potentially improve performance by
allowing multiple nodes to be on the same cache line. This increases
the likelihood of the next accessed node already being in the cache,
resulting in faster access compared to reading from memory. To max-
imize this effect, the first child of each node is placed immediately
after the parent node, and the checking function starts with that child
whenever possible.

Considering a node size of 16 bytes and a cache line size of 64 bytes,
it is not possible to cache the next three nodes by just reading the first
node.

Despite the potential improvements, the memory-optimized version
is still approximately 10% slower than the original implementation (see
Figure 4.7). As expected, the average speed reduction can be attributed
to the float conversion and array access, with each contributing around
3-5% to the total runtime. However, in terms of cache performance, the
optimized version exhibits fewer cache misses overall, despite the ad-
ditional read into the geometry. This indicates that the multiple nodes
per cache line are extensively utilized and contribute to maintaining
relatively similar overall performance.

Although the optimized version cannot match the performance
of the original implementation, this minor performance loss is in-
significant compared to the significant memory gain of approximately
82%.

4.3 conclusion and future work 47

ATST_4252 ATST_152944 Castle_14871
0

0.5

1

1.5

2

2.5

3
ti

m
e

/
m

ili
se

c

original
optimized

Figure 4.7: Comparison of original speed vs. optimized

4.3 conclusion and future work

We have introduced approaches aimed at reducing the memory foot-
print of two existing CD algorithms based on BVHs, namely Doptree
and Boxtree. Our implementation atop the Doptree algorithm has
slashed the memory usage to a mere 5.31%, while for the Boxtree
algorithm, it stands at 10% of the original algorithms’ memory con-
sumption. This enhancement empowers robotic agents to significantly
increase the number of concurrent mental simulations they can exe-
cute.

While the optimized Doptree tends to outpace Boxtree in speed,
it does so at the cost of consuming up to four times more memory
compared to the optimized Boxtree. To illustrate, consider an object
with 400,000 polygons: in Boxtree, inner nodes would require 11 bytes,
whereas Doptree, with 6 bits quantization, requires 41 bytes. In our
assessment, both algorithms are equally viable for mental simulations.

This also opens up several directions for future work. For instance,
we could consider another compression method based on a predictor-
corrector schema (Solenthaler and Pajarola, 2009). Another approach
might involve approximating entire BVHs using polynomial regression
instead of explicitly storing BV nodes. However, this approximation
might require additional pre-processing steps to ensure it fits into the
BVHs adequately.

Another interesting direction for future work could involve integrat-
ing uncertainty into mental simulations. For instance, by returning

48 memory efficient bounding volume hierarchies

the continuous distribution instead of discrete final states from the
simulation. This approach will significantly reduce the number of
simulations needed for decision-making.

Exploiting temporal coherence (Ponamgi, Manocha, and Lin, 1995)
between simulations could also be considered to further accelerate
mental simulations.

5
B E N C H M A R K I N G A S O N L I N E S E RV I C E

Benchmarking is a critical aspect of algorithm evaluation, providing
valuable insights into the performance and capabilities of various
methodologies. However, this process can be arduous and complex,
accompanied by its fair share of challenges. These challenges include
dataset heterogeneity, where the availability of diverse and representa-
tive datasets can lead to disparate evaluation results, making it difficult
to draw meaningful conclusions about algorithm performance. Addi-
tionally, task complexity demands multiple benchmarking metrics to
accurately capture various aspects of algorithm performance, posing
a challenging endeavor in identifying suitable and effective metrics.
Another challenge lies in the limited ground truth, as the absence of a
reliable reference standard makes it difficult to gauge the true accuracy
of algorithms, leading to less robust evaluations. Moreover, replication
crisis is also a growing concern in scientific research, and the field of
computer graphics is no exception. It refers to the inability to repro-
duce research findings, leading to doubts about the reliability and
validity of published results. Several factors contribute to this crisis,
including the lack of detailed instructions, missing data or codes, and
compatibility issues with hardware and software.

In a recent study conducted in the domain of computer graphics,
the extent of the replication crisis was examined (Bonneel et al., 2020).
The study analyzed 374 papers from prestigious conferences like the
Association for Computing Machinery (ACM) Special Interest Group
on Computer Graphics and Interactive Techniques (SIGGRAPH) 2014,
2016, and 2018, and the results shed light on the challenges faced
by researchers in replicating and validating findings. Out of the 374
papers, 151 software packages made available for replication. Of 151
software packages, only 133 came with complete source codes, while
the remaining 18 were pre-compiled softwares. A considerable 68
of these source codes required modification to work properly, while
19 encountered technical issues, and 5 were hampered by hardware
compatibility problems. These challenges in replicating the results
highlight the pressing need for more transparent and standardized
practices in computer graphics research.

5.1 open benchmarking for reproducible and compara-
ble results

To avoid replication crisis and enhance the credibility of research
findings, it is crucial to establish an open benchmark that fosters repro-

49

50 benchmarking as online service

ducibility and comparability of results. Such a benchmark would serve
as a standard platform for researchers to share their algorithms, data,
and codes in a clear and accessible manner. By providing detailed in-
structions and openly sharing their work, researchers can significantly
enhance the chances of successful replication and validation by the
broader community.

Key requirements for an open benchmark include:

• Reproducible and Comparable Results: The foremost require-
ment for an open benchmark is to ensure that researchers can
reproduce each other’s experiments accurately. By following
standardized procedures and sharing comprehensive documen-
tation, the benchmark facilitates comparability and aids in vali-
dating the robustness of the proposed methodologies.

• Same Hardware and Software Environment: To maintain consis-
tency and eliminate hardware or software-related discrepancies,
an open benchmark should mandate the use of the same hard-
ware and software environment for all experiments. This ensures
that results are not influenced by variations in computing re-
sources and allows for a fair evaluation of different approaches.

• Easy-to-Use Interface: an open benchmark must be designed
with user-friendliness in mind. An intuitive and user-friendly
interface makes it accessible to researchers with diverse back-
grounds and expertise. By simplifying the process of data sub-
mission and result analysis, the benchmark encourages active
participation and collaboration.

• Sustainability: sustainability is a key aspect of an open bench-
mark. To ensure its long-term viability, the platform should be
well-maintained and regularly updated to accommodate emerg-
ing research trends and new hardware or software advancements.
Continuous support and development are vital for the bench-
mark’s relevance and usefulness.

To maximize accessibility and reach, an open benchmark can be
established as an Online Service . This approach allows researchers
from different locations to access the benchmark, i.e., through web-
based interfaces. Benchmark as Online Service (BOS) offers several
advantages, including ease of access, comparable data analysis, and
scalability. Researchers can submit their experiments, analyze results,
and compare their findings with others in a collaborative and efficient
manner.

5.2 benchmarking for cd & pq algorithms

Benchmarking BVH-based CD & PQ algorithms serves as a perfect
example of addressing the challenges in benchmarking. Algorithms

5.2 benchmarking for cd & pq algorithms 51

are using different BV, from spheres (Hubbard, 1996), AABBs (Bergen,
1998; Zachmann, 1995), k-DOPs (Klosowski, 1998; Zachmann, 1998),
OBBs (Gottschalk, Lin, and Manocha, 1996), spherical shells (Krishnan
et al., 1998), to swept spheres (Larsen et al., 2000).

Moreover, BVHs can have different branching factors, the BVHs can
be constructed in different ways (e.g., iteratively, bottom-up, or top-
down), the primitives can be assigned in different ways to the BVs in
the hierarchy (for instance, via middle split, median split or even using
sophisticated clustering algorithms) and finally, there exist different
algorithms for the hierarchy traversal during run-time (Tan, Weller,
and Zachmann, 2019).

The reason for such a large amount of different CD & PQ algorithms
is that they are often optimized for a particular scenario. CD & PQ

algorithms are usually susceptible to certain factors like relative the
object’s shape (e.g., convex or concave), the sizes between objects,
relative distances, the sizes, shapes, and distributions of the geometric
primitives or the transformations between objects, to name but a few.

Moreover, the limitations of the algorithms are hardly discussed
in the publications, if actually known. In many publications, authors
usually use a set of self-defined objects & scenarios to benchmark
& compare their proposed algorithms with existing ones. However,
this is not always in favor of existing algorithms since authors might
choose objects or scenarios that favor their proposed algorithms. Even
more, the source code of competing algorithms is often unavailable or
outdated, and there is no access to objects and scenarios used by the
competing algorithms for their benchmarks.

Besides that, technical difficulties, i.e., the sheer amount of involved
parameters or integration of existing CD algorithms making bench-
marking of CD algorithms a complicated and time-consuming process.
Frequent Operating System (OS) updates could also lead to depen-
dency hell (See Figure 5.1). Finally, the reported scenarios often only
show an average, sometimes a standard deviation, and maybe the
maximum running time for a whole sequence of transformations. This
is not sufficient to understand why a certain algorithm performs better
or worse in a particular scenario. Actually, a slight change of transfor-
mations or the objects, e.g., a slightly different polygonization of the
object, could result in completely different results.

5.2.1 Web-Based Benchmarking Service

In this dissertation, we realize the idea of open benchmark by running
CD & PQ benchmark as an online service. The idea is to simplify
the complex and time-consuming process of benchmarking CD & PQ

algorithms, more precisely, of methods for the broad phase CD & PQ

of rigid polygonal polygon soups.

52 benchmarking as online service

Figure 5.1: OS updates can disrupt software functionality, leading to a cas-
cade of required updates and compatibility issues, known as
"dependency hell". (xkcd.com, 2024)

This has the advantage that a large amount of collision detection
algorithms is available as pre-compiled libraries on a common, uni-
fied hardware platform via an easy-to-use but nevertheless highly
adjustable web interface. Additionally, the extending object and config-
uration database allow us to cover an increasing number of interesting
collision scenarios. This web-based service facilitates the comparison
of CD algorithms dramatically and is of interest to both users of CD

algorithms who simply want to find the best choice for their partic-
ular scenario and CD researchers, who want to compare their new
algorithms to competitors.

Moreover, we provide a set of predefined scenarios, i.e., a set of
objects together with configurations that cover a broad range of inter-
esting collision detection cases. However, this set can also be extended
by the users to include scenarios that we did not consider. If allowed
by the user, these new scenarios can be included in the benchmark
and will be made available to the public.

Our web-based service provides a front end interface that allows the
users to adjust some benchmark parameters, e.g., selecting scenarios,
algorithms, or upload their objects and generate a set of configurations.
The actual benchmark is performed on a dedicated back end server
PC that is reserved for only this task in order to not disturb the
benchmarking procedure by simultaneous web access and, obviously,

5.2 benchmarking for cd & pq algorithms 53

for security reasons. All benchmarks are scheduled to guarantee the
same computational power for all users.

The basis of our web service is a well established benchmarking
suite for collision detection algorithms (Trenkel, Weller, and Zach-
mann, 2007). It has a well defined and easy-to-use interface to include
new algorithms, and it already delivers a set of interesting collision
scenarios. However, we further extended it to also support proximity
queries instead of simple boolean collision queries. Moreover, we heav-
ily extended its’ analyzation functionalities: the original benchmarking
suite simply computes the average and maximum collision detection
times and plots them to charts or histograms. Our web service offers
the possibility to overlay the 3D object with a detailed heatmap. This
facilitates it to identify interesting object regions, e.g., regions that
are hardly checked for collisions, regions where particular algorithms
perform better or worse, etc.

5.2.2 Heatmap Visualization

The benchmarking suite by Trenkel, Weller, and Zachmann (2007)
already includes several scripts based on Gnuplot to generate plots of
the results: for instance, for a pair of objects at a certain polygon count,
it can plot the average or maximum running time of the benchmarked
algorithms with respect to the distance, or it can plot the running-
time with respect to polygon count for a fixed distance. Such plots
are useful to get a broad overview of the algorithms’ performance
with a particular pair of objects. However, depending on the object,
it is possible, that the maximum running time is realized only at a
very special part of the object that is hardly colliding in the target
application. Even more, maybe a slight change of the object, e.g.,
placing an antenna a few polygons to the right or the left, might
change the performance of the collision detection dramatically, so can
also do a simple re-polygonization of parts of the object. Consequently,
we decided to implement a novel, more sophisticated visualization of
the benchmarking results on a sub-object level. The main idea is to
visualize different results directly on the object’s surface by using a
heatmap.

To do that, we collect additional data, as written in the previous
section, during the benchmark. For a pair of 3D objects A and B and
a set C of n configurations C = (c1, c2, ..., cm) that was generated by
the benchmarking suite, we store for each configuration ci ∈ C the
collision check time ti, the number of tested bounding volumes bvi, the
number of tested polygons ni. Then we project the data to the object to
generate the heatmap. Therefore, we compute for each configuration
ci the closest point pi between the pair of objects (see Figure 5.2b). This
is usually located on a polygon p of A and one B. In order to generate
a heatmap for A we assign the measured values ti, bvi, and ni to all

54 benchmarking as online service

vertices of p. Obviously, we normalize the assigned vertex values by
dividing them by the number of assignments.

(a) (b)

(c) (d)

Figure 5.2: Heatmap generation pipeline based on benchmark’s result: (a)
3D object, (b) closest points of all configurations, (c) generated
heatmap based on algorithm timings, and (d) generated heatmap
based on configurations density.

This facilitates it to identify interesting object regions, e.g., regions
that are hardly checked for collisions, regions where particular algo-
rithms perform better or worse, etc.

These vertex values can be easily mapped to color values when
showing the heatmaps in our web GUI. We support different mappings
of the values to colors, namely:

1. Average (Figure 5.3a), median (Figure 5.3b), min (Figure 5.3e),
and max (Figure 5.3f) timing.

• to visualize critical regions based on algorithm’s timing.

2. Standard Deviation (Figure 5.3c) and Median Absolute Deviation
(Figure 5.3d)

• to visualize outlier regions where algorithm’s timing could
differs greatly between slightly different configurations.

3. Configuration density (Figure 5.3g)

• to visualize regions that are extensively or hardly checked
by algorithms.

5.2 benchmarking for cd & pq algorithms 55

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.3: An example of heatmap based on configuration’s (a) average
timings, (b) median timings, (c) standard deviation timings, (d)
median absolute deviation timings, and (e) min timings, (f) max
timings, and (g) density.

56 benchmarking as online service

A primary goal of openCollBench for benchmarking as a service is to
simplify the time-consuming process of integrating CD and configuring
algorithms and to provide a common hard- and software platform
to produce long-term reproducible and comparable results. We have
realized this by a web-based client-server architecture. Figure 5.7
shows an overview of our system; it is based on a front end that
provides an easy-to-use Graphical User Interface (GUI) to the user and
a dedicated back end server that performs the actual benchmarking.

Figure 5.4: Interactive Graphical User interface (GUI) for OpenCollBench,
which enable user to upload object (red box) and selecting bench-
mark parameters interactively. The option panels connected with
each other, i.e. changing Bench Mode (blue box) to proximity will
display algorithms that support promxity query in Algo (green
box).

Figure 5.5: Benchmark’s progress GUI for OpenCollBench, which consists of
three parts, namely, left (red box) showing progress of object up-
loaded by user, middle (blue box) showing benchmarking progress
including configurations generation, and right (green box) show-
ing progress of heatmap generation pipeline.

The front end is designed to focus on simplification and usability of
the benchmarking process to enable both expert and non-expert users

5.2 benchmarking for cd & pq algorithms 57

Figure 5.6: Benchmark’s results GUI for OpenCollBench, which showing
generated heatmap based on benchmarking results. Left panel
(red box) enable user to select different mapping value, middle
panel (green box) showing generated heatmap, and right panel
(blue box) showing mapping color value.

to intuitively benchmark CD algorithms. We have implemented our
front end using the vue.js framework. Figure 5.4 shows the website
to select appropriate benchmark parameters via sliders and buttons.
Additionally, it is possible to upload objects and optionally store
them together with the generated configurations. Another option is
to register for an account to recall previous benchmarking results or
re-trigger past benchmark runs. In order to prevent failed benchmark
due to connection problem or time constraints, we mark incoming
benchmark requests with a unique id and store the id to the user’s
browser locally via cookies. This request-id enables the user to resume
ongoing benchmarks. We also implemented a progress interface (see
Figure 5.5) to keep the user informed about ongoing benchmark, e.g.,
uploading objects, generating configuration, performing benchmark,
or generating heatmaps. By default, all generated results will be saved
on our server for a period of time in case the same object is being
tested again. However, we plan to add a more sophisticated access
system that optionally allows users to secure their uploaded objects
and results in the future. This is required, especially for industrial
users that wish nondisclosure. Traditional plots of the results of the
benchmark can be downloaded. Moreover, our client offers the possi-
bility to inspect the objects with the heatmap overlay discussed in the
previous section. The visualization is realized in WebGL via three.js.
The heatmap viewer can be adjusted by the user to show the different
results, switch outlier removal on and off, or chose an appropriate
coloring method (see Figure 5.6).

The front end communicates via Axios with our dedicated back
end server. In general, our back end server is implemented using the
Express framework on top of node.js. It consists of several modules:

58 benchmarking as online service

• Request handler handles incoming benchmark requests. It also
assigns the unique id and schedules the requests via a queue
system to prevent benchmarking suites from running multiple
instances at one time, which will mess up CD algorithms’ timing.
The request handler is implemented with express.js.

• Collision Benchmarking Suite performs the actual CD & PQ bench-
mark for a given object and parameters. It also is responsible for
generating the configurations according to the user’s selected
parameters. The benchmarking suite is implemented in C++, and
it uses OpenSG, according to Trenkel, Weller, and Zachmann
(2007).

• Heatmap Generation Pipeline generates the heatmaps, i.e., the ver-
tex colors, from the benchmark results. It is implemented in
implemented using three.js.

• Exporter finally exports the generated heatmap into a file for
further access by the front end.

5.2.3 Safe Execution of User-Uploaded Algorithms

One challenge of providing benchmarking as an online service is the
integration of new algorithms into the existing benchmarking tool due
to security concerns of running unknown code, which will always
pose a risk, i.e., Remote Code Execution (RCE). Directly analyzing
and validating the code is not trivial, not to mention authors might
not want to disclose their algorithms in some cases. Hence, it does
make sense to run user-uploaded algorithms in case of doubt in
an environment where it can not cause any damage. This could be
done on another physical computer accessible over the network and
that does not have access to critical systems and does not contain
sensitive data. However, the fact that the machine is connected to
other computers in a network is already a risk. It is also challenging
to identify whether this system is compromised.

This is where the implementation of hardware virtualization be-
comes advantageous. Here, access to the physical machine’s hardware
is regulated by a so-called hypervisor. This can be an OS that runs na-
tively on the hardware (Type 1), e.g., Microsoft Hyper-V, VMWare ESXi
or software that runs on an operating system and simulates hardware
access (Type 2), e.g., Microsoft Virtual PC, Oracle Virtual Box, VMware
Workstation. A Virtual Machine (VM) can be started via the hypervisor,
which operates completely isolated from the underlying systems. In
addition, a virtual network can be configured with the hypervisor, to
which only the host system and the virtual operating system have
access. This means the virtual system has no access to external net-
works to which the host system is connected. On top of that, many
hypervisor implementations offer a so-called Snapshot function that

5.3 conclusion and future work 59

can save the state of the virtual machine at a specific point in time and
restore it if necessary. This resets all data changed over the runtime,
both on the virtual storage medium and the data in the virtual main
memory.

In order to guarantee the security of such a scenario, we shift the
execution of user-uploaded algorithms into a virtualization environ-
ment. It is sufficient for authors to compile and upload their proposed
algorithms as wrapper Dynamic-Link Library (DLL) specified by open-
CollBench.

Virtual Machine

Static Collision
Benchmarking Suite

WebSocket Server

Back end (native OS)

Benchmark
results

Benchmark
parameters

Hyper-V
Start / stop VM

Request Handler

Benchmark
parameters

Benchmark
results

3d Heatmap
Generation Pipeline

Exporter

Front end

User

Benchmark
results

3d heatmap +
Benchmark results

object +
Benchmark parameters

3d heatmap

Object +
Benchmark parameters

Figure 5.7: System Overview of openCollBench

Figure 5.8: Average collision query time heatmap for the object Bunny in
native (left) and virtualization environment (right) using boxtree
algorithm on Intel CPU (i7 7900x). The heatmaps are very similar.

5.3 conclusion and future work

We have implemented our open benchmarking server as a web service
to allow both expert and non-expert users to easily evaluate CD & PQ

algorithms’ performance in standardized or optionally user-definable
scenarios and to identify possible bottlenecks. The web service is open

60 benchmarking as online service

Figure 5.9: Average collision query time heatmap for the object Bunny in
native (left) and virtualization environment (right) using vcollide
algorithm on Intel CPU (i7 7900x). The heatmaps are very similar.

20 40 60 80 100 120

0.4

0.6

0.8

1

1.2

polygon count / 10−3

ti
m

e
/

m
ili

se
c

doptree boxtree
pqp vcollide

native vm

Figure 5.10: Average collision query time for the object Castle in native (○)
and virtualization (◻) environment for various CD algorithms
using AMD CPU (Ryzen 9 3900X). The delta are very similar
across different algorithms, object shapes and complexity.

5.3 conclusion and future work 61

20 40 60 80 100 120

0.4

0.6

0.8

1

1.2

1.4

1.6

polygon count / 10−3

ti
m

e
/

m
ili

se
c

doptree boxtree
pqp vcollide

native vm

Figure 5.11: Average collision query time for the object Castle in native (○)
and virtualization (◻) environment for various CD algorithms
using Intel CPU (i7 7900x). The delta are very similar across
different algorithms, object shapes and complexity.

100 200 300 400 500 600 700

0.8

0.9

1

1.1

1.2

1.3

1.4

polygon count / 10−3

ti
m

e
/

m
ili

se
c

native
vm

Figure 5.12: Average collision query time for the object Hand in native (○) and
virtualization (◻) environment using SIMDop CD algorithms for
intel CPU (i7 7900x). The delta are similar across different object
complexity.

62 benchmarking as online service

20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1

polygon count / 10−3

ti
m

e
/

m
ili

se
c

native
vm

Figure 5.13: Average collision query time for the object Castle in native (○)
and virtualization (◻) environment using SIMDop CD algo-
rithms for intel CPU (i7 7900x). The delta are similar across
different object complexity.

for the public and can be accessed at URL: http://opencollbench.
com.

We have presented openCollBench, a benchmarking architecture for
CD and PQ algorithms that offers the benchmarking procedure as an
open web service to the public. The goal is to make complicated and
time-consuming benchmarking accessible for both expert and non-
expert users. And at the same time provide a security guarantee while
executing user-uploaded algorithms. We have addressed this goal by
proposing a combination of a simple yet adjustable user interface with
a dedicated hardware platform that guarantees reproducible and com-
parable results. The security guarantee is done by shifting execution
of user-uploaded algorithms in virtualization environment. Addition-
ally, we have presented an extension to a sub-object accuracy for the
analysis of the benchmarking results. The idea is to use heatmaps
to visualize information gathered by the benchmark. This allows the
user to identify critical parts of their objects, and it enables a better
understanding of the behavior and characteristics of the particular CD

algorithm.
Our approach also offers interesting avenues for future work: for

instance, currently, OpenCollBench is restricted to narrow phase CD

and PQ for rigid objects that run on the CPU. Obviously, we want to
extend our benchmark to cover more cases related to collision detec-
tion, like broad phase CD, deformable objects, GPU-based algorithms,

http://opencollbench.com
http://opencollbench.com

5.3 conclusion and future work 63

other kinds of object representation than polygonal objects, to name
but a few. We also plan to include real penetration scenarios, e.g., the
relative penetration volume, according to (Weller et al., 2010), that can
be used to compute additional configurations.

Moreover, we want to use the information gained from the extended
heatmap visualization to improve existing collision detection algo-
rithms or even develop completely new ones. Our results already
provide hints that BVH-based algorithms can be optimized by, for
instance, optimizing the polygonization in parts of the objects, e.g.,
by transparently performing local subdivision steps or by optimiz-
ing the BVH construction. We also consider a hybrid algorithm that
automatically chooses the optimal CD algorithm depending on the
objects’ actual configuration. This could be realized by an AI-based
approach. Finally, we consider extending the idea of a benchmarking
as a service to other kinds of algorithms, especially in the computer
graphics context: acceleration data structures for ray tracing could be
a first interesting topic for this.

we also plan to collect quantitative and qualitative data about
heatmap generated by our benchmarking server and objects uploaded
by users (e.g. time taken to perform collision check by CD algorithms)
in view of a larger and thorough evaluation of integrated CD algo-
rithms.

We also plan to integrate more existing CD algorithms and extend
generated heatmap based on other CD algorithms variables i.e., BV
intersection test, triangles test, etc.

Our approach also offers interesting avenues for future work: for
instance, by implementing the server endpoint as a REST endpoint,
other services could also use the benchmarking server for example,
to evaluate the proposed algorithm within a continuous integration
pipeline when building an application. In this sense, a plugin for
integrated development environment (IDE) such as Visual Studio would
also be conceivable that allows the user to directly assess the effects of
his changes to algorithms during development.

6
U N C E RTA I N T Y I N S I M U L AT I O N - B A S E D R O B O T
P L A N N I N G

The current state of physically-based simulation development is well-
known to produce plausible effects for physics simulation. From gam-
ing to robotics, simulation provides clear benefits like a specific train-
ing environment for delicate tasks without potentially breaking the
physical environment or the ability to envision the possible outcome
of planned actions before execution, areas where simulation offers
clear advantages. Moreover, the simulation can be easily reset in case
something goes wrong.

Despite the advantages, physics simulations are subject to uncer-
tainty. In a general sense, uncertainty can arise from three sources,
simulation uncertainty, lack of knowledge about the system being simu-
lated, input uncertainty, uncertainty in the input data, and structural
uncertainty, the choice of model and assumptions (McKay, Morrison,
and Upton, 1999). All of these can lead to errors in the results of the
simulation.

Among them, input uncertainty can be a major source of error in sim-
ulations, as even small input changes can lead to significant changes
in the output. There are many error sources of input uncertainty, but
one of the most common is measurement error. This can occur when
measuring the position, velocity, or other properties of particles (Keng-
hagho et al., 2022). In such system, uncertainty plays a partial role in
marginal Rao-Blackwellized Particle Filter (mRBPF) where numerous
belief particles undergo simulation, weighting, and subsequent sam-
pling according to their weights. Nevertheless, this approach may ne-
cessitate a substantial number of belief particles to accurately represent
continuous physical parameters, particularly in scenarios involving
collision and force dynamics crucial for simulating object behaviors.
Hence, there is a need to minimize the particle count required.

Another source of error could arise from imprecise understanding
of the laws of physics. For example, in a simulation of the motion
of the planets, the gravitational force between the planets is usually
calculated using Newton’s law of gravity. However, this law is only an
approximation, and it is not known precisely how accurate it is.

There exist approaches in the literature that focus on input un-
certainty. However, based on our knowledge, these methods mainly
involve discrete sampling of input parameters (Kurniawati et al., 2011;
Santolaria and GinéS, 2013), which require multiple simulation in-
stances to conclude the simulation.

65

66 uncertainty in simulation-based robot planning

Our idea is to embed input uncertainty into existing CD algorithm,
namely IST. The result of such simulation is a continuous distribution
of final object states in the form of a heatmap (See Figure 6.1b). For
example, if an object drops and hits the dustbin’s edge, the object’s
final position may be inside or outside of the dustbin (See Figure 6.1a).

(a)

0

0.2

0.4

0.6

0.8

(b)

Figure 6.1: (a) Illustration of a milk box being dropped and hitting the edge
of a dustbin. Red arrows point to possible final positions of the
milk box, which could land inside or outside of the dustbin. (b)
Heatmap showing the probabilistic distribution of the milk box’s
location after the simulation.

6.1 inner sphere tree for geometry with uncertain prop-
erties

Assuming objects are rigid bodies, the size of IST spheres are fixed.
Therefore, the input uncertainty, e. g., the position of objects, could be
represented as a continuous probability distribution (i. e., Gaussian) by
replacing the center or edge of spheres with a probability distribution.

6.1 inner sphere tree for geometry with uncertain properties 67

Figure 6.2: Sphere with position uncertainty represented with a probability
distribution on (left) center and the (center) edge of spheres.
(Right) Possible sphere positions.

Since continuous distribution is infinite, we need to limit distribution
according to uncertainty confidence level, e. g., based on the three-
sigma rule of thumb, to perform an overlap test between spheres.
Limiting the distribution will allow us to have a second radius based
on position uncertainty (See Figure 6.2). The Gaussian distribution
depends on two variables, µ, and σ (See Equation 6.1). In our case, µ

is the center or edge of spheres, and σ defines uncertainty confidence.

P(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

(6.1)

One way to avoid sampling for input uncertainty in CD algorithms,
i. e., IST, is by representing the input parameter as a continuous prob-
ability function, thus being able to conclude simulation from one or
several instances.

We modified the overlapping sphere test during simultaneous inner
bvh traversal to check whether two objects with position uncertainty
collide. With traditional IST, it is trivial to check, and cases either
overlap or not. With input uncertainty, we identified three overlap
cases (See algorithm 5). The modified overlap test starts by checking
whether the second radius from both objects overlaps. We can stop the
test if there is no overlap (See Figure 6.3c). Otherwise, we check the
radius for overlap. If overlap, we can stop the test (See Figure 6.3a).
Otherwise, there exists the possibility for overlap to some extent (See
Figure 6.3b).

X1, X2 = µ1σ2
2 − µ2σ2

1 ± σ1σ2 [(µ1 − µ2)2 + (σ2
2 − σ2

1) loge
σ2

2
σ2

1
)]1/2

σ2
2 − σ2

1
(6.2)

Once the traversal ends, we need to determine the probability distri-
bution intersection for every pair of overlapping spheres to compute
forces. This is necessary because the resulting force of one pair of
overlapping spheres is not only pointed in one direction as in classic
IST (See Figure 6.5a). Instead, the force points to several directions

68 uncertainty in simulation-based robot planning

(a) case 1: objects overlap

(b) case 2: possibility of objects overlap

(c) case3: objects do not overlap

Figure 6.3: Overlap cases during simultaneous inner bvh traversal between
pair of objects with position uncertainty.

Algorithm 5: overlap(sphereNode a, sphereNode b)
if dist(a_center, b_center) >= a_radius_uncertainty_max +
b_radius_uncertainty_max then
// case 3: objects do not overlap

return no_overlap
else if dist(a_center, b_center) <= a_radius_uncertainty_min +
b_radius_uncertainty_min then
// case 1: objects overlap

return overlap
else

// case 2: possibility of objects overlap

return overlap_probability

6.2 physics simulation with uncertain properties 69

due to position uncertainty and is represented using a probability
distribution (See Figure 6.5b).

We could analytically determine the intersection of two unequal
probability distributions (Inman and Jr, 1989). For unequal distribu-
tions, there exist intersections at two points (X1, X2) (See Equation 6.2).

For the equal case, the distributions are intersecting at a single
point equal to (µ1−µ2)

2 . The result of such an intersection is another
probability distribution as well.

By summing the restitution force from all overlapping pairs as in
classic IST, we can calculate the force direction for the next simulation
step. This includes its probability representation. During simulation,
the sum of the probability distribution for force could be too wide (See
Figure 6.4). In this case, splitting force into two or several directions
makes sense (See Figure 6.6). Depending on the application, a single
simulation instance could develop into two or several instances.

Figure 6.4: Resulting restitution force with the wide probability distribution
(large σ)

6.2 physics simulation with uncertain properties

During simulation, uncertainty from a single step will affect the next
simulation step. Therefore, the result of a single simulation step must
be summed with the uncertainty of the next simulation step. It is well
known that the probability distribution of the sum of two or more

70 uncertainty in simulation-based robot planning

(a) (b)

Figure 6.5: (a) Computation of forces using IST, and (b) the resulting force
changes direction based on the probability distribution.

Algorithm 6: overlap(sphereNode a, sphereNode b)
if dist(a_center, b_center) >= a_radius_uncertainty_max +
b_radius_uncertainty_max then
// case 3: objects do not overlap

return no_overlap
else if dist(a_center, b_center) <= a_radius_uncertainty_min +
b_radius_uncertainty_min then
// case 1: objects overlap

return overlap
else

// case 2: possibility of objects overlap

return overlap_probability

independent random variables is the convolution of their distributions,
defined by:

h(x) = ∫ ∞
−∞ f (t)g(x − t)dt. (6.3)

The final result of such simulation can be seen in Figure 6.1b. For
example, we simulated a dropped milk box into the edge of a dustbin.
In this case, with the position uncertainty applied to simulation, the
input is no more a single position of the object before its free-fall but
rather a probabilistic distribution of its position.

The simulation output will be a probabilistic distribution of its loca-
tion when it finishes the fall. The final object location, for instance, can
be represented using a heatmap. This approach considerably reduces
the number of simulation instances representing such distribution.

6.3 conclusion and future work

In summary, we have presented a novel method to address input uncer-
tainty for physics simulation, using an example of position uncertainty.
Our approach embeds uncertainty directly into the acceleration data
structure used by CD, namely IST, which is capable of calculating

6.3 conclusion and future work 71

Figure 6.6: Elementary forces between two objects, a milk box (blue) and a
dustbin (red), during a single simulation step are depicted in Fig-
ure 6.1a. Both objects are filled with spheres using IST algorithms.
These forces are calculated based on collisions between spheres,
resulting in directional changes embedded with a probability
distribution.

collision and force needed for physics simulation. The result of the
simulation is a continuous distribution of final object states in the
form of a heatmap, considerably reducing the number of simulation
instances needed to conclude the simulation.

Furthermore, our algorithm offers numerous other starting points
for future work. For instance, in random sampling path-planning
in non-static environments, our method can significantly reduce the
number of samples needed. Adding additional variables such as a
time limit or confidence level as in Klein and Zachmann, 2003 would
be an exciting addition for future work. This addition would be partic-
ularly helpful in time-critical conditions where the simulation needs to
conclude rapidly. Moreover, other input uncertainties, such as friction
or mass, could be considered.

7
A P P L I C AT I O N S

7.1 collision detecion for grasp type detection

Improvements in grasping algorithms and hand tracking methods
now allow for natural interaction in virtual environments. This opens
up possibilities for conducting experiments in Virtual Reality (VR),
where participants can engage with virtual objects in a lifelike manner.
Conducting experiments in VR makes it easier to gather information
about the causal and intuitive physics of the environment or contact
surfaces during grasping, compared to real-life setups. Additionally,
repeating experiments with the same setup becomes more convenient
in VR.

The data collected from these VR experiments can offer valuable
insights into human grasping behaviors. This knowledge can be ap-
plied in various fields, such as robotic grasping, where the amount
of data required to learn grasping tasks may surpass what can be
feasibly provided with reasonable effort (Levine et al., 2018). Other
fields, including prosthetics, or scenarios where only simple input
devices are available for grasping in VR, can also benefit from these
advancements.

Analyzing human grasping is a complex task influenced by various
factors. To comprehend human grasping behavior, it’s crucial to exam-
ine interactions with diverse objects, understanding where and how
objects are touched and held. What may seem intuitive for humans
could poses a significant challenge in robotics, i. e., how does a robot
discern the distinct touch required for a cup compared to a cereal box?
Furthermore, when grasping an object, determining the appropriate
force to apply is another intricate aspect. VR provides an ideal platform
for investigating these complexities by easily incorporating different
objects and manipulation scenarios.

This Section, we introduce two steps to detect graps type based on
GRASP taxonomy (Feix et al., 2015) during interaction within VR.

contact points and forces detection For detecting contact
points and force, we opted for IST (Weller and Zachmann, 2011). IST

not only allows us to identify which fingers are active but also pro-
vides information on contact points, penetration depths, and minimal
distances.

The concept behind IST involves densely populating objects (in our
case, the fingers and the kitchen item) with non-overlapping spheres
Figure 7.1 and constructing a tree hierarchy based on this arrangement.

73

74 applications

Figure 7.1: Hand filled with Spheres.

To fill the objects with spheres, we employed ProtoSphere (Weller and
Zachmann, 2010), a GPU-assisted algorithm designed to pack a mesh
with spheres.

The first step focuses on obtaining contact points and forces between
the object and the hand. Contact points offer valuable information for
visualizing grasp postures and can be beneficial for replicating grasps.
These points may also serve as training data for robotic grasping. The
method utilizes approach by Rosskamp et al., 2021 for generating
heatmap for contact points and forces (forcemap) visualization (See
Figure 7.2).

Figure 7.2: The hand grasping the object on the left, the texture for the
forcemap in the middle and the final forcemap on the right.

An improvement involves defining a grid on the object, where
each cell represents a potential grasping point. Colors are assigned
based on how frequently a grid cell is in contact with a specific finger.
Additionally, a force map is incorporated to illustrate the strength
of the grasp at each point. Adequate force application is crucial for
holding objects without causing them to fall or break. These heatmaps
offer direct insights into where and how forcefully one should touch
specific objects, potentially aiding in training robots to handle objects
correctly.

grasp type detection The second step focuses on discriminat-
ing between different grasp types, a vital aspect of human grasp
behavior analysis. Recognizing that different objects require distinct

7.1 collision detecion for grasp type detection 75

handling for proper treatment, the application employs a combination
of collision detection and rotation angle analysis. This enables the
discrimination of over 33 grasp types based on GRASP taxonomy
(See Figure 7.3), facilitating a more nuanced understanding of human
grasping behaviors. We opted out using decision tree based on inter-
pretation of the GRASP taxonomy. In general, we group the grasps
by which fingers are in use and how similarly the hand is shaped. In
contrast to the taxonomic approach we disgard the thumb position as
a cluster, as well as the hand’s opposition type. Therefore, we don’t
keep exactly the same groupings as the taxonomy, but most grasp
categories still remain collectively. While the taxonomy contained 17
grasp categories, our algorithm distinguishes between 6 active finger
combinations (see Figure 7.3).

The first step of the Grasp Type Detection is finding which finger
is touching the object using collision detection. The decision tree
in Figure 7.3 is used for further discrimination due to the earlier
introduced collision detection or rotation angle analysing functions.

While for grasp 15 Fixed Hook it is enough to detect it’s unique finger
combination (everyone except the thumb), the more similar grasps
need a more detailed differentiation. To find grasp 22 Parallel Extension,
all five fingers much be touching the object entirely. If the index finger
is not straight, then the straightness of all the other opposing fingers
gets detected. All straight fingers would then already indicate grasp
22, in contrast to grasp 17 Index Finger Extension, where middle, ring
and pinky finger are facing towards the palm.

76 applications

Figure 7.3: Decision tree for automatic grasp type detection based on GRASP
Taxonomy for kitchen environment.

8
D I S C U S S I O N A N D C O N C L U S I O N

As outlined in the research questions, this dissertation addresses
fundamental challenges in physics simulation for robot planning,
namely CD and uncertainty arising from sensing and action noise. To
reach these objectives, we tackled the following tasks:

Faster-Than-Realtime Rigid Body Collision Detection

We have presented a top-down construction method for BVH based on
clustering algorithms from machine learning, namely BNG, combined
with SIMD-based simultaneous BVH traversal. The results are able to
outperform algorithms like VC by an order of magnitude.

Memory-Efficient Collision Detection

We have introduced the idea to reduce the memory footprint of CD

algorithms. Our idea is based on a lossy compression method using
quantization. We applied the idea to two existing algorithms, namely
Doptree & Boxtree.

Although there exists lossless compression methods for floating
point, they are not suitable for BVH traversal tasks, especially when
considering traversal time, as they are too slow.

Our method introduces a trade-off between traversal time and mem-
ory footprint. It becomes beneficial in scenarios where minimizing the
required Random Access Memory (RAM) for cost reasons is crucial
or where performance is not a major concern, such as during mental
simulations where multiple instances need to be launched in parallel.

Reproducible and Comparable Benchmarking

We have introduced the idea to achieve reproducible and comparable
benchmarking results, realized in the context of collision detection
and proximity algorithms. We proposed a benchmarking architecture
that offers the benchmarking procedure as an open web service to
the public. The goal is to make complicated and time-consuming
benchmarking accessible to both expert and non-expert users, while
providing security guarantees when executing user-uploaded algo-
rithms.

We addressed this goal by proposing a combination of a simple
yet adjustable user interface with a dedicated hardware platform that
guarantees reproducible and comparable results. Security guarantees

77

78 discussion and conclusion

are provided by executing user-uploaded algorithms in a virtualization
environment. Additionally, we presented an extension to sub-object
accuracy for the analysis of benchmarking results. The idea is to use
heatmaps to visualize information gathered by the benchmark, allow-
ing users to identify critical parts of their objects and enabling a better
understanding of the behavior and characteristics of particular colli-
sion detection algorithms. We implemented our open benchmarking
server as a web service to allow both expert and non-expert users
to easily evaluate CD & PQ algorithms’ performance in standardized
or optionally user-definable scenarios and to identify possible bottle-
necks.

Physics Simulation with Continuous Probabilistic Distribution of Final State

We have presented a novel method to address input uncertainty for
physics simulation using an example of position uncertainty. Our
approach embeds uncertainty directly into the acceleration data struc-
ture used by collision detection. The result of such simulations is a
continuous probabilistic distribution of the final state, considerably
reducing the number of simulation instances needed to conclude the
simulation.

8.1 limitations and future work

With the overall research question answered, certain limitations apply
that call for future work from which some will we discussed in the
following chapter.

8.1.1 Simulation of Deformable Components

Achieving high-speed robotics simulations is a crucial aspect of robot
planning, particularly when it comes to tasks like model predictive
control and online policy inference. The ability to run simulations
faster than real-time is essential for efficient and effective robot op-
erations. However, the challenge arises when dealing with models
that incorporate flexible or deformable components, as they introduce
additional computational complexity.

Simulating scenarios with unstructured and dynamically changing
environments, such as deformable terrains or fluid-solid interactions,
further adds to the computational demands and simulation slowdown.
These aspects are important for enabling robots to operate success-
fully in complex real-world scenarios beyond controlled environments
(Yoshida et al., 2015). To manage simulation time effectively, compro-
mises must be made based on specific objectives and the available
computing power. This may involve reducing numerical algorithm
iterations, using coarser collision detection meshes, opting for rigid

8.1 limitations and future work 79

terrains instead of deformable ones, simplifying sensing approaches,
employing rigid elements instead of compliant ones, or even working
with simplified two-dimensional dynamics. Model reduction tech-
niques can also be employed to streamline the simulation process.
However, it is crucial to consider the trade-offs as the nature of these
compromises can vary depending on the available computing power,
which may differ significantly between offline and online simulation
setups. Adapting to these constraints while striving for high-speed
simulations is essential for achieving efficient and realistic robot plan-
ning.

8.1.2 Proper Handling of Uncertainty

Uncertainty poses a significant challenge in the operation of robots,
arising from various sources such as friction, impact, contact, actuator
noise, and complex environments. To ensure accurate and reliable
robot behavior, it is crucial to consider and account for uncertainty in
simulations.

Addressing uncertainty involves incorporating mechanisms during
both the model generation and simulation phases. During model setup,
methods should be employed to introduce and handle uncertainty,
such as allowing variations in friction coefficients, accounting for im-
perfect component geometries, and considering delays in actuation
forces. During simulation, it is essential to effectively handle the lack
of smoothness in robot dynamics’ solutions, addressing conditions like
stick-slip behavior and impacts. Embracing a statistical perspective
with confidence bounds provides insights into the reliability of simula-
tion results. Adopting an uncertainty quantification mindset is crucial
as robots often operate in environments with limited knowledge and
inherent uncertainty.

By actively addressing uncertainty in model generation and simula-
tion, robotic systems can enhance their ability to operate in real-world
scenarios. Accounting for uncertainty enables robots to make informed
decisions, adapt to varying conditions, and improve system robustness
and reliability.

B I B L I O G R A P H Y

Agarwal, Pankaj K. et al. (2001). “Box-Trees and R-Trees with near-
Optimal Query Time.” In: Proceedings of the Seventeenth Annual Sym-
posium on Computational Geometry. SCG ’01. New York, NY, USA:
Association for Computing Machinery, 124–133. isbn: 158113357X.
doi: 10.1145/378583.378645. url: https://doi.org/10.1145/
378583.378645.

Baek, Donghoon et al. (2018). “Path Planning for Automation of
Surgery Robot based on Probabilistic Roadmap and Reinforcement
Learning.” In: 2018 15th International Conference on Ubiquitous Robots
(UR), pp. 342–347. doi: 10.1109/URAI.2018.8441801.

Bakhshalipour, Mohammad, Maxim Likhachev, and Phillip B. Gibbons
(2022). “RTRBench: A Benchmark Suite for Real-Time Robotics.” In:
2022 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 175–186. doi: 10.1109/ISPASS55109.2022.
00024.

Battaglia, Peter W., Jessica B. Hamrick, and Joshua B. Tenenbaum
(2013). “Simulation as an engine of physical scene understanding.”
In: Proceedings of the National Academy of Sciences 110.45, pp. 18327–
18332. doi: 10.1073/pnas.1306572110. eprint: https://www.pnas.
org/doi/pdf/10.1073/pnas.1306572110. url: https://www.pnas.
org/doi/abs/10.1073/pnas.1306572110.

Bauszat, Pablo, Martin Eisemann, and Marcus Magnor (2010). “The
Minimal Bounding Volume Hierarchy.” In: Vision, Modeling, and Vi-
sualization (2010). Ed. by Reinhard Koch, Andreas Kolb, and Christof
Rezk-Salama. The Eurographics Association. isbn: 978-3-905673-79-1.
doi: 10.2312/PE/VMV/VMV10/227-234.

Benthin, Carsten et al. (2018). “Compressed-leaf bounding volume
hierarchies.” In: Proceedings of the Conference on High-Performance
Graphics, pp. 1–4.

Bergen, Gino van den (Jan. 1998). “Efficient Collision Detection of
Complex Deformable Models Using AABB Trees.” In: J. Graph. Tools
2.4, 1–13. issn: 1086-7651. doi: 10.1080/10867651.1997.10487480.
url: https://doi.org/10.1080/10867651.1997.10487480.

Blum, Christian, Alan F. T. Winfield, and Verena V. Hafner (2018).
“Simulation-Based Internal Models for Safer Robots.” In: Frontiers in
Robotics and AI 4. issn: 2296-9144. doi: 10.3389/frobt.2017.00074.
url: https://www.frontiersin.org/articles/10.3389/frobt.
2017.00074.

Bongard, Josh, Victor Zykov, and Hod Lipson (2006). “Resilient ma-
chines through continuous self-modeling.” In: Science 314.5802,
pp. 1118–1121.

81

https://doi.org/10.1145/378583.378645
https://doi.org/10.1145/378583.378645
https://doi.org/10.1145/378583.378645
https://doi.org/10.1109/URAI.2018.8441801
https://doi.org/10.1109/ISPASS55109.2022.00024
https://doi.org/10.1109/ISPASS55109.2022.00024
https://doi.org/10.1073/pnas.1306572110
https://www.pnas.org/doi/pdf/10.1073/pnas.1306572110
https://www.pnas.org/doi/pdf/10.1073/pnas.1306572110
https://www.pnas.org/doi/abs/10.1073/pnas.1306572110
https://www.pnas.org/doi/abs/10.1073/pnas.1306572110
https://doi.org/10.2312/PE/VMV/VMV10/227-234
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.3389/frobt.2017.00074
https://www.frontiersin.org/articles/10.3389/frobt.2017.00074
https://www.frontiersin.org/articles/10.3389/frobt.2017.00074

82 bibliography

Bonneel, Nicolas et al. (Aug. 2020). “Code Replicability in Computer
Graphics.” In: ACM Trans. Graph. 39.4. issn: 0730-0301. doi: 10.
1145/3386569.3392413. url: https://doi.org/10.1145/3386569.
3392413.

Bozcuoğlu, Asil Kaan and Michael Beetz (2017). “A cloud service for
robotic mental simulations.” In: 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2653–2658. doi: 10.1109/ICRA.
2017.7989309.

Burgard, W. et al. (2005). “Coordinated multi-robot exploration.” In:
IEEE Transactions on Robotics 21.3, pp. 376–386. doi: 10.1109/TRO.
2004.839232.

Buss, Samuel R (2005). “Collision detection with relative screw mo-
tion.” In: The visual computer 21, pp. 41–58.

Cao, Xiaoman et al. (2019). “RRT-based path planning for an intelligent
litchi-picking manipulator.” In: Computers and Electronics in Agricul-
ture 156, pp. 105–118. issn: 0168-1699. doi: https://doi.org/10.
1016/j.compag.2018.10.031. url: https://www.sciencedirect.
com/science/article/pii/S0168169918303971.

Cavallo, Alberto et al. (2022). “Robotic Clerks: Autonomous Shelf Re-
filling.” In: Robotics for Intralogistics in Supermarkets and Retail Stores.
Ed. by Luigi Villani et al. Cham: Springer International Publish-
ing, pp. 137–170. isbn: 978-3-031-06078-6. doi: 10.1007/978-3-031-
06078-6_6. url: https://doi.org/10.1007/978-3-031-06078-6_6.

Chen, Gang et al. (Dec. 2021). “Path Planning for Manipulators Based
on an Improved Probabilistic Roadmap Method.” In: Robot. Comput.-
Integr. Manuf. 72.C. issn: 0736-5845. doi: 10.1016/j.rcim.2021.
102196. url: https://doi.org/10.1016/j.rcim.2021.102196.

Chinesta, Francisco et al. (2020). “Virtual, digital and hybrid twins: a
new paradigm in data-based engineering and engineered data.” In:
Archives of computational methods in engineering 27, pp. 105–134.

Choi, Yi-King et al. (2009). “Continuous Collision Detection for Ellip-
soids.” In: IEEE Transactions on Visualization and Computer Graphics
15.2, pp. 311–325. doi: 10.1109/TVCG.2008.80.

Choset, Howie (2000). “Coverage of known spaces: The boustrophedon
cellular decomposition.” In: Autonomous Robots 9, pp. 247–253.

Coming, Daniel S. and Oliver G. Staadt (2008). “Velocity-Aligned
Discrete Oriented Polytopes for Dynamic Collision Detection.” In:
IEEE Transactions on Visualization and Computer Graphics 14.1, pp. 1–
12. doi: 10.1109/TVCG.2007.70405.

Denny, Jory et al. (2020). “Dynamic Region-biased Rapidly-exploring
Random Trees.” In: Algorithmic Foundations of Robotics XII: Proceed-
ings of the Twelfth Workshop on the Algorithmic Foundations of Robotics.
Ed. by Ken Goldberg et al. Cham: Springer International Publishing,
pp. 640–655. isbn: 978-3-030-43089-4. doi: 10.1007/978-3-030-
43089-4_41. url: https://doi.org/10.1007/978-3-030-43089-
4_41.

https://doi.org/10.1145/3386569.3392413
https://doi.org/10.1145/3386569.3392413
https://doi.org/10.1145/3386569.3392413
https://doi.org/10.1145/3386569.3392413
https://doi.org/10.1109/ICRA.2017.7989309
https://doi.org/10.1109/ICRA.2017.7989309
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/https://doi.org/10.1016/j.compag.2018.10.031
https://doi.org/https://doi.org/10.1016/j.compag.2018.10.031
https://www.sciencedirect.com/science/article/pii/S0168169918303971
https://www.sciencedirect.com/science/article/pii/S0168169918303971
https://doi.org/10.1007/978-3-031-06078-6_6
https://doi.org/10.1007/978-3-031-06078-6_6
https://doi.org/10.1007/978-3-031-06078-6_6
https://doi.org/10.1016/j.rcim.2021.102196
https://doi.org/10.1016/j.rcim.2021.102196
https://doi.org/10.1016/j.rcim.2021.102196
https://doi.org/10.1109/TVCG.2008.80
https://doi.org/10.1109/TVCG.2007.70405
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1007/978-3-030-43089-4_41

bibliography 83

Drepper, Ulrich (2007). “What every programmer should know about
memory.” In: Red Hat, Inc 11.2007, p. 2007.

Echeverria, Gilberto et al. (2011). “Modular open robots simulation
engine: Morse.” In: 2011 IEEE International Conference on Robotics and
Automation. IEEE, pp. 46–51.

Eckstein, Jens and Elmar Schömer (1999). “Dynamic collision detec-
tion in virtual reality applications.” In: Proc. The 7-th Int’l Conf. in
Central Europe on Comp. Graphics, Vis. and Interactive Digital Media’99
(WSCG’99). Citeseer, pp. 71–78.

Feix, Thomas et al. (2015). “The grasp taxonomy of human grasp
types.” In: IEEE Transactions on human-machine systems 46.1, pp. 66–
77.

Fong, Terrence, Illah Nourbakhsh, and Kerstin Dautenhahn (2003). “A
survey of socially interactive robots.” In: Robotics and autonomous
systems 42.3-4, pp. 143–166.

Goldsmith, Jeffrey and John Salmon (May 1987). “Automatic Creation
of Object Hierarchies for Ray Tracing.” In: IEEE Comput. Graph. Appl.
7.5, pp. 14–20. issn: 0272-1716. doi: 10.1109/MCG.1987.276983. url:
http://dx.doi.org/10.1109/MCG.1987.276983.

Gottschalk, S., M. C. Lin, and D. Manocha (1996). “OBBTree: A Hier-
archical Structure for Rapid Interference Detection.” In: Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: Association for
Computing Machinery, 171–180. isbn: 0897917464. doi: 10.1145/
237170.237244. url: https://doi.org/10.1145/237170.237244.

Groß, Torben (2022). “Continuous Collision Detection with Inner
Sphere Trees.” Master’s Thesis. University of Bremen.

Haidu, Andrei and Michael Beetz (2021). “Automated acquisition of
structured, semantic models of manipulation activities from human
VR demonstration.” In: 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9460–9466. doi: 10.1109/ICRA48506.
2021.9562016.

Hammer, Barbara, Alexander Hasenfuss, and Thomas Villmann (2007).
“Magnification control for batch neural gas.” In: Neurocomputing 70.7.
Advances in Computational Intelligence and Learning, pp. 1225–
1234. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2006.10.147. url: https://www.sciencedirect.com/science/
article/pii/S0925231206004759.

Han, Sangchul et al. (2022). “Snake Robot Gripper Module for Search
and Rescue in Narrow Spaces.” In: IEEE Robotics and Automation
Letters 7.2, pp. 1667–1673. doi: 10.1109/LRA.2022.3140812.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A Formal
Basis for the Heuristic Determination of Minimum Cost Paths.” In:
IEEE Transactions on Systems Science and Cybernetics 4.2, pp. 100–107.
doi: 10.1109/TSSC.1968.300136.

https://doi.org/10.1109/MCG.1987.276983
http://dx.doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1109/ICRA48506.2021.9562016
https://doi.org/10.1109/ICRA48506.2021.9562016
https://doi.org/https://doi.org/10.1016/j.neucom.2006.10.147
https://doi.org/https://doi.org/10.1016/j.neucom.2006.10.147
https://www.sciencedirect.com/science/article/pii/S0925231206004759
https://www.sciencedirect.com/science/article/pii/S0925231206004759
https://doi.org/10.1109/LRA.2022.3140812
https://doi.org/10.1109/TSSC.1968.300136

84 bibliography

He, Liang et al. (2015). “Interactive Continuous Collision Detection
for Topology Changing Models Using Dynamic Clustering.” In:
Proceedings of the 19th Symposium on Interactive 3D Graphics and Games.
i3D ’15. New York, NY, USA: Association for Computing Machinery,
47–54. isbn: 9781450333924. doi: 10.1145/2699276.2699286. url:
https://doi.org/10.1145/2699276.2699286.

Held, Martin, James T. Klosowski, and Joseph S. B. Mitchell (1996).
“Collision Detection for Fly-Throughs in Virtual Environments.”
In: Proceedings of the Twelfth Annual Symposium on Computational
Geometry. SCG ’96. New York, NY, USA: Association for Computing
Machinery, 513–514. isbn: 0897918045. doi: 10.1145/237218.237428.
url: https://doi.org/10.1145/237218.237428.

Hesslow, Germund (2012). “The current status of the simulation theory
of cognition.” In: Brain Research 1428. The Cognitive Neuroscience
of Thought, pp. 71–79. issn: 0006-8993. doi: https://doi.org/10.
1016/j.brainres.2011.06.026. url: https://www.sciencedirect.
com/science/article/pii/S0006899311011309.

Hu, Shuyu et al. (2022). “Underwater gas leak detection using an
autonomous underwater vehicle (robotic fish).” In: Process Safety and
Environmental Protection 167, pp. 89–96.

Hubbard, Philip M. (July 1996). “Approximating Polyhedra with
Spheres for Time-Critical Collision Detection.” In: ACM Trans. Graph.
15.3, 179–210. issn: 0730-0301. doi: 10.1145/231731.231732. url:
https://doi.org/10.1145/231731.231732.

Huisman, Chantal and Helianthe Kort (2019). “Two-Year Use of Care
Robot Zora in Dutch Nursing Homes: An Evaluation Study.” In:
Healthcare 7.1. issn: 2227-9032. doi: 10.3390/healthcare7010031.
url: https://www.mdpi.com/2227-9032/7/1/31.

Inman, Henry F. and Edwin L. Bradley Jr (1989). “The overlapping
coefficient as a measure of agreement between probability distri-
butions and point estimation of the overlap of two normal den-
sities.” In: Communications in Statistics - Theory and Methods 18.10,
pp. 3851–3874. doi: 10.1080/03610928908830127. eprint: https:
//doi.org/10.1080/03610928908830127. url: https://doi.org/
10.1080/03610928908830127.

Johansson, Birger and Christian Balkenius (2006). “An experimental
study of anticipation in simple robot navigation.” In: Workshop on
anticipatory behavior in adaptive learning systems. Springer, pp. 365–
378.

– (2008). “Prediction time in anticipatory systems.” In: Workshop on
Anticipatory Behavior in Adaptive Learning Systems. Springer, pp. 283–
300.

Kavraki, L.E. et al. (1996). “Probabilistic roadmaps for path planning
in high-dimensional configuration spaces.” In: IEEE Transactions on
Robotics and Automation 12.4, pp. 566–580. doi: 10.1109/70.508439.

https://doi.org/10.1145/2699276.2699286
https://doi.org/10.1145/2699276.2699286
https://doi.org/10.1145/237218.237428
https://doi.org/10.1145/237218.237428
https://doi.org/https://doi.org/10.1016/j.brainres.2011.06.026
https://doi.org/https://doi.org/10.1016/j.brainres.2011.06.026
https://www.sciencedirect.com/science/article/pii/S0006899311011309
https://www.sciencedirect.com/science/article/pii/S0006899311011309
https://doi.org/10.1145/231731.231732
https://doi.org/10.1145/231731.231732
https://doi.org/10.3390/healthcare7010031
https://www.mdpi.com/2227-9032/7/1/31
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1080/03610928908830127
https://doi.org/10.1109/70.508439

bibliography 85

Kenghagho, Franklin K. et al. (2022). “NaivPhys4RP - Towards Human-
like Robot Perception “Physical Reasoning based on Embodied
Probabilistic Simulation”.” In: 2022 IEEE-RAS 21st International Con-
ference on Humanoid Robots (Humanoids), pp. 815–822. doi: 10.1109/
Humanoids53995.2022.10000153.

Kim, Duksu et al. (2009a). “HPCCD: Hybrid Parallel Continuous
Collision Detection using CPUs and GPUs.” In: Computer Graphics
Forum. issn: 1467-8659. doi: 10.1111/j.1467-8659.2009.01556.x.

Kim, Tae-Joon et al. (2009b). “RACBVHs: Random-Accessible Com-
pressed Bounding Volume Hierarchies.” In: SIGGRAPH 2009: Talks.
SIGGRAPH ’09. New York, NY, USA: Association for Computing
Machinery. isbn: 9781605588346. doi: 10.1145/1597990.1598036.
url: https://doi.org/10.1145/1597990.1598036.

Klein, Jan and Gabriel Zachmann (2003). “ADB-Trees: Controlling the
Error of Time-Critical Collision Detection.” In: VMV, pp. 37–45.

Klosowski, James Thomas (1998). “Efficient Collision Detection for
Interactive Three-Dimensional Graphics and Virtual Environments.”
AAI9904092. PhD thesis. USA. isbn: 0599014725.

Koenig, N. and A. Howard (2004). “Design and use paradigms for
Gazebo, an open-source multi-robot simulator.” In: 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566). Vol. 3, 2149–2154 vol.3. doi: 10.1109/IROS.
2004.1389727.

Konijn, Elly A et al. (2022). “Social robots for (second) language learn-
ing in (migrant) primary school children.” In: International Journal of
Social Robotics, pp. 1–17.

Koskela, Matias et al. (2015). “Using half-precision floatingpoint num-
bers for storing bounding volume hierarchies.” In: Proceedings of the
32nd Computer Graphics International Conference.

Krishnan, Shankar et al. (1998). “Rapid and accurate contact deter-
mination between spline models using ShellTrees.” In: Computer
Graphics Forum. Vol. 17. 3. Wiley Online Library, pp. 315–326.

Kunze, Lars and Michael Beetz (2017). “Envisioning the qualitative
effects of robot manipulation actions using simulation-based projec-
tions.” In: Artificial Intelligence 247. Special Issue on AI and Robotics,
pp. 352–380. issn: 0004-3702. doi: https://doi.org/10.1016/
j.artint.2014.12.004. url: https://www.sciencedirect.com/
science/article/pii/S0004370214001544.

Kurniawati, Hanna et al. (2011). “Motion planning under uncertainty
for robotic tasks with long time horizons.” In: The International
Journal of Robotics Research 30.3, pp. 308–323.

Kyrarini, Maria et al. (2021). “A Survey of Robots in Healthcare.” In:
Technologies 9.1. issn: 2227-7080. doi: 10.3390/technologies9010008.
url: https://www.mdpi.com/2227-7080/9/1/8.

LaValle, Steven (1998). “Rapidly-exploring random trees: A new tool
for path planning.” In: Research Report 9811.

https://doi.org/10.1109/Humanoids53995.2022.10000153
https://doi.org/10.1109/Humanoids53995.2022.10000153
https://doi.org/10.1111/j.1467-8659.2009.01556.x
https://doi.org/10.1145/1597990.1598036
https://doi.org/10.1145/1597990.1598036
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/https://doi.org/10.1016/j.artint.2014.12.004
https://doi.org/https://doi.org/10.1016/j.artint.2014.12.004
https://www.sciencedirect.com/science/article/pii/S0004370214001544
https://www.sciencedirect.com/science/article/pii/S0004370214001544
https://doi.org/10.3390/technologies9010008
https://www.mdpi.com/2227-7080/9/1/8

86 bibliography

Larsen, E. et al. (2000). “Fast distance queries with rectangular swept
sphere volumes.” In: Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065). Vol. 4, 3719–3726 vol.4. doi: 10.
1109/ROBOT.2000.845311.

Lauterbach, Christian, Sung-Eui Yoon, and Dinesh Manocha (2007).
“Ray-Strips: A Compact Mesh Representation for Interactive Ray
Tracing.” In: 2007 IEEE Symposium on Interactive Ray Tracing, pp. 19–
26. doi: 10.1109/RT.2007.4342586.

Lauterbach, Christian et al. (2009). “Fast BVH Construction on GPUs.”
In: Computer Graphics Forum 28.2, pp. 375–384. url: http://dblp.
uni-trier.de/db/journals/cgf/cgf28.html\#LauterbachGSLM09.

Leutenegger, Scott T., Jeffrey M. Edgington, and Mario A. Lopez
(1997). STR: A simple and efficient algorithm for R-tree packing. Tech.
rep. Institute for Computer Applications in Science and Engineering
(ICASE).

Levine, Sergey et al. (2018). “Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection.”
In: The International journal of robotics research 37.4-5, pp. 421–436.

Lian, Shiqi et al. (2018). “Dadu-P: A Scalable Accelerator for Robot
Motion Planning in a Dynamic Environment.” In: 2018 55th ACM/ES-
DA/IEEE Design Automation Conference (DAC), pp. 1–6. doi: 10.1109/
DAC.2018.8465785.

Lindqvist, Björn et al. (2022). “Multimodality robotic systems: Inte-
grated combined legged-aerial mobility for subterranean search-and-
rescue.” In: Robotics and Autonomous Systems 154, p. 104134. issn:
0921-8890. doi: https://doi.org/10.1016/j.robot.2022.104134.
url: https://www.sciencedirect.com/science/article/pii/
S0921889022000756.

Lubiw, Anna, Jack Snoeyink, and Hamideh Vosoughpour (2017). “Vis-
ibility graphs, dismantlability, and the cops and robbers game.” In:
Computational Geometry 66, pp. 14–27. issn: 0925-7721. doi: https:
//doi.org/10.1016/j.comgeo.2017.07.001. url: https://www.
sciencedirect.com/science/article/pii/S0925772117300688.

Mania, Patrick and Michael Beetz (2019). “A Framework for Self-
Training Perceptual Agents in Simulated Photorealistic Environ-
ments.” In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 4396–4402. doi: 10.1109/ICRA.2019.8793474.

Martinetz, T.M., S.G. Berkovich, and K.J. Schulten (1993). “’Neural-gas’
network for vector quantization and its application to time-series
prediction.” In: IEEE Transactions on Neural Networks 4.4, pp. 558–569.
doi: 10.1109/72.238311.

McKay, Michael D, John D Morrison, and Stephen C Upton (1999).
“Evaluating prediction uncertainty in simulation models.” In: Com-
puter Physics Communications 117.1-2, pp. 44–51.

https://doi.org/10.1109/ROBOT.2000.845311
https://doi.org/10.1109/ROBOT.2000.845311
https://doi.org/10.1109/RT.2007.4342586
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html\#LauterbachGSLM09
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html\#LauterbachGSLM09
https://doi.org/10.1109/DAC.2018.8465785
https://doi.org/10.1109/DAC.2018.8465785
https://doi.org/https://doi.org/10.1016/j.robot.2022.104134
https://www.sciencedirect.com/science/article/pii/S0921889022000756
https://www.sciencedirect.com/science/article/pii/S0921889022000756
https://doi.org/https://doi.org/10.1016/j.comgeo.2017.07.001
https://doi.org/https://doi.org/10.1016/j.comgeo.2017.07.001
https://www.sciencedirect.com/science/article/pii/S0925772117300688
https://www.sciencedirect.com/science/article/pii/S0925772117300688
https://doi.org/10.1109/ICRA.2019.8793474
https://doi.org/10.1109/72.238311

bibliography 87

Merkt, Wolfgang, Vladimir Ivan, and Sethu Vijayakumar (2019). “Continuous-
Time Collision Avoidance for Trajectory Optimization in Dynamic
Environments.” In: 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 7248–7255. doi: 10.1109/
IROS40897.2019.8967641.

Metcalfe, J. S. et al. (2017). “Building a framework to manage trust
in automation.” In: Micro- and Nanotechnology Sensors, Systems, and
Applications IX. Ed. by Thomas George, Achyut K. Dutta, and M. Saif
Islam. Vol. 10194. International Society for Optics and Photonics.
SPIE, 101941U. doi: 10.1117/12.2264245. url: https://doi.org/
10.1117/12.2264245.

Michel, Olivier (2004). “Cyberbotics ltd. webots™: professional mobile
robot simulation.” In: International Journal of Advanced Robotic Systems
1.1, p. 5.

Millard, Alan G, Jon Timmis, and Alan FT Winfield (2014a). “Run-
time detection of faults in autonomous mobile robots based on
the comparison of simulated and real robot behaviour.” In: 2014
IEEE/RSJ international conference on intelligent robots and systems. IEEE,
pp. 3720–3725.

– (2014b). “Towards exogenous fault detection in swarm robotic sys-
tems.” In: Towards Autonomous Robotic Systems: 14th Annual Confer-
ence, TAROS 2013, Oxford, UK, August 28–30, 2013, Revised Selected
Papers 14. Springer, pp. 429–430.

Mirtich, Brian (2000). “Timewarp Rigid Body Simulation.” In: Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Pub-
lishing Co., 193–200. isbn: 1581132085. doi: 10.1145/344779.344866.
url: https://doi.org/10.1145/344779.344866.

Murray, Sean et al. (2016). “Robot Motion Planning on a Chip.” In:
Robotics: Science and Systems. Vol. 6.

Murray, Sean et al. (2019). “A Programmable Architecture for Robot
Motion Planning Acceleration.” In: 2019 IEEE 30th International
Conference on Application-specific Systems, Architectures and Processors
(ASAP). Vol. 2160-052X, pp. 185–188. doi: 10.1109/ASAP.2019.000-
4.

Niu, Hanlin et al. (2019). “Voronoi-Visibility Roadmap-based Path
Planning Algorithm for Unmanned Surface Vehicles.” In: The Journal
of Navigation 72.4, 850–874. doi: 10.1017/S0373463318001005.

Pasalidou, Christina, Nikolaos Fachantidis, and Efthymia Koiou (2023).
“Using Augmented Reality and a Social Robot to Teach Geography
in Primary School.” In: Learning and Collaboration Technologies. Ed. by
Panayiotis Zaphiris and Andri Ioannou. Cham: Springer Nature
Switzerland, pp. 371–385. isbn: 978-3-031-34550-0.

Ponamgi, Madhav, Dinesh Manocha, and Ming C. Lin (1995). “Incre-
mental algorithms for collision detection between solid models.”
In: Proceedings of the Third ACM Symposium on Solid Modeling and

https://doi.org/10.1109/IROS40897.2019.8967641
https://doi.org/10.1109/IROS40897.2019.8967641
https://doi.org/10.1117/12.2264245
https://doi.org/10.1117/12.2264245
https://doi.org/10.1117/12.2264245
https://doi.org/10.1145/344779.344866
https://doi.org/10.1145/344779.344866
https://doi.org/10.1109/ASAP.2019.000-4
https://doi.org/10.1109/ASAP.2019.000-4
https://doi.org/10.1017/S0373463318001005

88 bibliography

Applications. SMA ’95. Salt Lake City, Utah, USA: Association for
Computing Machinery, 293–304. isbn: 0897916727. doi: 10.1145/
218013.218076. url: https://doi.org/10.1145/218013.218076.

Püschel, A, C Schafmayer, and J Groß (2022). “Robot-assisted tech-
niques in vascular and endovascular surgery.” In: Langenbeck’s
archives of surgery 407.5, pp. 1789–1795.

Redon, S., M. C. Lin, and D. Manocha (2004). “Fast Continuous Col-
lision Detection for Articulated Models.” In: Solid Modeling. Ed.
by Gershon Elber, Nicholas Patrikalakis, and Pere Brunet. The
Eurographics Association. isbn: 3-905673-55-X. doi: 10.2312/sm.
20041385.

Redon, Stéphane, Abderrahmane Kheddar, and Sabine Coquillart
(2002). “Fast Continuous Collision Detection between Rigid Bod-
ies.” In: Computer Graphics Forum 21.3, pp. 279–287. doi: https:
//doi.org/10.1111/1467- 8659.t01- 1- 00587. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-

00587. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/
1467-8659.t01-1-00587.

Reggiani, M., M. Mazzoli, and S. Caselli (2002). “An experimental eval-
uation of collision detection packages for robot motion planning.”
In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vol. 3, 2329–2334 vol.3. doi: 10.1109/IRDS.2002.1041615.

Richter-Klug, Jesse et al. (2022). “Improving Object Pose Estimation by
Fusion With a Multimodal Prior – Utilizing Uncertainty-Based CNN
Pipelines for Robotics.” In: IEEE Robotics and Automation Letters 7.2,
pp. 2282–2288. doi: 10.1109/LRA.2022.3140450.

Rosskamp, Janis et al. (2021). “UnrealHaptics: Plugins for Advanced
VR Interactions in Modern Game Engines.” In: Frontiers in Virtual
Reality 2, p. 32. issn: 2673-4192. doi: 10.3389/frvir.2021.640470.
url: https://www.frontiersin.org/article/10.3389/frvir.
2021.640470.

Roussopoulos, Nick and Daniel Leifker (1985). “Direct spatial search
on pictorial databases using packed R-trees.” In: Proceedings of the
1985 ACM SIGMOD international conference on Management of data.
SIGMOD ’85. Austin, Texas, United States: ACM, pp. 17–31. isbn:
0-89791-160-1. doi: 10.1145/318898.318900. url: http://doi.acm.
org/10.1145/318898.318900.

Santiago, Robert Martin C. et al. (2017). “Path planning for mo-
bile robots using genetic algorithm and probabilistic roadmap.”
In: 2017IEEE 9th International Conference on Humanoid, Nanotechnol-
ogy, Information Technology, Communication and Control, Environment
and Management (HNICEM), pp. 1–5. doi: 10.1109/HNICEM.2017.
8269498.

Santolaria, Jorge and Manuel GinéS (2013). “Uncertainty estimation
in robot kinematic calibration.” In: Robotics and Computer-Integrated
Manufacturing 29.2, pp. 370–384.

https://doi.org/10.1145/218013.218076
https://doi.org/10.1145/218013.218076
https://doi.org/10.1145/218013.218076
https://doi.org/10.2312/sm.20041385
https://doi.org/10.2312/sm.20041385
https://doi.org/https://doi.org/10.1111/1467-8659.t01-1-00587
https://doi.org/https://doi.org/10.1111/1467-8659.t01-1-00587
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00587
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00587
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00587
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.t01-1-00587
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.t01-1-00587
https://doi.org/10.1109/IRDS.2002.1041615
https://doi.org/10.1109/LRA.2022.3140450
https://doi.org/10.3389/frvir.2021.640470
https://www.frontiersin.org/article/10.3389/frvir.2021.640470
https://www.frontiersin.org/article/10.3389/frvir.2021.640470
https://doi.org/10.1145/318898.318900
http://doi.acm.org/10.1145/318898.318900
http://doi.acm.org/10.1145/318898.318900
https://doi.org/10.1109/HNICEM.2017.8269498
https://doi.org/10.1109/HNICEM.2017.8269498

bibliography 89

Schwochow, Alexander (2021). “Compression of the BoxTree data
structure.” Master’s Thesis. University of Bremen.

Solenthaler, B. and R. Pajarola (2009). “Predictive-corrective incom-
pressible SPH.” In: ACM SIGGRAPH 2009 Papers. SIGGRAPH ’09.
New Orleans, Louisiana: Association for Computing Machinery.
isbn: 9781605587264. doi: 10.1145/1576246.1531346. url: https:
//doi.org/10.1145/1576246.1531346.

Taeubig, Holger and Udo Frese (2012). “A New Library for Real-time
Continuous Collision Detection.” In: ROBOTIK 2012; 7th German
Conference on Robotics, pp. 1–5.

Tan, Toni, Rene Weller, and Gabriel Zachmann (2020). “OpenCollBench
- Benchmarking of Collision Detection & Proximity Queries as a
Web-Service.” In: The 25th International Conference on 3D Web Technol-
ogy. Web3D ’20. New York, NY, USA: Association for Computing
Machinery. isbn: 9781450381697. doi: 10.1145/3424616.3424712.
url: https://doi.org/10.1145/3424616.3424712.

– (2022). “A Framework for Safe Execution of User-Uploaded Algo-
rithms.” In: Proceedings of the 27th International Conference on 3D
Web Technology. Web3D ’22. New York, NY, USA: Association for
Computing Machinery. isbn: 9781450399142. doi: 10.1145/3564533.
3564560. url: https://doi.org/10.1145/3564533.3564560.

Tan, Toni, René Weller, and Gabriel Zachmann (2019). “SIMDop: SIMD
optimized Bounding Volume Hierarchies for Collision Detection.” In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7256–7263. doi: 10.1109/IROS40897.2019.8968492.

Tan, Toni et al. (2021). “Grasping for reality-How can we improve the
digital representation of human grasp behaviour?” In: GI VR/AR
Workshop. Gesellschaft für Informatik eV.

Tan, Ying and Zhong yang Zheng (2013). “Research Advance in Swarm
Robotics.” In: Defence Technology 9.1, pp. 18–39. issn: 2214-9147. doi:
https://doi.org/10.1016/j.dt.2013.03.001. url: https://www.
sciencedirect.com/science/article/pii/S221491471300024X.

Tang, Min et al. (2008). “Interactive Continuous Collision Detection
between Deformable Models Using Connectivity-Based Culling.”
In: Proceedings of the 2008 ACM Symposium on Solid and Physical
Modeling. SPM ’08. New York, NY, USA: Association for Computing
Machinery, 25–36. isbn: 9781605581064. doi: 10.1145/1364901.

1364908. url: https://doi.org/10.1145/1364901.1364908.
Toni, Toni, Rene Weller, and Gabriel Zachmann (2017). “SIMD Opti-

mized Bounding Volume Hierarchies for Collision Detection.” In:
GI VR/AR Workshop. Gesellschaft für Informatik eV.

Trenkel, Sven, René Weller, and Gabriel Zachmann (Jan. 2007). “A
Benchmarking Suite for Static Collision Detection Algorithms.”
In: International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG). Ed. by Václav Skala. Plzen,

https://doi.org/10.1145/1576246.1531346
https://doi.org/10.1145/1576246.1531346
https://doi.org/10.1145/1576246.1531346
https://doi.org/10.1145/3424616.3424712
https://doi.org/10.1145/3424616.3424712
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1109/IROS40897.2019.8968492
https://doi.org/https://doi.org/10.1016/j.dt.2013.03.001
https://www.sciencedirect.com/science/article/pii/S221491471300024X
https://www.sciencedirect.com/science/article/pii/S221491471300024X
https://doi.org/10.1145/1364901.1364908
https://doi.org/10.1145/1364901.1364908
https://doi.org/10.1145/1364901.1364908

90 bibliography

Czech Republic: Union Agency. url: http://cg.in.tu-clausthal.
de/research/colldet_benchmark.

Vaidyanathan, Karthikeyan, Tomas Akenine-Möller, and Marco Salvi
(2016). “Watertight ray traversal with reduced precision.” In: High
Performance Graphics, pp. 33–40.

Vaughan, Richard T and B Gerkey (2007). “Really reusable robot code
and the player/stage project.” In: Software Engineering for Experimen-
tal Robotics. Springer.

Viitanen, T. et al. (July 2017). “Fast Hardware Construction and Refit-
ting of Quantized Bounding Volume Hierarchies.” In: Comput. Graph.
Forum 36.4, 167–178. issn: 0167-7055. doi: 10.1111/cgf.13233. url:
https://doi.org/10.1111/cgf.13233.

Wald, Ingo (2007). “On fast Construction of SAH-based Bounding Vol-
ume Hierarchies.” In: Proceedings of the 2007 IEEE Symposium on In-
teractive Ray Tracing. RT ’07. Washington, DC, USA: IEEE Computer
Society, pp. 33–40. isbn: 978-1-4244-1629-5. doi: 10.1109/RT.2007.
4342588. url: http://dx.doi.org/10.1109/RT.2007.4342588.

Wald, Ingo and Vlastimil Havran (2006). “On building fast kd-Trees
for Ray Tracing, and on doing that in O(N log N).” In: Sympo-
sium on Interactive Ray Tracing 0, pp. 61–69. doi: http : / / doi .

ieeecomputersociety.org/10.1109/RT.2006.280216.
Weller, René and Gabriel Zachmann (Dec. 2010). “ProtoSphere: A GPU-

Assisted Prototype-Guided Sphere Packing Algorithm for Arbitrary
Objects.” In: ACM SIGGRAPH ASIA 2010 Sketches. Seoul, Republic
of Korea: ACM, 8:1–8:2. isbn: 978-1-4503-0523-5. doi: http://doi.
acm.org/10.1145/1899950.1899958. url: http://cg.in.tu-

clausthal.de/research/protosphere.
Weller, Rene and Gabriel Zachmann (2011). “Inner Sphere Trees

and Their Application to Collision Detection.” In: Virtual realities.
Springer, pp. 181–201.

Weller, Rene et al. (2010). “A benchmarking suite for 6-dof real time
collision response algorithms.” In: Proceedings of the 17th ACM sym-
posium on virtual reality software and technology, pp. 63–70.

Weller, René et al. (2014). “Massively Parallel Batch Neural Gas for
Bounding Volume Hierarchy Construction.” In: Workshop on Virtual
Reality Interaction and Physical Simulation. Ed. by Jan Bender et al. The
Eurographics Association. isbn: 978-3-905674-71-2. doi: 10.2312/
vriphys.20141219.

Wolper, Joshuah et al. (July 2019). “CD-MPM: continuum damage
material point methods for dynamic fracture animation.” In: ACM
Trans. Graph. 38.4. issn: 0730-0301. doi: 10.1145/3306346.3322949.
url: https://doi.org/10.1145/3306346.3322949.

Robotic Fish Enabled Offshore Pipeline Inspection (May 2023). Vol. Day 4
Thu, May 04, 2023. OTC Offshore Technology Conference, D041S055R004.
doi: 10.4043/32427-MS. eprint: https://onepetro.org/OTCONF/

http://cg.in.tu-clausthal.de/research/colldet_benchmark
http://cg.in.tu-clausthal.de/research/colldet_benchmark
https://doi.org/10.1111/cgf.13233
https://doi.org/10.1111/cgf.13233
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1109/RT.2007.4342588
http://dx.doi.org/10.1109/RT.2007.4342588
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
https://doi.org/http://doi.acm.org/10.1145/1899950.1899958
https://doi.org/http://doi.acm.org/10.1145/1899950.1899958
http://cg.in.tu-clausthal.de/research/protosphere
http://cg.in.tu-clausthal.de/research/protosphere
https://doi.org/10.2312/vriphys.20141219
https://doi.org/10.2312/vriphys.20141219
https://doi.org/10.1145/3306346.3322949
https://doi.org/10.1145/3306346.3322949
https://doi.org/10.4043/32427-MS
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf

bibliography 91

proceedings- pdf/23OTC/4- 23OTC/D041S055R004/3103458/otc-

32427-ms.pdf. url: https://doi.org/10.4043/32427-MS.
Yoshida, Eiichi et al. (2015). “Simulation-based optimal motion plan-

ning for deformable object.” In: 2015 IEEE International Workshop
on Advanced Robotics and its Social Impacts (ARSO), pp. 1–6. doi:
10.1109/ARSO.2015.7428219.

Zachmann, G. (1998). “Rapid collision detection by dynamically aligned
DOP-trees.” In: Proceedings. IEEE 1998 Virtual Reality Annual Inter-
national Symposium (Cat. No.98CB36180), pp. 90–97. doi: 10.1109/
VRAIS.1998.658428.

Zachmann, Gabriel (1995). “The boxtree: Exact and fast collision de-
tection of arbitrary polyhedra.” In: First Workshop on Simulation and
Interaction in Virtual Environments (SIVE 95). Citeseer.

– (May 2000). “Virtual Reality in Assembly Simulation – Collision
Detection, Simulation Algorithms, and Interaction Techniques.”
Dissertation. Darmstadt University of Technology, Germany. isbn:
ISBN 3-8167-5628-X.

Zachmann, Gabriel and Elmar Langetepe (July 2003). “Geometric Data
Structures for Computer Graphics.” In: Proc. of ACM SIGGRAPH.
ACM Transactions of Graphics. url: http://www.gabrielzachmann.
org/.

Zhang, Xinyu, Minkyoung Lee, and Young J Kim (2006). “Interactive
continuous collision detection for non-convex polyhedra.” In: The
Visual Computer 22, pp. 749–760.

Zhang, Xinyu et al. (July 2007). “Continuous Collision Detection for
Articulated Models Using Taylor Models and Temporal Culling.”
In: ACM Trans. Graph. 26.3, 15–es. issn: 0730-0301. doi: 10.1145/
1276377 . 1276396. url: https : / / doi . org / 10 . 1145 / 1276377 .

1276396.
Zhao, Yang et al. (2022). “Remote vascular interventional surgery

robotics: A literature review.” In: Quantitative Imaging in Medicine
and Surgery 12.4, p. 2552.

xkcd.com (2024). Dependency Hell. https://xkcd.com/1579/ [Accessed:
14-02-2024].

https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://onepetro.org/OTCONF/proceedings-pdf/23OTC/4-23OTC/D041S055R004/3103458/otc-32427-ms.pdf
https://doi.org/10.4043/32427-MS
https://doi.org/10.1109/ARSO.2015.7428219
https://doi.org/10.1109/VRAIS.1998.658428
https://doi.org/10.1109/VRAIS.1998.658428
http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
https://doi.org/10.1145/1276377.1276396
https://doi.org/10.1145/1276377.1276396
https://doi.org/10.1145/1276377.1276396
https://doi.org/10.1145/1276377.1276396
https://xkcd.com/1579/

F U N D A M E N TA L P U B L I C AT I O N S

This dissertation is based on five fundamental publications, which en-
compass several contributions: faster-than-realtime collision detection,
benchmarking as an online service, and the exploration of uncertain
physics in research on simulation-based robot planning. In the fol-
lowing, the publications which solidify this dissertations are briefly
summarized and the personal contribution according to the CRediT
taxonomy1 are stated.

f 1 simdop : simd optimized bounding volume hierarchies
for collision detection

Toni Tan, René Weller, and Gabriel Zachmann (2019). “SIMDop: SIMD
optimized Bounding Volume Hierarchies for Collision Detection.” In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7256–7263. doi: 10.1109/IROS40897.2019.8968492

Place in this dissertation: This publication focuses on investigating
acceleration strategies, specifically in relation to Research Question 1,
for the newly released 512-bit Advanced Vector Extensions (AVX-512).
It further includes a comparison with commonly used algorithms
for robot planning, such as PQP and VC. The key contribution of this
work lies in the development of novel acceleration strategies tailored
specifically for AVX-512.

Contribution to publication: Conceptualization, data curation, for-
mal analysis, investigation, methodology development, software de-
velopment, validation, visualization, and contribution to all sections
of the manuscript (70%).

f 2 naivphys4rp - towards human-like robot perception
“physical reasoning based on embodied probabilistic
simulation”

Franklin K. Kenghagho, Michael Neumann, Patrick Mania, Toni Tan,
Feroz A. Siddiky, René Weller, Gabriel Zachmann, and Michael Beetz
(2022). “NaivPhys4RP - Towards Human-like Robot Perception “Physi-
cal Reasoning based on Embodied Probabilistic Simulation”.” In: 2022
IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids),
pp. 815–822. doi: 10.1109/Humanoids53995.2022.10000153

Place in this dissertation: This publication makes a valuable contri-
bution by addressing the challenges associated with achieving realistic
robot belief, particularly in relation to uncertain physical parameters

1 https://casrai.org/credit/

93

https://doi.org/10.1109/IROS40897.2019.8968492
https://doi.org/10.1109/Humanoids53995.2022.10000153

94 bibliography

in simulations, as outlined in Research Question 3. In the context of
belief propagation using mRBPF, one of the significant challenges lies
in dealing with uncertainties surrounding physical parameters, such
as friction, mass, or object position in the world. These uncertainties
can have a significant impact on the accuracy of simulations and
subsequent belief updates.

To address this challenge, the publication proposes a novel approach
that embeds uncertainty directly into the simulation process, with a
specific focus on CD tasks. By incorporating uncertainty into the simu-
lation, the number of belief particles required to accurately represent
the physical parameters can be reduced, particularly for continuous
physical quantities. This approach has the potential to improve the
efficiency and effectiveness of the mRBPF framework, enhancing the
overall performance of robot belief systems.

Contribution to publication: My personal contribution to this re-
search includes conceptualization on uncertain physics, data curation,
formal analysis, investigation, methodology development, visualiza-
tion, and contributing to the sections of the manuscript related to
uncertain physics (20%).

f 3 opencollbench - benchmarking of collision detec-
tion & proximity queries as a web-service

Toni Tan, Rene Weller, and Gabriel Zachmann (2020). “OpenColl-
Bench - Benchmarking of Collision Detection & Proximity Queries as
a Web-Service.” In: The 25th International Conference on 3D Web Tech-
nology. Web3D ’20. New York, NY, USA: Association for Computing
Machinery. isbn: 9781450381697. doi: 10.1145/3424616.3424712. url:
https://doi.org/10.1145/3424616.3424712

Place in this dissertation: This publication makes a contribution by
addressing the design of a comparable and reproducible benchmark
for CD and PQ tasks, as outlined in Research Question 2. The focus is
on developing a benchmark that allows for fair evaluations of different
algorithms in CD and PQ, taking into account various factors such as
object shape, relative size, distance between objects, and distributions
of geometric primitives. This is realized in form of benchmark as
online service.

Moreover, the publication delves into the representation of bench-
marking results to gain a comprehensive understanding of the strengths
and weaknesses of different algorithms. By analyzing and interpreting
the benchmarking results, the research aims to identify the factors that
influence the performance variations of CD and PQ algorithms. This
contribution contributes to the field by providing valuable insights
into algorithm performance and facilitating future improvements in
CD and PQ tasks.

https://doi.org/10.1145/3424616.3424712
https://doi.org/10.1145/3424616.3424712

F 4 a framework for safe execution of user-uploaded algorithms 95

Contribution to publication: Conceptualization, data curation, for-
mal analysis, investigation, methodology development, software de-
velopment, validation, visualization, and contribution to all sections
of the manuscript (70%).

f 4 a framework for safe execution of user-uploaded
algorithms

Toni Tan, Rene Weller, and Gabriel Zachmann (2022). “A Framework
for Safe Execution of User-Uploaded Algorithms.” In: Proceedings
of the 27th International Conference on 3D Web Technology. Web3D ’22.
New York, NY, USA: Association for Computing Machinery. isbn:
9781450399142. doi: 10.1145/3564533.3564560. url: https://doi.
org/10.1145/3564533.3564560

Place in this dissertation: This publication provides a contribution
by addressing the challenge of offering the benchmark as an online
service, as outlined in Research Question 2. One of the key challenges
in this regard is the integration of new algorithms into the existing
benchmarking tool while ensuring the security of the system. The pri-
mary concern is the potential risks associated with running unknown
code, such as the possibility of Remote Code Execution (RCE).

To mitigate these security concerns, this publication focuses on
implementing a solution that guarantees the security of the bench-
marking process. This is achieved by shifting the execution of user-
uploaded algorithms into a virtualization environment. By isolating
the execution environment, it ensures that any potential risks posed by
the uploaded code are contained within the virtualized environment,
protecting the underlying system and maintaining the overall security
of the benchmarking service.

This contribution not only enables the integration of new algorithms
into the benchmarking tool but also ensures the safety and security of
the online service, providing researchers with a reliable platform to
evaluate and compare their algorithms in a secure manner.

Contribution to publication: Conceptualization, data curation, for-
mal analysis, investigation, methodology development, software de-
velopment, validation, visualization, and contribution to all sections
of the manuscript (70%).

f 5 simd optimized bounding volume hierarchies for
collision detection

Toni Toni, Rene Weller, and Gabriel Zachmann (2017). “SIMD Opti-
mized Bounding Volume Hierarchies for Collision Detection.” In: GI
VR/AR Workshop. Gesellschaft für Informatik eV

Place in this dissertation: This publication delves into a seldom-
explored aspect of CD by investigating the influence of BVH branching

https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560
https://doi.org/10.1145/3564533.3564560

96 bibliography

factors. In relation to Research Question 1, this work contributes to
an integrated approach for accelerating collision detection tasks by
utilizing an appropriate branching factor based on the available SIMD

register, in combination with BNG-based BVH.
Contribution to publication: Conceptualization, data curation, for-

mal analysis, investigation, methodology development, software de-
velopment, validation, visualization, and contribution to all sections
of the manuscript (70%).

S U P P O RT I V E P U B L I C AT I O N S

These publications are related work which supplements the funda-
mental publications.

s 1 grasping for reality-how can we improve the digital
representation of human grasp behaviour?

Toni Tan, Janis Rosskamp, Rene Weller, and Gabriel Zachmann (2021).
“Grasping for reality-How can we improve the digital representation
of human grasp behaviour?” In: GI VR/AR Workshop. Gesellschaft für
Informatik eV

Place in this dissertation: This publication explores the representa-
tion of human grasps in VR using heat- and forcemaps. The research
focuses on recognizing different grasp types while objects are manipu-
lated in a VR environment.

The application of this research offers a novel and valuable ap-
proach to representing hand grasps digitally, with potential applica-
tions across various domains. The findings can contribute to advance-
ments in robotics and prosthetics, as understanding how humans
grasp objects is crucial in developing more realistic and effective hand
representations.

By providing a digital representation of hand grasps, this research
opens up possibilities for enhancing virtual experiences, improving
human-computer interactions, and facilitating the development of
more advanced and immersive VR applications.

Contribution to publication: Conceptualization, project administra-
tion, contribution to all parts of the manuscript (40%).

97

A P P E N D I X

a 1 intrinsics code for simd-based simultaneous bvh
traversal

a 1.1 1 vs 16

Algorithm 7: _m512 intersect(DOP a, DOP b1,...,b16)

_mm512 endResult
for i=0; i<k/2; i++ do

_mm512 oriAL = _mm512_set1_ps(a[i])
_mm512 oriBL = _mm512_set_ps(b1[i],...,b16[i])
_mm512 resL = _mm512_cmp_ps(oriAL, oriBL, _CMP_LT_OS)
_mm512 oriAH = _mm512_set1_ps(a[k/2+i])
_mm512 oriBH = _mm512_set_ps(b1[k/2+i],...,b16[k/2+i])
_mm512 resH = _mm512_cmp_ps(oriAH, oriBH, _CMP_GT_OS)
_mm512 tempRes = _mm512_kor(resL,resH)
endResult = _mm512_kor(endResult, tempRes)
if endRes == 65535 then

break
return endResult

a 1.2 4 vs 4

Algorithm 8: _m512 intersect(DOP a1,..,a4, DOP b1,..,b4)

_mm512 endResult
/ for i=0; i<k/2; i++ do

_mm512 oriAL = _mm512_set_ps(a1[k/2+i],...,a4[k/2+i])
_mm512 oriBL = _mm512_set_ps(b1[i],...,b4[i])
_mm512 resL = _mm512_cmp_ps(oriAL, oriBL, _CMP_LT_OS)
_mm512 oriAH = _mm512_set_ps(a1[i],...,a4[i])
_mm512 oriBH = _mm512_set_ps(b1[k/2+i],...,b4[k/2+i])
_mm512 resH = _mm512_cmp_ps(oriAH, oriBH, _CMP_GT_OS)
_mm512 tempRes = _mm512_kor(resL,resH)
endResult = _mm512_kor(endResult, tempRes)
if endResult == 65535 then

break
return endResult

99

100 bibliography

a 2 16-bit to 32-bit floating point conversion

#include <immintrin.h>

float f16Tof32(unsigned short n) {

return _cvtsh_ss(n);

}

__m128 f16Tof32(unsigned short) {
__m128i zero = _mm_setzero_si128();

zero = _mm_insert_epi16(zero, edi, 0);

return _mm_cvtph_ps(zero);

}

The 14th Gesellschaft für Informatik e.V. (GI) workshop on the Virtual Reality and Augmented Reality (VR/AR)
Tuebingen, Germany, November 17-18, 2017

SIMD Optimized Bounding Volume Hierarchies for
Collision Detection

Toni Toni, René Weller, Gabriel Zachmann

University of Bremen

Abstract: We present a novel data structure for SIMD optimized simultaneous bounding
volume hierarchy (BVH) traversals like they appear for instance in collision detection tasks.
In contrast to all previous approaches, we consider both the traversal algorithm and the
construction of the BVH. The main idea is to increase the branching factor of the BVH
according to the available SIMD registers. This requires a novel BVH construction method
because traditional BVHs for collision detection usually are simple binary trees. To do that,
we present a new BVH construction method based on a clustering algorithm, Batch Neural
Gas, that is able to build efficient n-ary tree structures. Our results show that our new data
structure outperforms binary trees significantly.

Keywords: Collision Detection, Bounding Volume Hierarchy, SIMD, Advanced Vector
Extensions, Batch Neural Gas

1 Introduction

Bounding Volume Hierarchies (BVHs) are widely used to accelerate geometric intersection
queries like ray tracing, visibility computations or collision detection. The basic idea is
simple: instead of calculating slow and complex geometric intersection tests between all
geometric primitives, we wrap them recursively into simple bounding volumes(BVs) such as
spheres, axis-aligned bounding boxes (AABB), oriented bounding boxes (OBB) or discrete
oriented polytopes (k-DOP), that allow faster intersection tests. This generates a tree data
structure with a single large BV at the root position that encloses all geometric primitives.
Obviously, the geometric primitives are the leaves of such a BVH.

The traversal depends on the application. For ray tracing, all rays are tested for intersec-
tion with the BVH. Collision detection is more complex: Here, we usually have two BVHs
that we want to check for intersection, one for each object. We start with the root nodes
and simultaneously traverse recursively the children in case of intersection of the BVs (see
Algorithm 1 and Figure 1).

Following the trend of acceleration by parallelization it is obvious to apply this idea also to
BVH traversals. For ray tracing, this is almost trivial: instead of testing each ray individually,
we can simply test them all in parallel. Hence, we only have to change the traversal function
to perfectly adapt for parallelization. However, parallelization of the simultaneous traversal
for collision detection is not obvious. Actually, due to their recursive nature, BVHs are
not very well suited for massively parallel acceleration on the GPU. Especially in collision

Algorithm 1: BVHtraversal(BV a, BV b)

if a and b are both leaves then
checkPrimitives(a, b)

else if a is leaf then
forall children bi of b do

if a and bi intersect then
BVHtraversal(a, bi)

else if b is leaf then
forall children ai of a do

if ai and b intersect then
BVHtraversal(ai, b)

else
forall children ai of a and bi of b do

if ai and bi intersect then
BVHtraversal(ai, bi)

detection for rigid bodies, where the BVHs do not change by deformations and thus, do
not need to be updated or re-constructed, CPU algorithms are still faster than GPU-based
methods. However, this simultaneous traversal can still benefit from the SIMD instruction
sets of modern CPUs. We can

1. simply switch on a compiler option and hope that the compiler will do the optimization,

2. optimize the traversal function manually, depending on the chosen BVH,

3. or adapt the complete BVH structure which additionally requires a redesign of the
BVH construction.

In this paper we have implemented and tested all of these three methods. There is only
one suitable function in Algorithm 1 to optimize the traversal without changing the tree
structure: the test for intersection of two BVs. Hence, the benefit of SIMD optimization
relies on the type of the BV. For two spheres, we simply have to compute the distance of
two points and compare it to the sum of the spheres’ radii. This is not very well suited for
the for SIMD parallelization because of the length of current AVX2 registers that are able
to store eight floating point values. As a consequence, the intersection test for two spheres
can be hardly optimized for SIMD. Similarly, the intersection test for AABBs requires four
comparisons. Modern AVX registers compare eight float value in a single instruction and this
number will increase with upcoming CPU generations. Hence, these BVs could benefit only
from the third method, an optimized BVH, but hardly from a simple optimization of the
traversal. Consequently, we decided to use a BV that naturally supports all three methods:
the k-DOP. Basically, k-DOPs are an extension of AABBs to arbitrary orientations [Zac98].

D E F G

C

A

B 2

1

3

4 5 6 7

A

B B C C

D D E E D D E E F F G G F F G G

1

2 3 2 3

4 5 4 5 6 7 6 7 4 5 4 5 6 7 6 7

Figure 1: The simultaneous recursive traversal of two binary BVHs during the collision check
results in a bounding volume test tree.

They offer a natural trade-off between tightness of the BV and computation time for the
intersection test. They show comparable performance to other kinds of bounding volumes
[TWZ07]. By choosing the number of orientations k according to the SIMD instruction set,
it is straight forward to adapt this BV-type to further SIMD developments.

However, this simple SIMD-parallelization still tests only two BVs in one instruction
(see Figure 2a). Hence, it can be applied to almost all existing k-DOP-based BVHs that
typically use a binary tree. However, we can also parallelize it in a way that one BV of the
first BVH is tested simultaneously against all children of the other BVH (see Figure 2a).
This is exactly the idea of our new data structure that we call SIMDop. In order to take
full advantage of SIMD in this case we additionally have to change the branching factor
of the tree. This is non trivial because traditional BVH construction methods, like SAH,
median-, or mid point-split, that assign the primitives into the sub-trees are not suitable for
higher branching factors. Consequently, we have developed new BVH construction methods,
this includes simple heuristics but also a new method that is based on Batch Neural Gas
clustering. The advantage of such n-ary trees it not only the SIMD accelerated traversal.
Additionally, we get less children than with binary trees and the children are also smaller.
We have implemented our novel SIMDop BVH and the results show that it outperforms
traditional binary trees significantly.

2 Previous Work

In many fields of computer science, BVHs has been used widely to accelerate intersection
computation. Usual BVs for the BVHs are spheres [Hub96], AABBs [vdB98] and their mem-
ory optimized derivative called BoxTree [Zac02] that is closely related to kd-Trees, k-DOPs
[KHM+98, Zac98], a generalization of AABBs, OBBs [GLM96] or convex hull trees [EL01].
Additionally, a wide variety of special BVs for special applications has been developed. For

(a)
(b)

Figure 2: The strategy we used for collision query algorithm (a) classic collision query tests
only one node at one time. (b) our approach tests one node against eight nodes at one time.

instance spherical shells [KPLM98], swept spheres [LGLM99], spheres that are cut by two
parallel planes called slab cut balls [LAM09], quantised orientation slabs with primary ori-
entations (QuOSPO) trees [He99] that combine OBBs with k-DOPs, or combinations of
spherical shells with OBBs that was proposed by [KGL+98] for objects that are modelled by
Bezier patches.

Usually, a BVH is constructed in a pre-processing step that can be computationally more
or less expensive. Basically, there exist two major strategies to build BVHs: bottom-up and
top-down. The bottom-up approach starts with elementary BVs of leaf nodes and merges
them recursively together until the root BV is reached. A very simple merging heuristic is
to visit all nearest neighbours and minimize the size of the combined parent nodes in the
same level [RL85]. Less greedy strategies combine BVs by using tilings [LEL97].

However, the most popular method is the top-down approach. The general idea is to
start with the complete set of elementary BVs, then split that into some parts and create
a BVH for each part recursively. The main problem is to choose a good splitting criterion.
A classical splitting criterion is to simply pick the longest axis and split it in the middle of
this axis. Another simple heuristic is to split along the median of the elementary bounding
boxes along the longest axis. However, it is easy to construct worst case scenarios for these
simple heuristics. The surface area heuristic (SAH) tries to avoid these worst cases by
optimizing the surface area and the number of geometric primitives over all possible split
plane candidates [GS87]. Originally developed for ray tracing, it is today also used for
collision detection. The computational costs can be reduced to O(n log n) [WH06, Wal07]
and there exists parallel algorithms for the fast construction on the GPU [LGS+09]. Many
other splitting criteria were compared by [Zac00].

The influence of the trees’ branching factor is widely neglected in the literature. Usu-
ally, most authors simply use binary trees for collision detection. According to [ZL03], the
optimum branching factor can be larger. [MKE03] stated that, especially for deformable
objects, 4-ary trees or 8-ary could improve the performance. This is mainly due to fewer BV
updates. To our knowledge, there does not exist any work that investigates the influence of
the branching factor of the BVH for simultaneous traversal tasks.

3 Our SIMDop Data Structure

The main idea of our SIMDop data structure is to construct BVHs with higher branching
factor that can be later used during run-time in a SIMD optimized traversal algorithm.
Hence, the core is the construction that is typically done in a pre-processing step. We
propose different methods to construct such n-ary BVHs.

3.1 BVH Construction

We decided to use a top-down approach for the hierarchy construction. The general idea is
to start with the complete set of elementary BVs, then split that into some parts and create
a BVH for each part recursively. Moreover, we use a wrapped hierarchy according to the
notion of [AGN+04], where inner nodes are tight BVs for all their leaves, but they do not
necessarily bound their direct children. Compared to layered hierarchies, the big advantage
is that the inner BVs are tighter. The main challenge is to choose a good splitting criterion
especially, because traditional splitting criteria like SAH do not work for n-ary trees. We
propose several splitting criteria for higher branching factors that we will shortly sketch in
the following sections.

3.1.1 Longest Axis Split

A classical splitting criterion for binary trees is to sort the primitives along all coord axis and
simply pick the longest axis and split this sorted list in the middle of this axis. Obviously,
we can easily extend this two n-ary trees by not splitting in the middle, but split the number
of BVs into n equal parts. However, this leads to fairly well balanced trees (see Figure 3).

3.1.2 3-Level Longest Axis Split

This is an extension to the longest axis split for n-ary trees where n is preferably in the
power of two. We do not simply split along one axis but perform in the first stage a binary
longest axis split and than recursively split the primitive sets again until we reach n. In
other words, we perform a traditional binary tree split but remove the not needed nodes:
instead, we can directly mount all children to the parent node.

3.1.3 Middle Split

This splitting strategy is best suitable for 8-ary trees. The basic idea is related to octrees:
We divide the bounding box in the middle of each axis and assign the primitives accordingly.

3.1.4 Median Split

This splitting strategy is also similiar to middle split. However, instead of dividing the
bounding box in the middle of each axis, we sort the polygons along each axis. The we
compute the median for each axis and set the position for the splitting axis with respect to

the position of the median polygons. Like the middle split, this strategy is best suited for
8-ary trees.

3.1.5 Batch Neural Gas Clustering

Clustering algorithms, especially BNG, have shown to be very efficient for BVH constructions
of 4-ary trees [WMS+14]. A nice property of BNG is that it exhibits very robust behavior
with respect to the initial cluster center position in contrast to other clustering algorithms
like k-means. However, in the original work, the authors used spheres as basic primitives
instead of more usual polygonal representations. We simply used the centers of the polygons
instead of the spheres’ centers reported in the original work in our polygonal implementation.
We did not use magnification control, which additionally considers the size of the spheres
to produce better clustering results. However, this can be easily added in the future to our
polygon-based BNG.

Figure 3 shows the first splitting level for all our splitting criteria.

3.2 BVH Traversal

The idea of the traversal is to test one BV of object A against n BVs of object B. Before the
check, we use the method proposed by [Zac98] to realign one of the DOPs in case of affine
transformations. A naive implementation for the actual DOP comparison using the current
AVX2 instruction set looks as follows, assuming that we are using DOPs with k orientations
for the BVs:

Algorithm 2: _m256 intersect(DOP a, DOP b1,...,b8)

_mm256 endResult

for i=0; i<k/2; i++ do
_mm256 oriAL = _mm256_set1_ps(a[i])

_mm256 oriBL = _mm256_set_ps(b1[i],...,b8[i])

_mm256 resL = _mm256_cmp_ps(oriAL, oriBL, _CMP_LT_OS)

_mm256 oriAH = _mm256_set1_ps(a[k/2+i])

_mm256 oriBH = _mm256_set_ps(b1[k/2+i],...,b8[k/2+i])

_mm256 resH = _mm256_cmp_ps(oriAH, oriBH, _CMP_GT_OS)

_mm256 tempRes = _mm256_or_ps(resL,resH)

endResult = _mm256_or_ps(endResult, tempRes)

if _m256_movemask_ps(endRes) == 255 then
break

return endResult

There are some drawbacks of this SIMD implementation: First, we have to copy all the
values of the DOPs to AVX registers. Second, we have to combine the results using or-

(a) (b)

(c) (d)

(e)

Figure 3: The results of our hierarchy construction algorithms: (a) longest axis, (b) 3 level
longest axis, (c) middle split (d) median split (e) Batch Neural Gas.

instructions to compile temporal results the end result. A non-parallel version to check two
DOPs for overlap would simply compare two values and use one boolean operation. Hence,
in this naive implementation we would need 9 AVX instructions vs. 3 instructions in the
non-AVX implementation to compare one orientation of the DOP. Moreover, the non-AVX
version could escape the loop earlier for some of the 8 children whereas we have to iterate the
loop k/2-times if only one of the 8 children overlaps the other DOP. Hence, we could assume
an acceleration of at most 3×8

9
, because we test 8 children simultaneously, not considering

the faster loop escapes but also the smaller BVs of the SIMDop structure.

3.3 Optimization

Our benchmarks have shown, that actually, our naive implementation performs worse than
the non-AVX version. The main reason is that the _mm256_load_ps and _mm256_load_ps1
instructions that loads the data into the AVX registers requires more time than the other in-

(a) (b) (c) (d)

Figure 4: The objects we used in our timings: (a) ds9 space station, (b) hand, (c) happy
buddha, and (d) laurel.

structions. However, we can easily solve this by directly storing the values into a proper AVX
format. This would lead to a theoretical benefit of 3×8

5
because we only need 5 instructions

per orientation. Unfortunately, this increases the memory footprint: Theoretically, without
optimization, each node holds values of it’s eight children. Here we need one floating point
value for each orientation of each child which results in 8 × k × 4 Bytes for 32-bit floating
point values in case of 8 children. In order to avoid the _mm256_load_ps1 instruction, we
have to copy each value of each child 8 times. Overall, this would increase the total memory
footprint by a factor of 9.

In order to overcome this drawback somewhat we propose a second optimization: Actually
it is sufficient to provide conservative overlap tests, i.e., a few more false positives for the
BVH traversal do not hurt so much. Hence, we can lower the resolution of the DOPs by
using half precision floats (16-bit floating-point numbers) [Kon12], which are half the size of
traditional 32-bit single precision floats. Thus we could save half the storage space and half
the memory bandwidth of the bounding volume.

It seems to be obvious to directly use the reduced accuracy to increase the branching
factor even more to a factor of 16. Unfortunately, current SIMD instructions sets do not
support comparisons of half precision float values directly. Hence, before the actual inter-
section test, we have to convert the 16-bit half floats back to 32-bit float values. Since the
3rd generation of Intel R© CoreTM processors, this conversion is supported by the vcvtps2ph
instruction.

4 Results

We have implemented our algorithms using C++ and Intel Intrinsics function using Visual
Studio 2015. We focused our implementation on the most recent AVX2 instruction sets. For
the binary tree we used the AVX2 compiler flag. All tests were performed on a system with
an Intel I7 6700 CPU, 8GB of main memory and a NVIDIA Geforce GTX 660 GPU with
2GB of memory. We used the benchmarking suite proposed by [TWZ07]. Figure 4 shows
some of the used models with different shapes and resolutions in our timings: in particular,
a ds9 space station, a hand, a happy Buddha and a laurel. For the hand optimized traversal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450 500 550 600

tim
e

/
m

ill
is

ec

polygons / 1000

ds9 / 0.000000

median/

middle/

longest-axis/

3level-longest-axis/

bng/

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700

tim
e

/
m

ill
is

ec

polygons / 1000

hand / 0.000000

median/

middle/

longest-axis/

3level-longest-axis/

bng/

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200

tim
e

/
m

ill
is

ec

polygons / 1000

happy-buddha / 0.000000

median/

middle/

longest-axis/

3level-longest-axis/

bng/

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

tim
e

/
m

ill
is

ec

polygons / 1000

Laurel / 0.000000

median/

middle/

longest-axis/

3level-longest-axis/

bng/

(d)

Figure 5: Average timing of collision queries the different splitting criteria of our SIMDop
BVH for the object (a) ds9 space station, (b) hand, (c) happy Buddha, and (d) laurel. The
BVH constructed with BNG is up to four times faster than the slowest BVH.

method with the binary tree we used a k of 32 orientations and for the 8-ary DOP 46
orientations. Obviously, for the binary tree, k should be divisible by 8, however, for the
8-ary tree this is not mandatory. In all our timings, these k values performed best in all our
test cases for the particular trees. In all our timings presented in the plots presented here
we used a distance of zero because this is the most time consuming configuration distance
according to [TWZ07].

First, we investigated the influence of the splitting criterion described in Section 3.1. The
BNG clustering outperforms the other heuristics significantly, independent of the objects’
shapes (see Figure 6).

Second, we investigated the influence of using half floats instead of full 32-bit floating
point values. We were able to gain additional 5 - 10 % performance speed-up (See Figure 7)
while reducing the memory usage by 50% at the same time.

Finally, we compared the performance of our SIMDop BVHs to the other methods, i.e.
the binary tree-based data structures with the the compiler flag SIMD optimization and the
manually SIMD-optimized traversal algorithm. The compiler flag optimized binary DOP
tree and the manually AVX optimized DOP tree traversal have very similar running times.
This gives a hint that compiler optimization seems to work very well. However, our SIMD
optimized SIMDop data structure outperforms both binary DOP trees by at least factor of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400 450 500 550 600

tim
e

/
m

ill
is

ec

polygons / 1000

ds9 / 0.000000

binary-doptree/

binary-doptree-avx/

bng-avx/

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

tim
e

/
m

ill
is

ec

polygons / 1000

hand / 0.000000

binary-doptree/

binary-doptree-avx/

bng-avx/

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200

tim
e

/
m

ill
is

ec

polygons / 1000

happy-buddha / 0.000000

binary-doptree/

binary-doptree-avx/

bng-avx/

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300

tim
e

/
m

ill
is

ec

polygons / 1000

Laurel / 0.000000

binary-doptree/

binary-doptree-avx/

bng-avx/

(d)

Figure 6: Average timing of collision queries for AVX implementation of our SIMDop BVH
(bng-avx) for all our test objects compared with manually optimized binary DOP tree
(binary-doptree-avx) and the compiler optimized binary DOP tree. The results show that
our SIMDop BVH is up to ten times faster than both binary DOP trees.

10 for the ds9 station, a factor of 7 for the hand, a factor of 6 for the Buddha statue and a
factor of 10 for the laurel. In all cases this factor increases with an increasing polygon count.

5 Conclusions and Future Work

We have presented a novel SIMD optimized bounding volume hierarchy for simultaneous
BVH traversal. The main idea is to use higher-ary trees instead of classical binary tress.
We have presented several new heuristics for the top-down construction of such tree data
structures with higher branching factor. The BNG-based method performs best. Even if
we tested only 8-ary trees, the clustering-based construction is already prepared to support
higher branching factors following future SIMD developments. Our results show that, de-
pending on the object, our SIMDop BVH outperforms traditional BVHs by more than an
order of magnitude.

Our approach also opens up several directions for future work. For instance, it would be
interesting to include magnification control to the BNG construction algorithm. Moreover,
other clustering algorithms than BNG could be considered. In this work, we only considered
DOPs as BVs because of a fair comparison with the manual optimized traversal scheme.
However, investigating other BV types could also be interesting. Finally, probably also

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 150 200 250 300 350 400 450 500 550 600

tim
e

/
m

ill
is

ec

polygons / 1000

ds9 / 0.000000

bng-avx/

bng-avx-half/

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700

tim
e

/
m

ill
is

ec

polygons / 1000

hand / 0.000000

bng-avx/

bng-avx-half/

(b)

Figure 7: Average timing for collision queries using half float vs 32-float for our SIMDop
data structure for the ds station and the hand object. We get a performance gain of 5-10%
while dividing the memory footprint by half.

other applications using BVHs like ray tracing or occlusion computations could benefit from
our SIMDop BVH.

References

[AGN+04] Pankaj Agarwal, Leonidas Guibas, An Nguyen, Daniel Russel, and Li Zhang. Collision detection
for deforming necklaces. Computational Geometry: Theory and Applications, 28:137–163, 2004.

[EL01] Stephan A. Ehmann and Ming C. Lin. Accurate and fast proximity queries between polyhedra
using convex surface decomposition. Computer Graphics Forum (Proc. of EUROGRAPHICS
2001), 20(3):500–510, 2001.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: a hierarchical structure for rapid in-
terference detection. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 171–180, New York, NY, USA, 1996. ACM.

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of object hierarchies for ray tracing.
IEEE Comput. Graph. Appl., 7(5):14–20, May 1987.

[He99] Taosong He. Fast collision detection using quospo trees. In Proceedings of the 1999 symposium
on Interactive 3D graphics, I3D ’99, pages 55–62, New York, NY, USA, 1999. ACM.

[Hub96] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection.
ACM Trans. Graph., 15(3):179–210, 1996.

[KGL+98] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar. Rapid and accurate contact
determination between spline models using shelltrees, 1998.

[KHM+98] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, and Karel Zikan.
Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics, 4(1):21–36, January 1998.

[Kon12] Patrick Konsor. Performance benefits of half precision floats, 2012.
[KPLM98] Shankar Krishnan, Amol Pattekar, Ming C. Lin, and Dinesh Manocha. Spherical shell: a higher

order bounding volume for fast proximity queries. In Proceedings of the third workshop on the
algorithmic foundations of robotics on Robotics : the algorithmic perspective: the algorithmic
perspective, WAFR ’98, pages 177–190, Natick, MA, USA, 1998. A. K. Peters, Ltd.

[LAM09] Thomas Larsson and Tomas Akenine-Möller. Bounding volume hierarchies of slab cut balls.
Comput. Graph. Forum, 28(8):2379–2395, 2009.

[LEL97] Scott T. Leutenegger, Jeffrey M. Edgington, and Mario A. Lopez. Str: A simple and efficient

algorithm for r-tree packing. Technical report, Institute for Computer Applications in Science
and Engineering (ICASE), 1997.

[LGLM99] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Fast proximity queries with
swept sphere volumes, November 14 1999.

[LGS+09] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David P. Luebke, and Dinesh
Manocha. Fast bvh construction on gpus. Computer Graphics Forum, 28(2):375–384, 2009.

[MKE03] Johannes Mezger, Stefan Kimmerle, and Olaf Etzmuß. Hierarchical Techniques in Collision
Detection for Cloth Animation. Journal of WSCG, 11(2):322–329, 2003.

[RL85] Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial databases using packed
r-trees. In Proceedings of the 1985 ACM SIGMOD international conference on Management of
data, SIGMOD ’85, pages 17–31, New York, NY, USA, 1985. ACM.

[TWZ07] Sven Trenkel, René Weller, and Gabriel Zachmann. A benchmarking suite for static collision
detection algorithms. In Václav Skala, editor, International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 29
January–1 February 2007. Union Agency.

[vdB98] Gino van den Bergen. Efficient collision detection of complex deformable models using aabb
trees. J. Graph. Tools, 2(4):1–13, January 1998.

[Wal07] Ingo Wald. On fast construction of sah-based bounding volume hierarchies. In Proceedings of
the 2007 IEEE Symposium on Interactive Ray Tracing, RT ’07, pages 33–40, Washington, DC,
USA, 2007. IEEE Computer Society.

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and on doing that
in o(n log n). Symposium on Interactive Ray Tracing, 0:61–69, 2006.

[WMS+14] René Weller, David Mainzer, Abhishek Srinivas, Matthias Teschner, and Gabriel Zachmann.
Massively parallel batch neural gas for bounding volume hierarchy construction. In Virtual
Reality Interactions and Physical Simulations (VRIPhys), Bremen, Germany, September 2014.
Eurographics Association.

[Zac98] Gabriel Zachmann. Rapid collision detection by dynamically aligned dop-trees. In Proceedings of
the Virtual Reality Annual International Symposium, VRAIS ’98, pages 90–, Washington, DC,
USA, 1998. IEEE Computer Society.

[Zac00] Gabriel Zachmann. Virtual Reality in Assembly Simulation – Collision Detection, Simulation
Algorithms, and Interaction Techniques. Dissertation, Darmstadt University of Technology,
Germany, May 2000.

[Zac02] Gabriel Zachmann. Minimal hierarchical collision detection. In Proceedings of the ACM sym-
posium on Virtual reality software and technology, VRST ’02, pages 121–128, New York, NY,
USA, 2002. ACM.

[ZL03] Gabriel Zachmann and Elmar Langetepe. Geometric data structures for computer graphics. In
Proc. of ACM SIGGRAPH. ACM Transactions of Graphics, 27–31July 2003.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

SIMDop: SIMD Optimized Bounding Volume Hierarchies for Collision
Detection

Toni Tan1, René Weller1 and Gabriel Zachmann1

Abstract— We present a novel data structure for SIMD
optimized simultaneous bounding volume hierarchy (BVH)
traversals like they appear for instance in collision detection
tasks. In contrast to all previous approaches, we consider
both the traversal algorithm and the construction of the BVH.
The main idea is to increase the branching factor of the
BVH according to the available SIMD registers and parallelize
the simultaneous BVH traversal using SIMD operations. This
requires a novel BVH construction method because traditional
BVHs for collision detection usually are simple binary trees.
To do that, we present a new BVH construction method based
on a clustering algorithm, Batch Neural Gas, that is able to
build efficient n-ary tree structures along with SIMD optimized
simultaneous BVH traversal. Our results show that our new
data structure outperforms binary trees significantly.

I. INTRODUCTION

Collision detection (CD) algorithms are essential for
sampling-based motion planning algorithms. They are used
to test whether a sampled configuration is in collision with
the workspace obstacles. In most sampling-based motion
planning algorithms, the collision computation is the com-
putational bottleneck that requires up to 90% of computation
time [1].

For most CD algorithms that work with polyhedral mod-
els, Bounding Volume Hierarchies (BVHs) are the com-
mon technique used to accelerate the intersection queries.
The basic idea is simple: instead of calculating slow and
complex geometric intersection tests between all geometric
primitives, we wrap them recursively into simple bounding
volumes (BVs) such as spheres, axis-aligned bounding boxes
(AABB), oriented bounding boxes (OBB) or discrete oriented
polytopes (k-DOP), that allow faster intersection tests. This
generates a tree data structure with a single large BV at
the root position that encloses all geometric primitives.
Obviously, the geometric primitives are the leaves of such
a BVH.

As for the traversal, we usually have two BVHs that
we want to check for intersection, one for each object.
We start with the root nodes and simultaneously traverse
recursively the children in case of intersection of the BVs
(see Algorithm 1 and Figure 1).

Following the trend of acceleration by parallelization it
is obvious to apply this idea also to BVH traversals. Un-
fortunately, the parallelization of the simultaneous traversal
for collision detection is not obvious. Actually, due to their
recursive nature, BVHs are not very well suited for massively
parallel acceleration on the GPU. Moreover, especially for

1University of Bremen, Germany

Algorithm 1: BVHtraversal(BV a, BV b)

if a and b are both leaves then
checkPrimitives(a, b)

else if a is leaf then
forall children bi of b do

if a and bi intersect then
BVHtraversal(a, bi)

else if b is leaf then
forall children ai of a do

if ai and b intersect then
BVHtraversal(ai, b)

else
forall children ai of a and bi of b do

if ai and bi intersect then
BVHtraversal(ai, bi)

D E F G

C

A

B 2

1

3

4 5 6 7

A

B B C C

D D E E D D E E F F G G F F G G

1

2 3 2 3

4 5 4 5 6 7 6 7 4 5 4 5 6 7 6 7

Fig. 1: The simultaneous recursive traversal of two binary
BVHs during the collision check results in a bounding
volume test tree.

online planning, robots are often not equipped with powerful
GPUs.

However, the simultaneous traversal required in BVH-
based collision detection can still benefit from the SIMD
instruction sets of modern CPUs.

To take advantage from this parallel operations, we can:
1) simply switch on a compiler option and hope that the

compiler will do the optimization,
2) optimize the traversal function manually, depending

on the chosen BVH,
3) or adapt the complete BVH structure which addition-

ally requires a redesign of the BVH construction.
In this paper we have implemented and tested all of

these three methods. There is only one suitable function
in Algorithm 1 to optimize the traversal without changing
the tree structure: the test for intersection of a pair of BVs.
Hence, the benefit of SIMD optimization relies heavily on the

type of the BV. For two spheres, we simply have to compute
the distance of two points and compare it to the sum of the
spheres’ radii. This is not very well suited for the for SIMD
parallelization because of the length of current AVX512
registers that are able to store 16 floating point values. As
a consequence, the intersection test for two spheres can
be hardly optimized for SIMD. Similarly, the intersection
test for AABBs requires four comparisons. Modern AVX
registers compare 16 float value in a single instruction and
this number will increase with upcoming CPU generations.
Hence, these BVs could benefit only from the third method,
an optimized BVH, but hardly from a simple optimization
of the traversal. Consequently, we decided to use a BV that
naturally supports all three methods: the k-DOP. Basically,
k-DOPs are an extension of AABBs to arbitrary orientations
[2]. They offer a natural trade-off between tightness of the
BV and computation time for the intersection test. They show
comparable performance to other kinds of bounding volumes
[3]. By choosing the number of orientations k according to
the SIMD instruction set, it is straightforward to adapt this
BV-type to further SIMD developments.

However, this simple SIMD-parallelization still tests only
two BVs in one instruction (see Figure 2a). Hence, it
can be applied to almost all existing k-DOP-based BVHs
that typically rely on a binary tree. However, we can also
parallelize it in a way that one BV of the first BVH is
tested simultaneously against all children of the other BVH
(see Figure 2a). This is exactly the idea of our new data
structure that we call SIMDop. In order to take full advantage
of SIMD in this case we additionally have to change the
branching factor of the tree. This is non trivial because
traditional BVH construction methods, like the surface area
heuristic (SAH), median-, or mid point-split, that assign
the primitives into the sub-trees are not suitable for higher
branching factors. Consequently, we have developed new
BVH construction methods, this includes simple heuristics
but also a new method that is based on Batch Neural Gas
clustering. The advantage of such n-ary trees is not only
the SIMD accelerated traversal. Additionally, we get less
children than with binary trees and the children are also
smaller. We have implemented our novel SIMDop BVH and
the results show that it outperforms traditional binary trees
by an order of magnitude.

II. PREVIOUS WORK

In many fields of computer science, BVHs has been used
widely to accelerate intersection computation. Usual BVs for
the BVHs are spheres [4], AABBs [5] and their memory
optimized derivative called BoxTree [6] that is closely related
to kd-Trees, k-DOPs [7], [2], a generalization of AABBs,
OBBs [8] or convex hull trees [9]. Additionally, a wide
variety of special BVs for special applications has been
developed. For instance spherical shells [10], swept spheres
[11], spheres that are cut by two parallel planes called
slab cut balls [12], quantised orientation slabs with primary
orientations (QuOSPO) trees [13] that combine OBBs with
k-DOPs, or combinations of spherical shells with OBBs that

(a)

(b)

(c)

Fig. 2: Different strategy to compute intersections of the child
nodes in the simultaneous traversal algorithm: (a) classic
collision query tests only one pair of nodes. With SIMD,
assuming 16 registers, we can (b) test one node of the left
BVH against 16 nodes of the right BVH simultaneously in
the case of a branching factor of 16 or (c), in case of a
branching factor of 4, test all nodes from same level at one
time.

was proposed by [14] for objects that are modelled by Bezier
patches.

In sampling-based motion planning, AABB-based BVHs
are widely used to calculate collision between candidate
trajectories in workspace [15]. The Flexible Collision Library
(FCL) [16] also supports several BVs for its BVH such as
AABB, OBB, rectangle swept spheres (RSS) and k-DOPs.
Another approach using a hierarchical three-stage sequence
of BVs namely AABB, Sphere, and OBBs [17].

Usually, a BVH is constructed in a pre-processing step that
can be computationally more or less expensive. Basically,
there exist two major strategies to build BVHs: bottom-up
and top-down. The bottom-up approach starts with elemen-
tary BVs of leaf nodes and merges them recursively together
until the root BV is reached. A very simple merging heuristic
is to visit all nearest neighbours and minimize the size of the
combined parent nodes in the same level [18]. Less greedy
strategies combine BVs by using tilings [19].

However, the most popular method is the top-down ap-
proach. The general idea is to start with the complete set
of elementary BVs, then split that into some parts and
create a BVH for each part recursively. The main problem
is to choose a good splitting criterion. A classical splitting
criterion is to simply pick the longest axis and split it in
the middle of this axis. Another simple heuristic is to split
along the median of the elementary bounding boxes along
the longest axis. However, it is easy to construct worst case
scenarios for these simple heuristics. SAH tries to avoid these
worst cases by optimizing the surface area and the number of
geometric primitives over all possible split plane candidates
[20]. Originally developed for ray tracing, it is today also
used for collision detection. The computational costs can be
reduced to O(n log n) [21], [22] and there exists parallel
algorithms for the fast construction on the GPU [23]. Many
other splitting criteria were compared in [24].

The influence of the trees’ branching factor is widely
neglected in the literature. Usually, most authors simply use
binary trees for collision detection. According to Zachmann
and Langetepe [25], the optimum branching factor can be
larger. Mezger et al. [26] stated that, especially for de-
formable objects, 4-ary trees or 8-ary could improve the
performance. This is mainly due to fewer BV updates. To
our knowledge, there does not exist any work that investi-
gates the influence of the branching factor of the BVH for
simultaneous traversal tasks.

III. SIMD RECAP

Originally, SIMD instruction sets had been introduced to
support integer computation for intensive multimedia appli-
cations, but later they have been extended to support floating
point computation which extends the usefulness also for
scientific computations. The idea is that a single instruction
operates on different input data values (e.g. 8 or 16 floating
point values) simultaneously. Several slightly different SIMD
instruction sets are available for various CPUs; e.g. NEON
for Arm based CPUs and SSE/AVX for both Intel and AMD
CPUs (see Table I for a list of available SIMD instruction
sets and the supported data types). The most current AVX512
instruction set supports computation of 16 single precision-
float in parallel. In this paper, we focus on mainly AVX512,
however the idea can be easily implemented on other SIMD
instruction sets such as SSE, AVX, and NEON. Moreover,
we included measurements for AVX in our results and we are
confident, that more powerful AVX registers will be available
for the other platforms soon.

Name Width Types supported CPUs

NEON 128 bits 4x single
2x double∗

Armv7-A/R and above
∗only available for Armv8-A

SSE 128 bits 4x single Intel Pentium III and above
AMD Athlon XP and above

SSE2
SSE3
SSE4

128 bits 4x single
2x double

Intel Pentium 4 and above
AMD Athlon XP and above

AVX
AVX2 256 bits 8x single

4x double
Intel Sandy Bridge and above
AMD Bulldozer and above

AVX512 512 bits 16x single
8x double Intel Skylake-X and above

TABLE I: Floating point support for various SIMD Instruc-
tion Sets

IV. OUR SIMDOP DATA STRUCTURE

The main idea of our SIMDop data structure is to construct
BVHs with higher branching factor that can be later used
during run-time in a SIMD optimized traversal algorithm.
Hence, the core is the construction that is typically done
in a pre-processing step. We propose different methods to
construct such n-ary BVHs.

A. BVH Construction

We decided to use a top-down approach for the hierarchy
construction. The general idea is to start with the complete
set of elementary BVs, then split that into some parts and
create a BVH for each part recursively. Moreover, we use

a wrapped hierarchy according to the notion of Agarwal et
al. [27], where inner nodes are tight BVs for all their leaves,
but they do not necessarily bound their direct children.
Compared to layered hierarchies, the big advantage is that the
inner BVs are tighter. The main challenge is to choose a good
splitting criterion especially, because traditional splitting
criteria like SAH do not work for n-ary trees. We propose
several splitting criteria for higher branching factors that we
will shortly sketch in the following sections.

1) Longest Axis Split: A classical splitting criterion for
binary trees is to sort the primitives along all coord axis and
simply pick the longest axis and split this sorted list in the
middle of this axis. Obviously, we can easily extend this
two n-ary trees by not splitting in the middle, but split the
number of BVs into n equal parts. However, this leads to
fairly well balanced trees (see Figure 3).

2) Extended Longest Axis Split: This is an extension to
the longest axis split for n-ary trees where n is preferably
in the power of two. We do not simply split along one axis
but perform in the first stage a binary longest axis split and
than recursively split the primitive sets again until we reach
n. In other words, we perform a traditional binary tree split
but remove the not needed nodes: instead, we can directly
mount all children to the parent node.

3) Batch Neural Gas Clustering: Clustering algorithms,
especially BNG, have shown to be very efficient for BVH
constructions of 4-ary trees [28]. A nice property of BNG
is that it exhibits very robust behavior with respect to the
initial cluster center position in contrast to other clustering
algorithms like k-means. However, in the original work, the
authors used spheres as basic primitives instead of more
usual polygonal representations. We simply used the centers
of the polygons instead of the spheres’ centers reported in
the original work in our polygonal implementation. We did
not use magnification control, which additionally considers
the size of the spheres to produce better clustering results.
However, this can be easily added in the future to our
polygon-based BNG.

Figure 3 shows the first hierarchy level for all our splitting
criteria and different branching factors.

B. BVH Traversal

The key part to optimize the traversal in Algorithm 1 is
the test for intersection of the child bounding volumes. For
binary trees, the four possible combinations of child pairs are
usually traversed sequentially. SIMD enables us to accelerate
this intersection test in several ways:

• We can use a SIMD instructions to replace a single
test of a pair of BVs (see Figure 2a). This would leave
the for-loop untouched and just replace the intersection
method.

• We can also remove the first part of the for-loop and
test one BV of the first BVH simultaneously against all
children of the other BVH (see Figure 2b). For AVX512
this results in a 1 vs 16 check. Accordingly, we call our
BVH using this approach 1vs16-SIMDop.

(a)

(b)

(c)

Fig. 3: The results of our hierarchy construction algorithms
showing the color coded first level of the hierarchy: (a)
longest axis, (b) extended longest axis, and (c) Batch Neural
Gas. The trees have degree four on the left side, degree eight
in the center, and sixteen on the right side.

• Finally, we can remove all for-loops and test all nodes
from the same level at one time (see Figure 2c). With
AVX512 this results in a 4 vs 4 test and we call the
respective BVH 4vs4-SIMDop.

An implementation of the first idea is straight forward, it
requires a simple replacement of the comparison inside the
intersection function.

Algorithm 2 shows the naive implementation for the
1vs16-SIMDop, i.e. the removal of the inner for-loop by
testing one BV of object A against n BVs of object B,
using the current AVX512 instruction set looks as follows,
assuming that we are using DOPs with k orientations for the
BVs1.

Removing both loops for the 4vs4-SIMDop, i.e. testing all
n child BVs of object A against all n child BVs of object B
for a pair of nodes requires just a slightly different ordering
of the Dop values which results in the AVX512 code that is
shown in Algorithm 3.

There are some drawbacks of these SIMD implementa-
tions: first, we have to copy all the values of the DOPs to
AVX registers. Second, we have to combine the temporal
results using or-instructions to compile the end result. A non-
parallel version to check two DOPs for overlap would simply

1Variables of the type mm512 are AVX512 variables with a length of
512 Bit. Intrinsic AVX512 instructions usually start with the prefix mm512
followed by the particular operation and end with a suffix that indicates the
data type: e.g. mm512 cmp ps compares the two input variables of 512 Bit
width of the type single precision floating point (ps), following the rule
defined in the third parameter and returns the result as a 512 Bit vector.
mm512 kor defines a bitwise logical OR comparison using masks.

Algorithm 2: m512 intersect(DOP a, DOP b1,...,b16)

mm512 endResult
for i=0; i¡k/2; i++ do

mm512 oriAL = mm512 set1 ps(a[i])
mm512 oriBL = mm512 set ps(b1[i],...,b16[i])
mm512 resL = mm512 cmp ps(oriAL, oriBL,
CMP LT OS)

mm512 oriAH = mm512 set1 ps(a[k/2+i])
mm512 oriBH = mm512 set ps(b1[k/2+i],...,b16[k/2+i])
mm512 resH = mm512 cmp ps(oriAH, oriBH,
CMP GT OS)

mm512 tempRes = mm512 kor(resL,resH)
endResult = mm512 kor(endResult, tempRes)
if endRes == 65535 then

break
return endResult

Algorithm 3: m512 intersect(DOP a1,..,a4, DOP b1,..,b4)

mm512 endResult
/ for i=0; i¡k/2; i++ do

mm512 oriAL = mm512 set ps(a1[k/2+i],...,a4[k/2+i])
mm512 oriBL = mm512 set ps(b1[i],...,b4[i])
mm512 resL = mm512 cmp ps(oriAL, oriBL,
CMP LT OS)

mm512 oriAH = mm512 set ps(a1[i],...,a4[i])
mm512 oriBH = mm512 set ps(b1[k/2+i],...,b4[k/2+i])
mm512 resH = mm512 cmp ps(oriAH, oriBH,
CMP GT OS)

mm512 tempRes = mm512 kor(resL,resH)
endResult = mm512 kor(endResult, tempRes)
if endResult == 65535 then

break
return endResult

compare two values and use one boolean operation. Hence,
in these naive implementations we would need 9 AVX in-
structions vs. 3 instructions in the non-AVX implementation
to compare one orientation of the DOP. Moreover, the non-
AVX version could escape the loop earlier for some of the
16 children whereas in the SIMD cases we have to iterate
the loop k/2-times if only one of the 16 children overlaps
the other DOP. Hence, we could assume an acceleration of
at most 3×16

9 , because we test 16 children simultaneously,
not considering the faster loop escapes and the smaller BVs
of the SIMDop structure.

C. Optimization

Our benchmarks have shown that actually, our naive im-
plementations for Algorithms 2 and 3 perform worse than the
non-AVX version. The main reason is that the mm512 set ps
and mm512 set1 ps instructions that load the data into the
AVX registers require more time than the other instructions.
For the 1vs16-SIMDop we can easily solve this by directly
storing the values into a proper AVX format. This would
lead to a theoretical benefit of 3×16

5 because we only need 5
instructions per orientation, not considering the smaller BVs.

(a)

(b)

Fig. 4: Permutation of the values for the for DOPs a1, ..., a4
of an object A and the four DOPs b1, ..., b4 of an object B
to produce a single 512 Bit AVX register for comparing all
4× 4 possible combinations in Algorithm 3.

(a) (b)

(c) (d) (e)

Fig. 5: The objects we used in our timings: (a) ATST walker
robot, (b) female robot, (c) quadripod robot, (d) dog robot,
and (e) Nao.

Moreover, we tested to use prefetching to improve the
cache performance. Unfortunately, the size of a cache line
in CPUs supporting AVX512 is exactly 512 Bit, so we
did not see any acceleration. However, we were able to
reduce the memory bandwidth by storing the DOP values
as half floats. Since the 3rd generation of Intel R© CoreTM

processors, the conversion of 16-bit half floats back to 32-
bit float values is supported by the vcvtps2ph instruction
without computational overhead. The resulting increase of
false positives for the BVH traversal was neglectable.

Obviously, we could also store the data for the 4vs4-
SIMDop into an appropriate AVX512 variable. However,
this would increase the memory footprint by a factor of
4 because we would have to copy each DOP value four
times. In order to avoid this waste of memory and to
further improve cache performance, we decided to use a
different strategy for the 4vs4-SIMDop: AVX512 supports
the function mm512 castps128 ps512 that casts 128 Bit
SSE data to AVX512 data with zero latency. Hence, we
store 4 floating point values per DOP orientation and use
the permutation function mm512 permutexvar ps to shuffle
the values to their correct positions (see Figure 4). This
requires one more AVX instruction, leading to a theoretical
benefit of 3×16

6 compared to the sequential binary tree, but
it significantly improves cache performance.

V. RESULTS

We have implemented our algorithms using C++ and Intel
Intrinsics functions using Visual Studio 2017. We focused
our implementation on the most recent AVX512 instruction

(a)

(b)

Fig. 6: Average collision query time for the different splitting
criteria for the quadripod robot using (a) the 4vs4-SIMDop
and (b) the 1vs16-SIMDop with respect to the polygon count.
The results are very similar for all objects.

sets. All tests were performed on a system with an Intel
I7 7800X CPU, 64GB of main memory and a NVIDIA
Geforce GTX 980 GPU with 4GB of memory. We used
the standardized benchmarking suite proposed by Trenkel
et al. [3]. Figure 5 shows some of the used models with
different shapes and resolutions in our timings: in particular,
a ATST walker robot, a female android, a quadripod and a
robotic dog. According to Trenkel et al. [3], we present all
results in this section for the most time consuming distance
preset, i.e. a distance of zero. For the best performance of
the hand optimized traversal function of the binary tree, k
should be divisible by 16. We set the number of orientations
of the DOPs to k = 32 where not other mentioned because
it performs better than k = 16 for all methods.

First, we evaluated the influence of the splitting criterion
described in Section IV-A. The BNG clustering outperforms
the other heuristics significantly in all our test cases, indepen-
dent of the objects’ shapes and polygon count (see Figure 6).
The benefit of the clustering increases with and increasing
number of branches in the tree. In term of BVH construction
time, the BNG clustering-based SIMDop for both degree of
4 and 16 can be constructed almost as fast BVH constructed
using V-COLLIDE and binary DOP tree (see Figure 7).

Moreover, we compared the performance of our two
SIMDop variants to the other methods 1 and 2, i.e. the binary
tree-based data structures with the compiler flag SIMD
optimization and the manually SIMD-optimized traversal
algorithm. The compiler flag optimized binary DOP tree

Fig. 7: A comparison of BVH construction time of our
SIMDop based on BNG clustering algorithm compared with
V-COLLIDE and binary DOP tree for the ATST walker
robot.

(a)

(b)

Fig. 8: A comparison of our SIMDop with V-COLLIDE
library for (a) female robot, and (b) quadripod. The results
show that our 4vs4-SIMDop performs best and faster than
V-COLLIDE by up to eight times for (a) female robot and
thirteen times for (b) quadripod.

and the manually AVX optimized DOP tree traversal have
very similar running times. This gives a hint that compiler
optimization seems to work very well. However, our two
SIMD optimized SIMDop versions, the 4vs4-SIMDop and
1vs16-SIMDop both outperform both binary DOP trees by at
least factor of 8 for the Nao (see Figure 9a), a factor of 13 for
the ATST walker robot (see Figure 9b). In all cases this factor
increases with an increasing polygon count. This is slightly
higher than the theoretical factor of 3×16

5 we expected from
the number of instructions for the intersection function. This
indicates that the decreased size of the BVs due to the higher

branching factor and the reduced number of overall BVs in a
tree with higher branching factor compensate the increasing
number of iterations required for the SIMD loop.

We also compared our SIMDop to the V-COLLIDE library
that is often used for sample-based path planning tasks.
An experimental comparative analysis has shown that V-
COLLIDE outperforms other CD libraries like PQP [29].
Figure 8 shows that our 4vs4-SIMDop is able to outperform
V-COLLIDE by a factor of up to 13 for the quadropod.

(a)

(b)

Fig. 9: Average collision query times for the compiler opti-
mized binary DOP tree (method 1), the manually optimized
binary DOP tree (method 2) and the two SIMD optimized
Dop tree versions, the 1vs16-SIMDop and the 4vs4-SIMDop
(method 3) with respect to the number of polygons in the (a)
Nao and (b) ATST walker robot. The results show that our
SIMDop are up to eight and thirteen times faster than both
binary DOP trees and the 4vs4-SIMDop performs best.

We also investigated the influence of the actual SIMD
version on the performance of our SIMDop. Figure 10 shows
the results measured for an AVX version and an AVX512
implementation. The AVX512 implementation is twice as
fast as the AVX due to the width of the AVX512 registers.

And finally, we evaluated the performance gain using
SIMD optimized version of simultaneous BVH traversal
compared with non-optimized version (see Figure 11). We
roughly get a speedup around 2 for both 4vs4-SIMDop and
1vs16-SIMDop version, which is below our expectation since
the AVX512 register can process 16 data at one time.

Hence, we investigated further by using a profiling tool
Intel R© VTuneTM to profile the actual collision query timing.
Table II shows profiling result for object Nao using 4vs4-

Fig. 10: Average collision query times for AVX implemen-
tation of our SIMDop in comparison with AVX512.

SIMDop. According to VTune, our 4vs4-SIMDop is able
to vectorize 72.70% floating point instructions with the full
vector capacity, which should theoretically give us a speedup
of 72.7×16

100 , however the gain is bound by memory, which
took around 40.3% of computing time (whereas 33.40% of
the time is stalled by main memory access). And also, our
4vs4-SIMDop has to test more orientations as much as three
times more on average compared with non-optimized version
(see Figure 12). In the end, we get roughly a speedup of 2
for the SIMD optimized version compared with the non-
optimized version.

Fig. 11: Average collision query times using object Nao for
our SIMDop with and without SIMD optimized simultaneous
traversal.

Fig. 12: Average orientations tested for a single bounding
volume test of our SIMDop with and without SIMD opti-
mited simultaneous traversal.

SIMDop w/ degree of 4 SIMDop 4vs4
L1 Bound 3.00% 2.00%
L2 Bound 1.20% 1.60%
L3 Bound 2.70% 3.30%

DRAM Bound 21.10% 33.40%
Floating Point Vectorization 0% 72.70%

TABLE II: A performance analysis of our 4vs4-SIMDop
using Intel R© VTune

TM
for Nao.

VI. CONCLUSIONS AND FUTURE WORK

We have presented two versions for a SIMD optimized
bounding volume hierarchy for simultaneous BVH traversal.
The main idea is to use higher n-ary trees instead of classical
binary trees. We have presented several new heuristics for
the top-down construction of such tree data structures with
higher branching factor.

The BNG-based method performs best. Even if we tested
only up to 16-ary trees, the clustering-based construction
is already prepared to support higher branching factors
following future SIMD developments. Our results show that,
depending on the object, our SIMDop BVHs outperform
traditional BVHs by more than an order of magnitude.

Our approach also opens up several directions for future
work. For instance, we would like to include magnification
control to the BNG construction algorithm. Moreover, other
clustering algorithms than BNG could be considered. In
this work, we relied on DOPs as BVs because of a fair
comparison with the manual optimized traversal scheme.
However, we would like to investigate also other BV types
that do not have the problem of the later escape of the for-
loop. Also the influence of the number of orientations for
the DOPs requires further investigations. Finally, probably
other applications using BVHs like ray tracing or occlusion
computations could benefit from our SIMDop BVHs, too.

ACKNOWLEDGMENT

The research reported in this paper has been (partially)
supported by the German Research Foundation DFG, as
part of Collaborative Research Center (Sonderforschungs-
bereich) 1320 “EASE - Everyday Activity Science and En-
gineering”, University of Bremen (http://www.ease-crc.org/).
The research was conducted in subproject R03 <Embodied
simulation-enabled reasoning>.

REFERENCES

[1] M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental evalu-
ation of collision detection packages for robot motion planning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 3, Sept 2002, pp. 2329–2334 vol.3.

[2] G. Zachmann, “Rapid collision detection by dynamically aligned
dop-trees,” in Proceedings of the Virtual Reality Annual International
Symposium, ser. VRAIS ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 90–. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=522258.836122

[3] S. Trenkel, R. Weller, and G. Zachmann, “A benchmarking suite
for static collision detection algorithms,” in International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG), V. Skala, Ed. Plzen, Czech Republic:
Union Agency, 29 January–1 February 2007. [Online]. Available:
http://cg.in.tu-clausthal.de/research/colldet benchmark

[4] P. M. Hubbard, “Approximating polyhedra with spheres for time-
critical collision detection,” ACM Trans. Graph., vol. 15, no. 3, pp.
179–210, 1996.

[5] G. van den Bergen, “Efficient collision detection of complex
deformable models using aabb trees,” J. Graph. Tools, vol. 2, no. 4,
pp. 1–13, Jan. 1998. [Online]. Available: http://dl.acm.org/citation.
cfm?id=763345.763346

[6] G. Zachmann, “Minimal hierarchical collision detection,” in
Proceedings of the ACM symposium on Virtual reality
software and technology, ser. VRST ’02. New York,
NY, USA: ACM, 2002, pp. 121–128. [Online]. Available:
http://doi.acm.org/10.1145/585740.585761

[7] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan, “Efficient collision detection using bounding volume
hierarchies of k-dops,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, no. 1, pp. 21–36, Jan. 1998. [Online].
Available: http://dx.doi.org/10.1109/2945.675649

[8] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: a hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
ser. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 171–180.
[Online]. Available: http://doi.acm.org/10.1145/237170.237244

[9] S. A. Ehmann and M. C. Lin, “Accurate and fast proximity queries
between polyhedra using convex surface decomposition,” Computer
Graphics Forum (Proc. of EUROGRAPHICS 2001), vol. 20, no. 3,
pp. 500–510, 2001.

[10] S. Krishnan, A. Pattekar, M. C. Lin, and D. Manocha, “Spherical
shell: a higher order bounding volume for fast proximity queries,”
in Proceedings of the third workshop on the algorithmic foundations
of robotics on Robotics : the algorithmic perspective: the
algorithmic perspective, ser. WAFR ’98. Natick, MA, USA:
A. K. Peters, Ltd., 1998, pp. 177–190. [Online]. Available:
http://dl.acm.org/citation.cfm?id=298960.299006

[11] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast
proximity queries with swept sphere volumes,” Nov. 14 1999.
[Online]. Available: http://citeseer.ist.psu.edu/408975.html;ftp://ftp.cs.
unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps

[12] T. Larsson and T. Akenine-Möller, “Bounding volume hierarchies of
slab cut balls.” Comput. Graph. Forum, vol. 28, no. 8, pp. 2379–
2395, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/
cgf/cgf28.html#LarssonA09

[13] T. He, “Fast collision detection using quospo trees,” in Proceedings
of the 1999 symposium on Interactive 3D graphics, ser. I3D ’99.
New York, NY, USA: ACM, 1999, pp. 55–62. [Online]. Available:
http://doi.acm.org/10.1145/300523.300529

[14] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar, “Rapid
and accurate contact determination between spline models using
shelltrees,” 1998.

[15] U. Schwesinger, R. Siegwart, and P. Furgale, “Fast collision detection
through bounding volume hierarchies in workspace-time space for
sampling-based motion planners,” in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2015, pp. 63–68.

[16] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp. 3859–3866.

[17] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, pre-
diction, and avoidance of dynamic obstacles in urban environments,”
in 2008 IEEE Intelligent Vehicles Symposium, June 2008, pp. 1149–
1154.

[18] N. Roussopoulos and D. Leifker, “Direct spatial search on pictorial
databases using packed r-trees,” in Proceedings of the 1985 ACM
SIGMOD international conference on Management of data, ser.
SIGMOD ’85. New York, NY, USA: ACM, 1985, pp. 17–31.
[Online]. Available: http://doi.acm.org/10.1145/318898.318900

[19] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez, “Str: A simple
and efficient algorithm for r-tree packing,” Institute for Computer
Applications in Science and Engineering (ICASE), Tech. Rep., 1997.

[20] J. Goldsmith and J. Salmon, “Automatic creation of object hierarchies
for ray tracing,” IEEE Comput. Graph. Appl., vol. 7, no. 5, pp. 14–20,
May 1987. [Online]. Available: http://dx.doi.org/10.1109/MCG.1987.
276983

[21] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in o(n log n),” Symposium on Interactive Ray Tracing,
vol. 0, pp. 61–69, 2006.

[22] I. Wald, “On fast construction of sah-based bounding volume
hierarchies,” in Proceedings of the 2007 IEEE Symposium on
Interactive Ray Tracing, ser. RT ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 33–40. [Online]. Available:
http://dx.doi.org/10.1109/RT.2007.4342588

[23] C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and
D. Manocha, “Fast bvh construction on gpus.” Computer Graphics
Forum, vol. 28, no. 2, pp. 375–384, 2009. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/cgf/cgf28.html#LauterbachGSLM09

[24] G. Zachmann, “Virtual reality in assembly simulation – collision detec-
tion, simulation algorithms, and interaction techniques,” Dissertation,
Darmstadt University of Technology, Germany, May 2000.

[25] G. Zachmann and E. Langetepe, “Geometric data structures
for computer graphics,” in Proc. of ACM SIGGRAPH. ACM
Transactions of Graphics, 27–31July 2003. [Online]. Available:
http://www.gabrielzachmann.org/

[26] J. Mezger, S. Kimmerle, and O. Etzmuß, “Hierarchical Techniques in
Collision Detection for Cloth Animation,” Journal of WSCG, vol. 11,
no. 2, pp. 322–329, 2003.

[27] P. Agarwal, L. Guibas, A. Nguyen, D. Russel, and L. Zhang, “Collision
detection for deforming necklaces,” Computational Geometry: Theory
and Applications, vol. 28, pp. 137–163, 2004.

[28] R. Weller, D. Mainzer, A. Srinivas, M. Teschner, and G. Zachmann,
“Massively parallel batch neural gas for bounding volume hierarchy
construction,” in Virtual Reality Interactions and Physical Simulations
(VRIPhys). Bremen, Germany: Eurographics Association, Sept. 2014.

[29] M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental evalu-
ation of collision detection packages for robot motion planning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 3, Sep. 2002, pp. 2329–2334 vol.3.

The 25th International Conference on 3D Web Technology (Web3D ’20)
Virtual Event, Republic of Korea, November 9–13, 2020

OpenCollBench - Benchmarking of Collision Detection &
ProximityQueries as a Web-Service

Toni Tan
University of Bremen

Germany

René Weller
University of Bremen

Germany

Gabriel Zachmann
University of Bremen

Germany

ABSTRACT
We present a server-based benchmark that enables a fair analysis of
different collision detection & proximity query algorithms. A sim-
ple yet interactive web interface allows both expert and non-expert
users to easily evaluate different collision detection algorithms’ per-
formance in standardized or optionally user-definable scenarios and
identify possible bottlenecks. In contrast to typically used simple
charts or histograms to show the results, we additionally propose
a heatmap visualization directly on the benchmarked objects that
allows the identification of critical regions on a sub-object level. An
anonymous login system, in combination with a server-side sched-
uling algorithm, guarantees security as well as the reproducibility
and comparability of the results. This makes our benchmark useful
for end-users who want to choose the optimal collision detection
method or optimize their objects with respect to collision detection
but also for researchers who want to compare their new algorithms
with existing solutions.

CCS CONCEPTS
• Computing methodologies → Collision detection; Shape
analysis.

KEYWORDS
collision detection, proximity query, open benchmark, heatmap
visualization, semantic information, benchmark as web-service
ACM Reference Format:
Toni Tan, René Weller, and Gabriel Zachmann. 2020. OpenCollBench -
Benchmarking of Collision Detection & Proximity Queries as a Web-Service.
In The 25th International Conference on 3D Web Technology (Web3D ’20),
November 9–13, 2020, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3424616.3424712

1 INTRODUCTION
Collision detection (CD) is essential in many applications, such as
physically-based simulation, motion planning, and computer games.
In many of these applications, CD is the computational bottleneck.
For instance, in randomized path planners, more than 90% of the
computation time is spent on collision detection [Hsu et al. 1998].
The most time-consuming part is usually the so-called narrow phase

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8169-7/20/11. . . $15.00
https://doi.org/10.1145/3424616.3424712

CD, i.e., detecting whether a pair of 3D objects intersect or not.
Closely related to this challenge are proximity queries (PQ) that ad-
ditionally report the minimum distance between the pair of objects
in case of non-collision.

Due to the wide variety of use cases and inherent complexity of
the problem, CD & PQ have been researched since several decades
in different communities, and they remain an active field of re-
search because until now, no all-in-one algorithm suitable for every
purpose has been found if such a solution could exist at all.

Most available CD & PD algorithms for the narrow phase rely
on bounding volume hierarchies (BVHs) to accelerate the queries.
The idea is, instead of calculating slow and complex tests on the
geometric primitives, objects are enclosed recursively with simple
bounding volumes (BV) that allow culling parts of the geometry
to avoid further testing. Many different bounding volumes have
been proposed to build such BVHs for CD & PD, including spheres
[Hubbard 1996], AABBs [van den Bergen 1998] [Zachmann 1995],
k-DOPs [Klosowski 1998] [Zachmann 1998], OBBs [Gottschalk et al.
1996], spherical shells [Krishnan et al. 1998], swept spheres [Larsen
et al. 1999a], to name but a few. Moreover, BVHs can have different
branching factors, the BVHs can be constructed in different ways
(e.g., iteratively, bottom-up, or top-down), the primitives can be
assigned in different ways to the BVs in the hierarchy (for instance,
via middle split, median split or even using sophisticated clustering
algorithms) and finally, there exist different algorithms for the
hierarchy traversal during run-time [Tan et al. 2019].

The reason for such a large amount of different CD & PQ ap-
proaches is that they are often optimized for a particular scenario.
CD & PQ algorithms are usually susceptible to certain factors like
relative the object’s shape (e.g., convex or concave), the sizes be-
tween objects, relative distances, the sizes, shapes, and distributions
of the geometric primitives or the transformations between objects,
to name but a few. Moreover, the limitations of the algorithms are
hardly discussed in the publications, if actually known. In many
publications, authors usually use a set of self-defined objects &
scenarios to benchmark & compare their proposed algorithms with
existing ones. However, this is not always in favor of existing algo-
rithms since authors might choose objects or scenarios that favor
their proposed algorithms. Even more, the source code of compet-
ing algorithms is often unavailable or outdated, and there is no
access to objects and scenarios used by the competing algorithms
for their benchmarks. Besides that, technical difficulties, i.e., the
sheer amount of involved parameters or integration of existing CD
algorithms making benchmarking of CD algorithms a complicated
and time-consuming process. Finally, the reported scenarios often
only show an average, sometimes a standard deviation, and maybe
the maximum running time for a whole sequence of transforma-
tions. This is not sufficient to understand why a certain algorithm

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

performs better or worse in a particular scenario. Actually, a slight
change of transformations or the objects, e.g., a slightly different
polygonization of the object, could result in completely different
results.

In this paper, we present an idea to simplify the complex and
time-consuming process of benchmarking collision detection al-
gorithms, more precisely, of CD methods for the broad phase CD
of rigid polygonal polygon soups. Moreover, we provide a set of
predefined scenarios, i.e., a set of objects together with configu-
rations that cover a broad range of interesting collision detection
cases. However, this set can also be extended by the users to include
scenarios that we did not consider. If allowed by the user, these
new scenarios can be included in the benchmark and will be made
available to the public.

The main idea is to provide the benchmarking of CD & PQ as an
online service. This has the advantage that a large amount of colli-
sion detection algorithms is available as pre-compiled libraries on
a common, unified hardware platform via an easy-to-use but never-
theless highly adjustable web interface. Additionally, the extending
object and configuration database allow us to cover an increasing
number of interesting collision scenarios. This web-based service
facilitates the comparison of CD algorithms dramatically and is of
interest to both users of CD algorithms who simply want to find
the best choice for their particular scenario and CD researchers,
who want to compare their new algorithms to competitors.

Our web-based service provides a front end interface that allows
the users to adjust some benchmark parameters, e.g., selecting
scenarios, algorithms, or upload their objects and generate a set of
configurations. The actual benchmark is performed on a dedicated
back end server PC that is reserved for only this task in order to not
disturb the benchmarking procedure by simultaneous web access
and, obviously, for security reasons. All benchmarks are scheduled
to guarantee the same computational power for all users.

The basis of our web service is a well established benchmark-
ing suite for collision detection algorithms [Trenkel et al. 2007]. It
has a well defined and easy-to-use interface to include new algo-
rithms, and it already delivers a set of interesting collision scenarios.
However, we further extended it to also support proximity queries
instead of simple boolean collision queries. Moreover, we heavily
extended its’ analyzation functionalities: the original benchmark-
ing suite simply computes the average and maximum collision
detection times and plots them to charts or histograms. Our web
service offers the possibility to overlay the 3D object with a detailed
heatmap. This facilitates it to identify interesting object regions,
e.g., regions that are hardly checked for collisions, regions where
particular algorithms perform better or worse, etc.

We are confident that this new method to visualize information
from the collision detection benchmark will influence the further
research of collision detection, for instance, by optimizing BVH
construction algorithms or by optimizing the geometry for partic-
ular CD algorithms. Moreover, we think that the general idea of
providing benchmarking as a web service can be also interesting
for other research fields and is an interesting research field for its
own, e.g., with respect to the user interface or the display of the
results in 3D, perhaps directly projected as a heatmap to 3D objects.

This could benefit both expert and non-expert users in many
real applications, i.e., choosing optimal CD algorithms according

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

performs better or worse in a particular scenario. Actually, a slight
change of transformations or the objects, e.g., a slightly different
polygonization of the object, could result in completely different
results.

In this paper, we present an idea to simplify the complex and
time-consuming process of benchmarking collision detection al-
gorithms, more precisely, of CD methods for the broad phase CD
of rigid polygonal polygon soups. Moreover, we provide a set of
predefined scenarios, i.e., a set of objects together with configu-
rations that cover a broad range of interesting collision detection
cases. However, this set can also be extended by the users to include
scenarios that we did not consider. If allowed by the user, these
new scenarios can be included in the benchmark and will be made
available to the public.

The main idea is to provide the benchmarking of CD & PQ as an
online service. This has the advantage that a large amount of colli-
sion detection algorithms is available as pre-compiled libraries on
a common, unified hardware platform via an easy-to-use but never-
theless highly adjustable web interface. Additionally, the extending
object and configuration database allow us to cover an increasing
number of interesting collision scenarios. This web-based service
facilitates the comparison of CD algorithms dramatically and is of
interest to both users of CD algorithms who simply want to find
the best choice for their particular scenario and CD researchers,
who want to compare their new algorithms to competitors.

Our web-based service provides a front end interface that allows
the users to adjust some benchmark parameters, e.g., selecting
scenarios, algorithms, or upload their objects and generate a set of
configurations. The actual benchmark is performed on a dedicated
back end server PC that is reserved for only this task in order to not
disturb the benchmarking procedure by simultaneous web access
and, obviously, for security reasons. All benchmarks are scheduled
to guarantee the same computational power for all users.

The basis of our web service is a well established benchmark-
ing suite for collision detection algorithms [Trenkel et al. 2007]. It
has a well defined and easy-to-use interface to include new algo-
rithms, and it already delivers a set of interesting collision scenarios.
However, we further extended it to also support proximity queries
instead of simple boolean collision queries. Moreover, we heavily
extended its’ analyzation functionalities: the original benchmark-
ing suite simply computes the average and maximum collision
detection times and plots them to charts or histograms. Our web
service offers the possibility to overlay the 3D object with a detailed
heatmap. This facilitates it to identify interesting object regions,
e.g., regions that are hardly checked for collisions, regions where
particular algorithms perform better or worse, etc.

We are confident that this new method to visualize information
from the collision detection benchmark will influence the further
research of collision detection, for instance, by optimizing BVH
construction algorithms or by optimizing the geometry for partic-
ular CD algorithms. Moreover, we think that the general idea of
providing benchmarking as a web service can be also interesting
for other research fields and is an interesting research field for its
own, e.g., with respect to the user interface or the display of the
results in 3D, perhaps directly projected as a heatmap to 3D objects.

This could benefit both expert and non-expert users in many
real applications, i.e., choosing optimal CD algorithms according

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1: An example of heatmap based on configuration’s
(a) average timings, (b) median timings, (c) standard devia-
tion timings, (d) median absolute deviation timings, and (e)
min timings, (f) max timings, and (g) density.

to use case or optimizing objects for CD by removing/modifying
slow regions.

2 RELATEDWORK
The benchmarking process varies across different fields, i.e., multi-
object tracking [Dendorfer et al. 2020] compared the result of the
proposed algorithm against ground truth annotated by a human. In
ray tracing, benchmarking is usually done using a set of predefined
scenarios, e.g., the Benchmark for Animated Ray Tracing (BART)
[Lext et al. 2001].

Benchmarking programs are typically provided as standalone
programs, which can restrict access due to hardware or software
constraints. An attempt to solve this is to offer benchmarking suites
as web-service [Gillard and Vandenbosch 2009] [Widlowski et al.
2008]. To our knowledge, this idea was never applied for computer
graphics related topics, especially on an algorithmic level that would
help users to choose the best algorithm for their specific scenario
and supports developers and researchers with an infrastructure for
optimizing and distributing their algorithms. Actually, there exist
different graphics algorithms that could benefit from such an online
service. We decided to choose the complex problem of collision
detection because there exists a variety of different algorithms, and
CD is often the computational bottleneck.

Usually, authors of collision detection simply define a certain
scenario on their own to test their algorithms. For instance, Otaduy
et al. [Otaduy and Lin 2003] used a set of self-defined scenarios
(wrinkled torus falling along with a spiral peg, spoon sliding inside

Figure 1: An example of heatmap based on configuration’s
(a) average timings, (b) median timings, (c) standard devia-
tion timings, (d) median absolute deviation timings, and (e)
min timings, (f) max timings, and (g) density.

to use case or optimizing objects for CD by removing/modifying
slow regions.

2 RELATEDWORK
The benchmarking process varies across different fields, i.e., multi-
object tracking [Dendorfer et al. 2020] compared the result of the
proposed algorithm against ground truth annotated by a human. In
ray tracing, benchmarking is usually done using a set of predefined
scenarios, e.g., the Benchmark for Animated Ray Tracing (BART)
[Lext et al. 2001].

Benchmarking programs are typically provided as standalone
programs, which can restrict access due to hardware or software
constraints. An attempt to solve this is to offer benchmarking suites
as web-service [Gillard and Vandenbosch 2009] [Widlowski et al.
2008]. To our knowledge, this idea was never applied for computer
graphics related topics, especially on an algorithmic level that would
help users to choose the best algorithm for their specific scenario
and supports developers and researchers with an infrastructure for
optimizing and distributing their algorithms. Actually, there exist
different graphics algorithms that could benefit from such an online
service. We decided to choose the complex problem of collision
detection because there exists a variety of different algorithms, and
CD is often the computational bottleneck.

Usually, authors of collision detection simply define a certain
scenario on their own to test their algorithms. For instance, Otaduy
et al. [Otaduy and Lin 2003] used a set of self-defined scenarios
(wrinkled torus falling along with a spiral peg, spoon sliding inside

OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

a cup, soup of numbers settling in a bowl) to benchmark their
proposed CD algorithm. Van Den Bergen [van den Bergen 1998]
positioned a pair of objects inside a bounded space randomly and
tested them for the intersection. The probability of intersection is
controlled by changing the size of objects.

There exist only very few efforts to provide general, fair, and re-
producible benchmarks for CD algorithms. Zachmann [Zachmann
1998] proposed a simple benchmark for DopTree that also applies to
general algorithms by positioning two identical objects at a certain
distance relative to each other. The relative distance is calculated
based on the center of the object’s bounding box. One object will
stay still, while the other performs a full rotation around the z-axis
at fixed small steps. The average timing of the CD algorithm is
calculated by averaging CD time at all steps.

Caselli et al. [Caselli et al. 2002] use several predefined scenes
in a probabilistic motion planner to benchmark several advanced
collision detection algorithms, i.e., V-Clip, RAPID, SOLID, PQP, and
V-Collide. However, the results can not be directly transferred to
scenarios not included in the benchmark.

Trenkel et al. [Trenkel et al. 2007] proposed a systematic way
to measure CD algorithms by combining broad and narrow phases
from Hubbard [Hubbard 1993] taxonomies into a CD pipeline. The
test scenarios are generated by positioning two identical objects
at a predefined distance. The positions and orientations for the
predefined distance are generated by rotating and translating one
of the objects.

Diktas et al. [Diktas and Sahiner 2008] argue that it is not enough
to test algorithms based on the relative distance between objects
since objects might penetrate against each other. They proposed
a benchmarking suite that takes relative penetration along with
relative distance and size into account. They presented a way to
generate a position by performing continuous CD using sphere-tree
fitted to object against the object’s surface offset.

Weller et al. [Weller et al. 2010] extended [Trenkel et al. 2007]
to include relative penetration between objects. They proposed
a method to measure the quality of force and torque for 6 DOF
(Degrees Of Freedom) haptic rendering and applied it to evaluate
two algorithms, i.e., Voxmap-Pointshell (VPS) and Inner Sphere
Tree (IST).

Woulfe et al. [Woulfe and Manzke 2009] proposed a generic
benchmarking suite for interactive applications. They enable users
to supply parameters that mimic the standard geometric and physi-
cal properties of rigid bodies, i.e., position, size, mass, acceleration,
velocity, etc. However, it is limited to CD algorithms available in
Bullet Physics. The object is also predefined, which makes it im-
possible to test a custom object. Besides that, adding a custom CD
algorithms into Bullet is extremely difficult.

Although there exist some efforts to provide a fair and systematic
benchmark for CD algorithms, little to none work has been put
to provide a better understanding of benchmarking results on a
sub-object level to identify, for instance, parts of an object that
are maybe especially well or badly suited for a certain algorithm.
Results are mostly represented using a chart or histogram based on
algorithms’ average or maximum timings for the whole sequence of
configurations and a complete pair of objects, which is not sufficient
to understand CD algorithms’ behavior & characteristic in-depth.

3 OUR APPROACH
Our OpenCollBench consists of three parts: an easy-to-use but
highly adjustable benchmark for CD and PQ algorithms, a novel
visualizationmethod for the results of the benchmarks that supports
a sophisticated but understandable inspection of the results even
for inexperienced users on a sub-object level, and a web-based
system that offers our benchmark as a service. In the following, we
will detail the individual parts of OpenCollBench, starting with the
actual benchmark.

3.1 Collision Detection Benchmark
The core benchmarking functionality of OpenCollBench relies on
an already available standardized open-source benchmarking suite
by Trenkel et al. [Trenkel et al. 2007]; hence we will start with a very
quick recap. In general, the benchmarking suite is a suitable narrow
phase CD of arbitrary polygonal rigid objects, and it supports even
polygon soups. It is based on the observation that the running-time
of boolean CD algorithms is worst in the case that the objects are
in close proximity but do not collide: in this case, the typical BVH-
based algorithms have to traverse very often down to the leaves,
but they cannot stop the traversal because they do not find an
actual intersection; hence a lot of backtracking is necessary by the
recursive traversal algorithms. Moreover, it relies on the assumption
that in interactive applications, it is not known in advance in which
particular configuration, i.e., translation and orientation, the pair
of objects will collide; hence, we have to consider all of them.

As a consequence, the benchmarking suite samples the configu-
ration space with a user-definable accuracy. The sampling includes
the possible orientations and distances of the objects. Two differ-
ent sampling methods are available; one simply places one object
on a sphere and moves it towards the second object until a cer-
tain distance is met, whereas the second method uses a grid for
the initial positioning of the moving object. The second method
is more accurate but requires more computation time to generate
a set of configurations. The user can define the set of objects. A
set of objects in different polygonal resolutions and pre-computed
configurations for these objects is available. For more details, we
refer the interested reader to [Trenkel et al. 2007].

The benchmark offers a lightweight and well-documented C++
interface: developers simply have to write a small wrapper that
offers two functions, one to import the polygonal model and a
second one to move the objects according to a 4x4 transformation
matrix. There already exist many wrappers for current state-of-
the-art collision detection libraries like CollDet with its different
included algorithms, including the new SIMDop [Tan et al. 2019]
that uses SIMD units of modern CPUs for the acceleration of the
traversal, PQP [Larsen et al. 1999b], DOPTree [Zachmann 1998],
BoxTree [Zachmann 1995], and V-COLLIDE [Hudson et al. 1997].
The benchmark is based on OpenSG, and this has the advantage
that it supports a lot of different 3D object formats to be imported.
Moreover, it has a headless mode, which is essential for server oper-
ation and guarantees benchmarking results that are not disturbed
by interferences with the graphical output. In headless mode, all
the parameters can be passed to the benchmark via the command
line.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

In its original form, the benchmarking suite supports only boolean
collision detection algorithms, i.e., algorithms that tell whether a
pair of objects collide or not. We have extended it also for proximity
queries. In this case, the algorithms report minimum distances in
case of non-penetrations. This kind of information is often required
in robotic applications such as path planning. We only slightly
changed the wrapper interfaces for algorithms that also support
distance computations; the configuration generation remained un-
touched. Moreover, we extended the data that is collected during a
benchmarking procedure that we will use in the next section for
our heatmap visualization: the main difference is that we count
for each triangle how often it appears in a polygon test, and we
count the number of bounding volume and polygon tests for each
configuration.

3.2 Heatmap Visualization
The benchmarking suite by Trenkel et al. [Trenkel et al. 2007]
already includes several scripts based on Gnuplot to generate plots
of the results: for instance, for a pair of objects at a certain polygon
count, it can plot the average or maximum running time of the
benchmarked algorithms with respect to the distance, or it can plot
the running-time with respect to polygon count for a fixed distance.
Such plots are useful to get a broad overview of the algorithms’
performance with a particular pair of objects. However, depending
on the object, it is possible, that the maximum running time is
realized only at a very special part of the object that is hardly
colliding in the target application. Evenmore, maybe a slight change
of the object, e.g., placing an antenna a few polygons to the right
or the left, might change the performance of the collision detection
dramatically, so can also do a simple re-polygonization of parts of
the object. Consequently, we decided to implement a novel, more
sophisticated visualization of the benchmarking results on a sub-
object level. The main idea is to visualize different results directly
on the object’s surface by using a heatmap.

To do that, we collect additional data, as written in the previous
section, during the benchmark. For a pair of 3D objectsA and B and
a set C of n configurations C = (c1, c2, ..., cm) that was generated
by the benchmarking suite, we store for each configuration ci ∈ C
the collision check time ti , the number of tested bounding volumes
bvi , the number of tested polygons ni . Then we project the data to
the object to generate the heatmap. Therefore, we compute for each
configuration ci the closest point pi between the pair of objects (see
Figure 2b). This is usually located on a polygon p ofA and one B. In
order to generate a heatmap forAwe assign the measured values ti ,
bvi , and ni to all vertices of p. Obviously, we normalize the assigned
vertex values by dividing them by the number of assignments.

This facilitates it to identify interesting object regions, e.g., re-
gions that are hardly checked for collisions, regions where particu-
lar algorithms perform better or worse, etc.

These vertex values can be easily mapped to color values when
showing the heatmaps in our web GUI. We support different map-
pings of the values to colors, namely:

(1) Average (Figure 1a), median (Figure 1b), min (Figure 1e), and
max (Figure 1f) timing.
• to visualize critical regions based on algorithm’s timing.

(a) (b)

(c) (d)

Figure 2: Heatmap generation pipeline based on bench-
mark’s result: (a) 3D object, (b) closest points of all configu-
rations, (c) generated heatmap based on algorithm timings,
and (d) generated heatmap based on configurations density.

(2) Standard Deviation (Figure 1c) and Median Absolute Devia-
tion (Figure 1d)
• to visualize outlier regions where algorithm’s timing could
differs greatly between slightly different configurations.

(3) Configuration density (Figure 1g)
• to visualize regions that are extensively or hardly checked
by algorithms.

We also support an optional outlier removal based on the inter-
quartile range (see Figures 3). Using ti , bvi , and ni the heatmaps
can be generated to visualize the average or median time and also
another statistical information to classify the data like the standard
deviation (see Figures 2c and 2d for some examples), as well as the
number of tested polygons (see Figure 4a), and the number of BV
checks (see Figure 4b).

3.3 Web-based Benchmarking Service
A primary goal of OpenCollBench as a benchmark as a service is
to simplify the time-consuming process of integrating CD and con-
figuring algorithms and to provide a common hard- and software
platform to produce long-term reproducible and comparable results.
We have realized this by a web-based client-server architecture. Fig-
ure 6 shows an overview of our system; it is based on a front end
that provides an easy-to-use GUI to the user and a dedicated back
end server that performs the actual benchmarking.

The front end is designed to focus on simplification and usability
of the benchmarking process to enable both expert and non-expert
users to intuitively benchmark CD algorithms. We have imple-
mented our front end using the vue.js framework. Figure 7 shows
the website to select appropriate benchmark parameters via sliders

OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

(a) (b)

Figure 3:Heatmaps of object pipeswith 124k polygons based
on median value (timing in milisec) of 200k configurations
(a) before, and (b) after removing outliers using interquartile
range.

OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

(a) (b)

Figure 3:Heatmaps of object pipeswith 124k polygons based
on median value (timing in milisec) of 200k configurations
(a) before, and (b) after removing outliers using interquartile
range.

(a) (b)

Figure 4: Heatmaps of object happy buddha with 100k poly-
gons based on statistical information of 200k configura-
tion’s density (the number of check) (a) BV check, and (b)
polygon check of DOPTree algorithm. The red circle shows
regions that heavily checked at both BVH and primitive
level.

and buttons. Additionally, it is possible to upload objects and option-
ally store them together with the generated configurations. Another
option is to register for an account to recall previous benchmarking
results or re-trigger past benchmark runs. In order to prevent failed
benchmark due to connection problem or time constraints, we mark
incoming benchmark requests with a unique id and store the id
to the user’s browser locally via cookies. This request-id enables
the user to resume ongoing benchmarks. We also implemented a
progress interface (see Figure 8) to keep the user informed about
ongoing benchmark, e.g., uploading objects, generating configura-
tion, performing benchmark, or generating heatmaps. By default,
all generated results will be saved on our server for a period of time
in case the same object is being tested again. However, we plan to
add a more sophisticated access system that optionally allows users
to secure their uploaded objects and results in the future. This is

required, especially for industrial users that wish nondisclosure.
Traditional plots of the results of the benchmark can be downloaded.
Moreover, our client offers the possibility to inspect the objects
with the heatmap overlay discussed in the previous section. The
visualization is realized in WebGL via three.js. The heatmap viewer
can be adjusted by the user to show the different results, switch
outlier removal on and off, or chose an appropriate coloring method
(see Figure 9).

The front end communicates via Axios with our dedicated back
end server. In general, our back end server is implemented using the
Express framework on top of node.js. It consists of several modules:

• Request handler handles incoming benchmark requests. It
also assigns the unique id and schedules the requests via a
queue system to prevent benchmarking suites from running
multiple instances at one time, which will mess up CD al-
gorithms’ timing. The request handler is implemented with
express.js.

• Collision Benchmarking Suite performs the actual CD & PQ
benchmark for a given object and parameters. It also is re-
sponsible for generating the configurations according to the
user’s selected parameters. The benchmarking suite is im-
plemented in C++, and it uses OpenSG, according to Trenkel
et al. [Trenkel et al. 2007].

• Heatmap Generation Pipeline generates the heatmaps, i.e., the
vertex colors, from the benchmark results. It is implemented
in implemented using three.js.

• Exporter finally exports the generated heatmap into a file for
further access by the front end.

Our server runs under Windows 10 on an Intel i9-9820X CPU
with 10 discrete CPU cores; Hyperthreading is enabled to support
20 Threads, 64GB RAM, and GTX 980 GPU. Currently, none of
the included algorithms uses multithreading for the narrow phase
collision detection. The Intel Turbo Boost is enabled, this allows
single-core applications to increase the maximum CPU frequency.
We decided to use a current state-of-the-art Intel CPU because, in
contrast to the recent AMD CPUs, it supports the most advanced
SIMD acceleration technique, which is at the moment AVX512. Our
results show that collision detection algorithms can benefit from
this technology dramatically. On the other hand, the GPU seems
a little bit outdated. However, most available narrow phase CD &
PQ algorithms for rigid objects, particularly all of the algorithms
currently supported by the benchmarking suite, run completely on
the CPU. Moreover, the benchmark runs in headless mode; hence,
there is no need for a powerful GPU at the moment. Obviously,
in the future, the state-of-the-art in both hardware and software
might change. In the case of large development steps, we will have
to replace our current server. In order to still guarantee comparable
results, we will simple re-trigger all benchmarks that are stored so
far and update the results. The users will be informed about the new
results automatically if they agree to this procedure. Moreover, in
the case that submitted CD libraries do not work on a new platform,
we will contact the developers to adjust their libraries or exclude
them from further benchmarking. This will motivate developers to
maintain their software to be further included in the benchmarking
suite and hence, to be considered by those users searching for an
appropriate CD solution and to be cited in future applications.

Figure 4: Heatmaps of object happy buddha with 100k poly-
gons based on statistical information of 200k configura-
tion’s density (the number of check) (a) BV check, and (b)
polygon check of DOPTree algorithm. The red circle shows
regions that heavily checked at both BVH and primitive
level.

and buttons. Additionally, it is possible to upload objects and option-
ally store them together with the generated configurations. Another
option is to register for an account to recall previous benchmarking
results or re-trigger past benchmark runs. In order to prevent failed
benchmark due to connection problem or time constraints, we mark
incoming benchmark requests with a unique id and store the id
to the user’s browser locally via cookies. This request-id enables
the user to resume ongoing benchmarks. We also implemented a
progress interface (see Figure 8) to keep the user informed about
ongoing benchmark, e.g., uploading objects, generating configura-
tion, performing benchmark, or generating heatmaps. By default,
all generated results will be saved on our server for a period of time
in case the same object is being tested again. However, we plan to
add a more sophisticated access system that optionally allows users
to secure their uploaded objects and results in the future. This is

required, especially for industrial users that wish nondisclosure.
Traditional plots of the results of the benchmark can be downloaded.
Moreover, our client offers the possibility to inspect the objects
with the heatmap overlay discussed in the previous section. The
visualization is realized in WebGL via three.js. The heatmap viewer
can be adjusted by the user to show the different results, switch
outlier removal on and off, or chose an appropriate coloring method
(see Figure 9).

The front end communicates via Axios with our dedicated back
end server. In general, our back end server is implemented using the
Express framework on top of node.js. It consists of several modules:

• Request handler handles incoming benchmark requests. It
also assigns the unique id and schedules the requests via a
queue system to prevent benchmarking suites from running
multiple instances at one time, which will mess up CD al-
gorithms’ timing. The request handler is implemented with
express.js.

• Collision Benchmarking Suite performs the actual CD & PQ
benchmark for a given object and parameters. It also is re-
sponsible for generating the configurations according to the
user’s selected parameters. The benchmarking suite is im-
plemented in C++, and it uses OpenSG, according to Trenkel
et al. [Trenkel et al. 2007].

• Heatmap Generation Pipeline generates the heatmaps, i.e., the
vertex colors, from the benchmark results. It is implemented
in implemented using three.js.

• Exporter finally exports the generated heatmap into a file for
further access by the front end.

Our server runs under Windows 10 on an Intel i9-9820X CPU
with 10 discrete CPU cores; Hyperthreading is enabled to support
20 Threads, 64GB RAM, and GTX 980 GPU. Currently, none of
the included algorithms uses multithreading for the narrow phase
collision detection. The Intel Turbo Boost is enabled, this allows
single-core applications to increase the maximum CPU frequency.
We decided to use a current state-of-the-art Intel CPU because, in
contrast to the recent AMD CPUs, it supports the most advanced
SIMD acceleration technique, which is at the moment AVX512. Our
results show that collision detection algorithms can benefit from
this technology dramatically. On the other hand, the GPU seems
a little bit outdated. However, most available narrow phase CD &
PQ algorithms for rigid objects, particularly all of the algorithms
currently supported by the benchmarking suite, run completely on
the CPU. Moreover, the benchmark runs in headless mode; hence,
there is no need for a powerful GPU at the moment. Obviously,
in the future, the state-of-the-art in both hardware and software
might change. In the case of large development steps, we will have
to replace our current server. In order to still guarantee comparable
results, we will simple re-trigger all benchmarks that are stored so
far and update the results. The users will be informed about the new
results automatically if they agree to this procedure. Moreover, in
the case that submitted CD libraries do not work on a new platform,
we will contact the developers to adjust their libraries or exclude
them from further benchmarking. This will motivate developers to
maintain their software to be further included in the benchmarking
suite and hence, to be considered by those users searching for an
appropriate CD solution and to be cited in future applications.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1,000

1,200

1,400

relative distance

tim
e/
se
c

Grid
Sphere

Figure 5: Time needed to generate around 200k configura-
tions based onGrid and Sphere position findingmethods for
object bunny with 65k polygons at various predefined dis-
tances. The position finding methods tend to be slower at
the higher distance between objects.

Figure 6: System Overview of OpenCollBench, which con-
sists of two parts, namely front end that enable user to up-
load 3d object and select benchmarking parameters, and
back end that process incoming benchmarking request and
return heatmap as result.

4 RESULTS
We have implemented our open benchmarking server as a web
service to allow both expert and non-expert users to easily evaluate
CD & PQ algorithms’ performance in standardized or optionally
user-definable scenarios and to identify possible bottlenecks. The
web service is open for the public and can be accessed at URL:

Figure 7: Interactive Graphical User interface (GUI) for
OpenCollBench, which enable user to upload object (red
box) and selecting benchmark parameters interactively. The
option panels connected with each other, i.e. changing
Bench Mode (blue box) to proximity will display algorithms
that support promxity query in Algo (green box).

Figure 8: Benchmark’s progress GUI for OpenCollBench,
which consists of three parts, namely, left (red box) showing
progress of object uploaded by user,middle (blue box) show-
ing benchmarking progress including configurations gener-
ation, and right (green box) showing progress of heatmap
generation pipeline.

Figure 9: Benchmark’s results GUI for OpenCollBench,
which showing generated heatmap based on benchmarking
results. Left panel (red box) enable user to select different
mapping value,middle panel (green box) showing generated
heatmap, and right panel (blue box) showing mapping color
value.

OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of KoreaOpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

(a) (b)

Figure 10: Heatmaps of object bunny with around 65k poly-
gons based on configuration’s density of around 200k con-
figuration using position finding method (a) Grid, and (b)
Sphere at a relative distance of 0.0. The Grid method is able
to generate more configurations at concave area (red circles)
compared with Sphere method.

http://opencollbench.com. Currently, only files in the OBJ format
can be uploaded by the user. In general, the benchmarking suite and
three.js support a wide variety of different 3D file formats; however,
they have to be integrated manually into three.js. For this reason,
but also for security reasons, we decided, at the moment, to restrict
the upload to the mostly used plain file format and add support for
further file formats later on user request.

First, we have investigated the performance of our benchmark-
ing server. In the case that the user does not choose a predefined
scenario but decides to upload his own objects, he has to generate a
set of configurations. According to [Trenkel et al. 2007], the user can
choose between the Grid and Sphere method. For a user-definable
number of configurations, the sphere method is faster, but it may
fail to generate some interesting contact scenarios, especially in the
case of concave objects, whereas the grid method is able to generate
a wider variety of configurations but requires more computation
time (see, e.g., the area around the ears and the foot in Figure 10). In
general, computing configurations can be rather time-consuming;
both the grid as well as the sphere method require up to 20 min-
utes to generate around 200k configurations for a pair of objects
consisting of a total of 130k polygons (see Figure 5). In the case of
close distances, the sphere method converges very quickly because
it is based on a BVH distance algorithm. In case of larger distances,
a lot more BV-pairs have to be considered to find the closest dis-
tance during the traversal, i.e., the pruning takes longer. We did not
expect such a large difference between the individual distance as
are shown by Figure 5, especially for distance 0.0, where we recog-
nized a speed-up of more than an order of magnitude for the sphere
method. However, the tendency of this behavior is independent of
the object; at least it appeared with all our benchmarking scenarios.
We will further investigate this in the future. While the configura-
tion computation is relatively slow, the actual benchmarking can
be done quickly. Benchmarking 200K configurations for a pair of
objects with a total of 130k polygons requires only 2 minutes in
case of the worst-case distance of 0.0.

In Section 3.2, we have introduced our new heatmap visualization
that allows investigating the algorithm’s performance on a sub-
object level. In this section, we will present a few findings from

this visualization. We use the google turbo colormap [Google 2019]
to map different kinds of benchmarking data to the vertices. This
data can be, for instance, average or median timing, the deviations
of the timings, the density, e.g., a counter how often a particular
polygon realizes the minimum distance between the objects for a
given number of configurations or the number of BV and polygon
tests. The average and minimum CD times per-vertex help us to
identify regions of the object where the CD requires more time
than in other regions (see Figure 3). However, in the case of large
differences in the values or measurement inaccuracies, our optional
outlier detection can be enabled, as described in the previous section.
This allows us to find the more complicated CD configurations, that
with the largest median CD times, close to the center of the pipes
object as expected. Investigating the timing deviations helps us to
identify regions that are susceptible to different configurations: e.g.,
Figure 12 shows the mapping of median absolute deviation timing
for an object using the DOPTree algorithm. We can see that the
performance checking the outer regions of the object is relatively
independent of the configuration, whereas, for the inner regions,
the configuration matters. Moreover, we can identify regions that
are hardly ever colliding, independently of the colliding object’s
configuration. To visualize this, we map the configuration’s density
to vertex color. Figure 13 shows the heatmap for the extremely
concave Lustre object. The inside of the object is hardly checked by
algorithms. However, it also shows small regions on the extremal
points of the objects that are hit very often. In the future, it could
be helpful to optimize CD algorithms for exactly such high-density
regions why building looser BVs for less dense regions, e.g., by
stopping the BV construction earlier and thus, storing multiple
polygons in a single leaf node.

We can also spread the heatmap coloring visualization through
the results of several algorithms: Figure 11 shows the median CD
check times for the bunny object with 65k polygon with a single
unified coloring for all algorithms. It is easy to detect the fastest
algorithm by the deep blue color, which is, in this example, the
SimDOP. For some algorithms, we can find different critical re-
gions; for the DopTree, checking the regions between the ears is
the most time consuming (see Figure 11a), whereas the Boxtree has
a bottleneck at the back of the bunny (see Figure 11c). V-COLLIDE,
PQP, and SIMDop seem to perform independent of the region, at
least in this unified visualization.

Beyond boolean CD, our benchmarking suite can be used to eval-
uate PQ algorithms. Obviously, PQ is more complicated than simple
CD checks: classical BVH-based CD algorithms can prune non-
overlapping parts earlier according to the Separating Axis Theorem
(SAT). Hence, when using the same BVH, the PQ performs worse
than the CD BVH. Figure 14 shows the benchmarking result using
SIMDop, an algorithm that supports both CD & PQ checks. The
CD check remains fast & stable across all configurations, whereas
PQ checks slow & differs between regions compared with the CD
check. In the case of larger distances, the minimum distance is usu-
ally found close to the objects’ extremal points, i.e., on the convex
hull of the object. We can find this observation by visualizing the
density with respect to the distance: Figure 15 shows heatmaps for
a chair object with 113k polygons for the various relative distance
between objects. The configurations were generated using the Grid
method and have around 200k configurations each.

Figure 10: Heatmaps of object bunny with around 65k poly-
gons based on configuration’s density of around 200k con-
figuration using position finding method (a) Grid, and (b)
Sphere at a relative distance of 0.0. The Grid method is able
to generate more configurations at concave area (red circles)
compared with Sphere method.

http://opencollbench.com. Currently, only files in the OBJ format
can be uploaded by the user. In general, the benchmarking suite and
three.js support a wide variety of different 3D file formats; however,
they have to be integrated manually into three.js. For this reason,
but also for security reasons, we decided, at the moment, to restrict
the upload to the mostly used plain file format and add support for
further file formats later on user request.

First, we have investigated the performance of our benchmark-
ing server. In the case that the user does not choose a predefined
scenario but decides to upload his own objects, he has to generate a
set of configurations. According to [Trenkel et al. 2007], the user can
choose between the Grid and Sphere method. For a user-definable
number of configurations, the sphere method is faster, but it may
fail to generate some interesting contact scenarios, especially in the
case of concave objects, whereas the grid method is able to generate
a wider variety of configurations but requires more computation
time (see, e.g., the area around the ears and the foot in Figure 10). In
general, computing configurations can be rather time-consuming;
both the grid as well as the sphere method require up to 20 min-
utes to generate around 200k configurations for a pair of objects
consisting of a total of 130k polygons (see Figure 5). In the case of
close distances, the sphere method converges very quickly because
it is based on a BVH distance algorithm. In case of larger distances,
a lot more BV-pairs have to be considered to find the closest dis-
tance during the traversal, i.e., the pruning takes longer. We did not
expect such a large difference between the individual distance as
are shown by Figure 5, especially for distance 0.0, where we recog-
nized a speed-up of more than an order of magnitude for the sphere
method. However, the tendency of this behavior is independent of
the object; at least it appeared with all our benchmarking scenarios.
We will further investigate this in the future. While the configura-
tion computation is relatively slow, the actual benchmarking can
be done quickly. Benchmarking 200K configurations for a pair of
objects with a total of 130k polygons requires only 2 minutes in
case of the worst-case distance of 0.0.

In Section 3.2, we have introduced our new heatmap visualization
that allows investigating the algorithm’s performance on a sub-
object level. In this section, we will present a few findings from

this visualization. We use the google turbo colormap [Google 2019]
to map different kinds of benchmarking data to the vertices. This
data can be, for instance, average or median timing, the deviations
of the timings, the density, e.g., a counter how often a particular
polygon realizes the minimum distance between the objects for a
given number of configurations or the number of BV and polygon
tests. The average and minimum CD times per-vertex help us to
identify regions of the object where the CD requires more time
than in other regions (see Figure 3). However, in the case of large
differences in the values or measurement inaccuracies, our optional
outlier detection can be enabled, as described in the previous section.
This allows us to find the more complicated CD configurations, that
with the largest median CD times, close to the center of the pipes
object as expected. Investigating the timing deviations helps us to
identify regions that are susceptible to different configurations: e.g.,
Figure 12 shows the mapping of median absolute deviation timing
for an object using the DOPTree algorithm. We can see that the
performance checking the outer regions of the object is relatively
independent of the configuration, whereas, for the inner regions,
the configuration matters. Moreover, we can identify regions that
are hardly ever colliding, independently of the colliding object’s
configuration. To visualize this, we map the configuration’s density
to vertex color. Figure 13 shows the heatmap for the extremely
concave Lustre object. The inside of the object is hardly checked by
algorithms. However, it also shows small regions on the extremal
points of the objects that are hit very often. In the future, it could
be helpful to optimize CD algorithms for exactly such high-density
regions why building looser BVs for less dense regions, e.g., by
stopping the BV construction earlier and thus, storing multiple
polygons in a single leaf node.

We can also spread the heatmap coloring visualization through
the results of several algorithms: Figure 11 shows the median CD
check times for the bunny object with 65k polygon with a single
unified coloring for all algorithms. It is easy to detect the fastest
algorithm by the deep blue color, which is, in this example, the
SimDOP. For some algorithms, we can find different critical re-
gions; for the DopTree, checking the regions between the ears is
the most time consuming (see Figure 11a), whereas the Boxtree has
a bottleneck at the back of the bunny (see Figure 11c). V-COLLIDE,
PQP, and SIMDop seem to perform independent of the region, at
least in this unified visualization.

Beyond boolean CD, our benchmarking suite can be used to eval-
uate PQ algorithms. Obviously, PQ is more complicated than simple
CD checks: classical BVH-based CD algorithms can prune non-
overlapping parts earlier according to the Separating Axis Theorem
(SAT). Hence, when using the same BVH, the PQ performs worse
than the CD BVH. Figure 14 shows the benchmarking result using
SIMDop, an algorithm that supports both CD & PQ checks. The
CD check remains fast & stable across all configurations, whereas
PQ checks slow & differs between regions compared with the CD
check. In the case of larger distances, the minimum distance is usu-
ally found close to the objects’ extremal points, i.e., on the convex
hull of the object. We can find this observation by visualizing the
density with respect to the distance: Figure 15 shows heatmaps for
a chair object with 113k polygons for the various relative distance
between objects. The configurations were generated using the Grid
method and have around 200k configurations each.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel ZachmannWeb3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

(a) DopTree (b) V-COLLIDE

(c) BoxTree (d) PQP

(e) SIMDop

Figure 11: Heatmaps based on median value (timing in
milisec) for object bunny with 65k polygons based on rel-
ative median value of various CD algorithms timings after
removing outliers. The red circles show slower regions for
particular algorithms.

5 CONCLUSIONS AND FUTUREWORK
We have presented OpenCollBench, a benchmarking architecture
for collision detection and proximity algorithms that offers the
benchmarking procedure as an open web service to the public. The
goal is to make complicated and time-consuming benchmarking
accessible for both expert and non-expert users. We have addressed
this goal by proposing a combination of a simple yet adjustable
user interface with a dedicated hardware platform that guarantees
reproducible and comparable results. Additionally, we have pre-
sented an extension to a sub-object accuracy for the analysis of
the benchmarking results. The idea is to use heatmaps to visualize
information gathered by the benchmark. This allows the user to
identify critical parts of their objects, and it enables a better un-
derstanding of the behavior and characteristics of the particular
collision detection algorithm.

Our approach also offers interesting avenues for future work: for
instance, currently, OpenCollBench is restricted to narrow phase
collision detection and proximity queries for rigid objects that run

Figure 12: Heatmap result of object schwammwith 95k poly-
gons based onmedian absolute deviation (timing in milisec)
using DOPTree. The outer region does not fluctuate much,
whereas the inner region fluctuates up to 1.1 milisec be-
tween slightly different configurations.

Figure 13: Heatmap of object lustre with 120k polygons
based configuration’s density of 200k configurations gener-
ated using Grid method after removing outlier. The inner
region rarely checked by algorithms, whereas the outer re-
gion heavily tested.

on the CPU. Obviously, we want to extend our benchmark to cover
more cases related to collision detection, like broad phase CD, de-
formable objects, GPU-based algorithms, other kinds of object rep-
resentation than polygonal objects, to name but a few. We also
plan to include real penetration scenarios, e.g., the relative penetra-
tion volume, according to [Weller et al. 2010], that can be used to
compute additional configurations. In general, we want to include
more collision detection libraries. In the future, we plan to offer
researchers and developers an automatic upload of their libraries
to the OpenCollBench framework. However, this may result in
security risks, which is the main reason that currently, the inclu-
sion of new algorithms is curated by the authors. Moreover, we
want to use the information gained from the extended heatmap
visualization to improve existing collision detection algorithms or
even develop completely new ones. Our results already provide

Figure 11: Heatmaps based on median value (timing in
milisec) for object bunny with 65k polygons based on rel-
ative median value of various CD algorithms timings after
removing outliers. The red circles show slower regions for
particular algorithms.Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

(a) DopTree (b) V-COLLIDE

(c) BoxTree (d) PQP

(e) SIMDop

Figure 11: Heatmaps based on median value (timing in
milisec) for object bunny with 65k polygons based on rel-
ative median value of various CD algorithms timings after
removing outliers. The red circles show slower regions for
particular algorithms.

5 CONCLUSIONS AND FUTUREWORK
We have presented OpenCollBench, a benchmarking architecture
for collision detection and proximity algorithms that offers the
benchmarking procedure as an open web service to the public. The
goal is to make complicated and time-consuming benchmarking
accessible for both expert and non-expert users. We have addressed
this goal by proposing a combination of a simple yet adjustable
user interface with a dedicated hardware platform that guarantees
reproducible and comparable results. Additionally, we have pre-
sented an extension to a sub-object accuracy for the analysis of
the benchmarking results. The idea is to use heatmaps to visualize
information gathered by the benchmark. This allows the user to
identify critical parts of their objects, and it enables a better un-
derstanding of the behavior and characteristics of the particular
collision detection algorithm.

Our approach also offers interesting avenues for future work: for
instance, currently, OpenCollBench is restricted to narrow phase
collision detection and proximity queries for rigid objects that run

Figure 12: Heatmap result of object schwammwith 95k poly-
gons based onmedian absolute deviation (timing in milisec)
using DOPTree. The outer region does not fluctuate much,
whereas the inner region fluctuates up to 1.1 milisec be-
tween slightly different configurations.

Figure 13: Heatmap of object lustre with 120k polygons
based configuration’s density of 200k configurations gener-
ated using Grid method after removing outlier. The inner
region rarely checked by algorithms, whereas the outer re-
gion heavily tested.

on the CPU. Obviously, we want to extend our benchmark to cover
more cases related to collision detection, like broad phase CD, de-
formable objects, GPU-based algorithms, other kinds of object rep-
resentation than polygonal objects, to name but a few. We also
plan to include real penetration scenarios, e.g., the relative penetra-
tion volume, according to [Weller et al. 2010], that can be used to
compute additional configurations. In general, we want to include
more collision detection libraries. In the future, we plan to offer
researchers and developers an automatic upload of their libraries
to the OpenCollBench framework. However, this may result in
security risks, which is the main reason that currently, the inclu-
sion of new algorithms is curated by the authors. Moreover, we
want to use the information gained from the extended heatmap
visualization to improve existing collision detection algorithms or
even develop completely new ones. Our results already provide

Figure 12: Heatmap result of object schwammwith 95k poly-
gons based onmedian absolute deviation (timing in milisec)
using DOPTree. The outer region does not fluctuate much,
whereas the inner region fluctuates up to 1.1 milisec be-
tween slightly different configurations.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Toni Tan, René Weller, and Gabriel Zachmann

(a) DopTree (b) V-COLLIDE

(c) BoxTree (d) PQP

(e) SIMDop

Figure 11: Heatmaps based on median value (timing in
milisec) for object bunny with 65k polygons based on rel-
ative median value of various CD algorithms timings after
removing outliers. The red circles show slower regions for
particular algorithms.

5 CONCLUSIONS AND FUTUREWORK
We have presented OpenCollBench, a benchmarking architecture
for collision detection and proximity algorithms that offers the
benchmarking procedure as an open web service to the public. The
goal is to make complicated and time-consuming benchmarking
accessible for both expert and non-expert users. We have addressed
this goal by proposing a combination of a simple yet adjustable
user interface with a dedicated hardware platform that guarantees
reproducible and comparable results. Additionally, we have pre-
sented an extension to a sub-object accuracy for the analysis of
the benchmarking results. The idea is to use heatmaps to visualize
information gathered by the benchmark. This allows the user to
identify critical parts of their objects, and it enables a better un-
derstanding of the behavior and characteristics of the particular
collision detection algorithm.

Our approach also offers interesting avenues for future work: for
instance, currently, OpenCollBench is restricted to narrow phase
collision detection and proximity queries for rigid objects that run

Figure 12: Heatmap result of object schwammwith 95k poly-
gons based onmedian absolute deviation (timing in milisec)
using DOPTree. The outer region does not fluctuate much,
whereas the inner region fluctuates up to 1.1 milisec be-
tween slightly different configurations.

Figure 13: Heatmap of object lustre with 120k polygons
based configuration’s density of 200k configurations gener-
ated using Grid method after removing outlier. The inner
region rarely checked by algorithms, whereas the outer re-
gion heavily tested.

on the CPU. Obviously, we want to extend our benchmark to cover
more cases related to collision detection, like broad phase CD, de-
formable objects, GPU-based algorithms, other kinds of object rep-
resentation than polygonal objects, to name but a few. We also
plan to include real penetration scenarios, e.g., the relative penetra-
tion volume, according to [Weller et al. 2010], that can be used to
compute additional configurations. In general, we want to include
more collision detection libraries. In the future, we plan to offer
researchers and developers an automatic upload of their libraries
to the OpenCollBench framework. However, this may result in
security risks, which is the main reason that currently, the inclu-
sion of new algorithms is curated by the authors. Moreover, we
want to use the information gained from the extended heatmap
visualization to improve existing collision detection algorithms or
even develop completely new ones. Our results already provide

Figure 13: Heatmap of object lustre with 120k polygons
based configuration’s density of 200k configurations gener-
ated using Grid method after removing outlier. The inner
region rarely checked by algorithms, whereas the outer re-
gion heavily tested.OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

(a) (b)

Figure 14: Heatmaps of object bunny with 65k polygons
based on median value (timing in milisec) of 200k configu-
rations for (a) CD, and (b) PQ without SIMD traversal, using
SIMDop algorithms at relative distance of 0.0. The CD check
remains stable across configurations, whereas PQ fluctuates
between regions.

(a) (b) (c)

Figure 15: Heatmaps of object chair with 70k polygons based
on configuration’s density generated by grid method at rel-
ative distance (a) 0.0, (b) 0.2, and (c) 0.4. The further the
relative distance between objects, the fewer object regions
checked by algorithms.

hints that BVH-based algorithms can be optimized by, for instance,
optimizing the polygonization in parts of the objects, e.g., by trans-
parently performing local subdivision steps or by optimizing the
BVH construction. We also consider a hybrid algorithm that au-
tomatically chooses the optimal CD algorithm depending on the
objects’ actual configuration. This could be realized by an AI-based
approach. Finally, we consider extending the idea of a benchmark
as a service to other kinds of algorithms, especially in the computer
graphics context: acceleration data structures for ray tracing could
be a first interesting topic for this.

ACKNOWLEDGMENTS
The research reported in this paper has been (partially) supported
by the German Research Foundation DFG, as part of Collabora-
tive Research Center (Sonderforschungsbereich) 1320 “EASE - Ev-
eryday Activity Science and Engineering”, University of Bremen

(http://www.ease-crc.org/). The research was conducted in subpro-
ject R03 <Embodied simulation-enabled reasoning>.

REFERENCES
Stefano Caselli, Monica Reggiani, and M. Mazzoli. 2002. Exploiting Advanced Collision

Detection Libraries in a Probabilistic Motion Planner.. In WSCG. 103–110.
Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian

Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. Mot20: A bench-
mark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003
(2020).

Engin Deniz Diktas and Ali Vahit Sahiner. 2008. A benchmarking framework for static
collision detection. (2008).

R. Gillard and G. A. E. Vandenbosch. 2009. SoftLAB, a European web-service for
antenna software benchmark. In 2009 3rd European Conference on Antennas and
Propagation. 2736–2740.

Google. 2019. Turbo, An Improved Rainbow Colormap for Visualization. https://ai.
googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchi-
cal structure for rapid interference detection. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM, 171–180.

David Hsu, Lydia E Kavraki, Jean-Claude Latombe, Rajeev Motwani, Stephen Sorkin,
et al. 1998. On finding narrow passages with probabilistic roadmap planners. In
Robotics: the algorithmic perspective: 1998 workshop on the algorithmic foundations
of robotics. 141–154.

Philip M Hubbard. 1993. Interactive collision detection. In Proceedings of 1993 IEEE
Research Properties in Virtual Reality Symposium. IEEE, 24–31.

Philip M. Hubbard. 1996. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transactions on Graphics 15, 3 (July 1996), 179–210.

Thomas C Hudson, Ming C Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. 1997. V-COLLIDE: Accelerated collision detection for VRML. In Proceed-
ings of the second symposium on Virtual reality modeling language. 117–ff.

James Thomas Klosowski. 1998. Efficient Collision Detection for Interactive 3D Graphics
and Virtual Environments. Ph.D. Dissertation. State University of New York at Stony
Brook. Adviser-Joseph S. Mitchell.

S. Krishnan, M. Gopi, M. Lin, Dinesh Manocha, and A. Pattekar. 1998. Rapid and
Accurate Contact Determination between SplineModels using ShellTrees. Computer
Graphics Forum 17, 3 (1998), 315–326.

E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. 1999a. Fast proximity queries with
swept sphere volumes. In Technical Report TR99-018.

Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1999b. Fast proximity
queries with swept sphere volumes. Technical Report. Department of Computer
Science, University of North Carolina.

Jonas Lext, Ulf Assarsson, and Tomas Moller. 2001. A benchmark for animated ray
tracing. IEEE Computer Graphics and Applications 21, 2 (2001), 22–31.

Miguel A. Otaduy and Ming C. Lin. 2003. CLODs: Dual Hierarchies for Multiresolu-
tion Collision Detection. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing (Aachen, Germany) (SGP ’03). Eurographics
Association, Goslar, DEU, 94–101.

T. Tan, R. Weller, and G. Zachmann. 2019. SIMDop: SIMD optimized Bounding Volume
Hierarchies for Collision Detection. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 7256–7263.

Sven Trenkel, René Weller, and Gabriel Zachmann. 2007. A Benchmarking Suite for
Static Collision Detection Algorithms. In International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), Václav Skala
(Ed.). Union Agency, Plzen, Czech Republic. http://cg.in.tu-clausthal.de/research/
colldet_benchmark

Gino van den Bergen. 1998. Efficient collision detection of complex deformable models
using AABB trees. J. Graph. Tools 2, 4 (Jan. 1998), 1–13. http://dl.acm.org/citation.
cfm?id=763345.763346

Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann, and
Carsten Preusche. 2010. A benchmarking suite for 6-dof real time collision response
algorithms. In Proceedings of the 17th ACM symposium on virtual reality software
and technology. 63–70.

J-L Widlowski, M Robustelli, M Disney, J-P Gastellu-Etchegorry, T Lavergne, P Lewis,
PRJ North, B Pinty, R Thompson, and MM Verstraete. 2008. The RAMI On-line
Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance
models. Remote Sensing of Environment 112, 3 (2008), 1144–1150.

Muiris Woulfe and Michael Manzke. 2009. A framework for benchmarking interac-
tive collision detection. In Proceedings of the 25th Spring Conference on Computer
Graphics. 205–212.

Gabriel Zachmann. 1995. The BoxTree: Exact and Fast Collision Detection of Arbitrary
Polyhedra. In SIVE Workshop. 104–112.

Gabriel Zachmann. 1998. Rapid Collision Detection by Dynamically Aligned DOP-
Trees. In Proc. of IEEE Virtual Reality Annual International Symposium; VRAIS ’98.
Atlanta, Georgia, 90–97.

Figure 14: Heatmaps of object bunny with 65k polygons
based on median value (timing in milisec) of 200k configu-
rations for (a) CD, and (b) PQ without SIMD traversal, using
SIMDop algorithms at relative distance of 0.0. The CD check
remains stable across configurations, whereas PQ fluctuates
between regions.

(a) (b) (c)

Figure 15: Heatmaps of object chair with 70k polygons based
on configuration’s density generated by grid method at rel-
ative distance (a) 0.0, (b) 0.2, and (c) 0.4. The further the
relative distance between objects, the fewer object regions
checked by algorithms.

OpenCollBench - Benchmarking of Collision Detection & ProximityQueries as a Web-Service Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

5 CONCLUSIONS AND FUTUREWORK
We have presented OpenCollBench, a benchmarking architecture
for collision detection and proximity algorithms that offers the
benchmarking procedure as an open web service to the public. The
goal is to make complicated and time-consuming benchmarking
accessible for both expert and non-expert users. We have addressed
this goal by proposing a combination of a simple yet adjustable
user interface with a dedicated hardware platform that guarantees
reproducible and comparable results. Additionally, we have pre-
sented an extension to a sub-object accuracy for the analysis of
the benchmarking results. The idea is to use heatmaps to visualize
information gathered by the benchmark. This allows the user to
identify critical parts of their objects, and it enables a better un-
derstanding of the behavior and characteristics of the particular
collision detection algorithm.

Our approach also offers interesting avenues for future work: for
instance, currently, OpenCollBench is restricted to narrow phase
collision detection and proximity queries for rigid objects that run
on the CPU. Obviously, we want to extend our benchmark to cover
more cases related to collision detection, like broad phase CD, de-
formable objects, GPU-based algorithms, other kinds of object rep-
resentation than polygonal objects, to name but a few. We also
plan to include real penetration scenarios, e.g., the relative penetra-
tion volume, according to [Weller et al. 2010], that can be used to
compute additional configurations. In general, we want to include
more collision detection libraries. In the future, we plan to offer
researchers and developers an automatic upload of their libraries
to the OpenCollBench framework. However, this may result in
security risks, which is the main reason that currently, the inclu-
sion of new algorithms is curated by the authors. Moreover, we
want to use the information gained from the extended heatmap
visualization to improve existing collision detection algorithms or
even develop completely new ones. Our results already provide
hints that BVH-based algorithms can be optimized by, for instance,
optimizing the polygonization in parts of the objects, e.g., by trans-
parently performing local subdivision steps or by optimizing the
BVH construction. We also consider a hybrid algorithm that au-
tomatically chooses the optimal CD algorithm depending on the
objects’ actual configuration. This could be realized by an AI-based
approach. Finally, we consider extending the idea of a benchmark
as a service to other kinds of algorithms, especially in the computer
graphics context: acceleration data structures for ray tracing could
be a first interesting topic for this.

ACKNOWLEDGMENTS
The research reported in this paper has been (partially) supported
by the German Research Foundation DFG, as part of Collabora-
tive Research Center (Sonderforschungsbereich) 1320 “EASE - Ev-
eryday Activity Science and Engineering”, University of Bremen
(http://www.ease-crc.org/). The research was conducted in subpro-
ject R03 <Embodied simulation-enabled reasoning>.

REFERENCES
Stefano Caselli, Monica Reggiani, and M. Mazzoli. 2002. Exploiting Advanced Collision

Detection Libraries in a Probabilistic Motion Planner.. In WSCG. 103–110.

Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian
Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. Mot20: A bench-
mark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003
(2020).

Engin Deniz Diktas and Ali Vahit Sahiner. 2008. A benchmarking framework for static
collision detection. (2008).

R. Gillard and G. A. E. Vandenbosch. 2009. SoftLAB, a European web-service for
antenna software benchmark. In 2009 3rd European Conference on Antennas and
Propagation. 2736–2740.

Google. 2019. Turbo, An Improved Rainbow Colormap for Visualization. https://ai.
googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchi-
cal structure for rapid interference detection. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM, 171–180.

David Hsu, Lydia E Kavraki, Jean-Claude Latombe, Rajeev Motwani, Stephen Sorkin,
et al. 1998. On finding narrow passages with probabilistic roadmap planners. In
Robotics: the algorithmic perspective: 1998 workshop on the algorithmic foundations
of robotics. 141–154.

Philip M Hubbard. 1993. Interactive collision detection. In Proceedings of 1993 IEEE
Research Properties in Virtual Reality Symposium. IEEE, 24–31.

Philip M. Hubbard. 1996. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transactions on Graphics 15, 3 (July 1996), 179–210.

Thomas C Hudson, Ming C Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. 1997. V-COLLIDE: Accelerated collision detection for VRML. In Proceed-
ings of the second symposium on Virtual reality modeling language. 117–ff.

James Thomas Klosowski. 1998. Efficient Collision Detection for Interactive 3D Graphics
and Virtual Environments. Ph.D. Dissertation. State University of New York at Stony
Brook. Adviser-Joseph S. Mitchell.

S. Krishnan, M. Gopi, M. Lin, Dinesh Manocha, and A. Pattekar. 1998. Rapid and
Accurate Contact Determination between SplineModels using ShellTrees. Computer
Graphics Forum 17, 3 (1998), 315–326.

E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. 1999a. Fast proximity queries with
swept sphere volumes. In Technical Report TR99-018.

Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1999b. Fast proximity
queries with swept sphere volumes. Technical Report. Department of Computer
Science, University of North Carolina.

Jonas Lext, Ulf Assarsson, and Tomas Moller. 2001. A benchmark for animated ray
tracing. IEEE Computer Graphics and Applications 21, 2 (2001), 22–31.

Miguel A. Otaduy and Ming C. Lin. 2003. CLODs: Dual Hierarchies for Multiresolu-
tion Collision Detection. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing (Aachen, Germany) (SGP ’03). Eurographics
Association, Goslar, DEU, 94–101.

T. Tan, R. Weller, and G. Zachmann. 2019. SIMDop: SIMD optimized Bounding Volume
Hierarchies for Collision Detection. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 7256–7263.

Sven Trenkel, René Weller, and Gabriel Zachmann. 2007. A Benchmarking Suite for
Static Collision Detection Algorithms. In International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), Václav Skala
(Ed.). Union Agency, Plzen, Czech Republic. http://cg.in.tu-clausthal.de/research/
colldet_benchmark

Gino van den Bergen. 1998. Efficient collision detection of complex deformable models
using AABB trees. J. Graph. Tools 2, 4 (Jan. 1998), 1–13. http://dl.acm.org/citation.
cfm?id=763345.763346

Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann, and
Carsten Preusche. 2010. A benchmarking suite for 6-dof real time collision response
algorithms. In Proceedings of the 17th ACM symposium on virtual reality software
and technology. 63–70.

J-L Widlowski, M Robustelli, M Disney, J-P Gastellu-Etchegorry, T Lavergne, P Lewis,
PRJ North, B Pinty, R Thompson, and MM Verstraete. 2008. The RAMI On-line
Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance
models. Remote Sensing of Environment 112, 3 (2008), 1144–1150.

Muiris Woulfe and Michael Manzke. 2009. A framework for benchmarking interac-
tive collision detection. In Proceedings of the 25th Spring Conference on Computer
Graphics. 205–212.

Gabriel Zachmann. 1995. The BoxTree: Exact and Fast Collision Detection of Arbitrary
Polyhedra. In SIVE Workshop. 104–112.

Gabriel Zachmann. 1998. Rapid Collision Detection by Dynamically Aligned DOP-
Trees. In Proc. of IEEE Virtual Reality Annual International Symposium; VRAIS ’98.
Atlanta, Georgia, 90–97.

The 18th Gesellschaft für Informatik e.V. (GI) workshop on the Virtual Reality and Augmented Reality (VR/AR)
Sankt Augustin, Germany, September 9-10, 2021

Grasping for reality - How can we improve the digital
representation of human grasp behaviour?

Janis Rosskamp, Toni Tan, René Weller, Gabriel Zachmann

University of Bremen
Germany

Abstract:
In this paper, we present a heat- and forcemap representation of human grasps of objects

in virtual reality (VR). For that, we divided the texture of the object into cells and depending
on the number of detected contacts the texture is colored appropriately. The same method is
used to visualize the force the hand applies on a particular spot on the object. While objects
are manipulated, we also detect automatically from a list of over 30 grasp types how the
object is grasped. Due to these aspects, our application provides a new and helpful way to
represent hand grasps in a digital way which can be used in a wide array of possibilities.
The knowledge on how humans grasp is an important topic for applications in robotics or
prosthetics and would benefit the digital representation of the hand in general.

Keywords: grasp visualization, grasp type detection, heatmap, forcemap

1 Introduction

Advances in grasping algorithms and hand tracking methods enable interaction in virtual
environments through natural grasping. This allows experiments in VR where participants
can interact naturally with virtual objects. By performing experiment in VR, collecting
information like causal and intuitive physics from the environment or contact surface during
grasping are easier compared with real-life setup as well as repeating experiments using
same setup. Subsequently, data obtained in these experiments can be used to gain insight
into human grasps. This knowledge can then be applied to fields like robotic grasping where
the amount of data needed to learn grasping task could exceeds what can be provided with
reasonable effort [LPK+18]. Another field like prostheses, or even grasping in VR when only
simple input devices are available could also be benefited.

Many factors influence human grasps which makes analyzing it a complex topic. To
understand human grasping behavior, it is important to look at the interaction with many
different objects. We need to recognize where and how objects are touched and held. Since
what seems intuitive for humans is very complex in robotics, for instance. After all, how is a
robot supposed to know that a cup is touched differently than a cereal box? Or, when grasping
object, how much force should be applied? In VR, objects and manipulation scenarios can
be added quite easily, which makes it a prime candidate for this investigation. In this paper,
we present two different methods to gain knowledge during grasping operations.

The first method obtains contact points and forces between object and hand. These
contact points are a great addition in visualizing the posture of a grasp and helpful to
replicate grasps. They might even be used as training data for robotic grasping. Our method
uses the approach proposed by Rosskamp et al. [RMW+21] for the generation of contact
points and heatmap visualization. We improved their method by defining a grid on the
object where each cell represents a possible grasping point. Color is assigned depending on
how often a grid cell is in contact with a specific finger. Similar to the contact point heatmap,
we added a force map that indicates how strong an object is grasped at which point. The
applied force is a key variable when holding objects. If there is not enough force applied, the
object could fall down and if it is too much, the object could crack. Using these heatmaps,
it should be directly visible where and how forcefully one should touch certain objects to lift
them. This could be used, for example, to train a robot to touch and hold objects correctly.

The second method discriminates between grasp types. This is a vital aspect of human
grasp behavior analysis. Different objects require different handling to ensure proper treat-
ment. Our application uses a combination of collision detection and rotation angle analysis
to discriminate between over 33 grasp types.

2 Related Work

2.1 Heatmap

The use of heatmaps is a common way to visualize data on objects. For example, in marketing
applications, eye tracking is used to investigate which parts of a website are particularly
appealing or important [ULCP17]. For eye-tracking, Pfeiffer et al. [PM16] proposed a method
to generate these heatmaps on 3D objects in real-time. Because eye-tracking data vastly
differs from hand tracking, these results cannot be applied readily.

In [NFG19] human-object interaction is investigated on videos of humans performing
tasks. Everyday objects are filmed during their usage and zones where the object was touched
most often were identified and visualized with heatmaps.

In Taheri et al. [TGBT20] the contact points between hand and objects are visualized in
heatmaps. The contact points are determined by grasping real objects. Both the hand and
object are tracked using motion capturing and the collisions are computed on digital twins.
Errors in tracking may lead to objects and hands either not touching or penetrating in the
digital representation.

Liu et al. [LZX+19] developed a glove for hand tracking and used a caged-based grasp to
manipulate objects in VR. The contact areas are visualized in heatmaps. While the caged-
based approach is easy to set up, it lacks detailed collision and force calculations. This work
mainly modifies the work of Rosskamp et al. [RMW+21] were heatmaps were created on
objects to show which finger touched the object at what point. Their representation is not
optimal, and sometimes no clear identification of the fingers on the object is possible. We
improve their work by modifying the heatmap representation and adding forcemaps.

2.2 Grasp Type Detection

The Grasp Type Detection that was developed in the course of this work serves to detect the
33 grasp types defined in the GRASP Taxonomy [FRS+15], as it provides quite a complete
overview of the most commonly used grasps.

Other Grasp Type Detection techniques use visual data as input. Guo et al. detect
geometric shapes in photos to analyze 6 different grasps [GSF+17]. While the angles of the
fingers need to be derived out of the input data, our hand tracking approach directly serves
the values, so that there should be little possibility for conversion errors.

Kakoty and Hazarika use EMG data as input for their neural network detection of 6 grasps
types [KH11]. As gathering EMG data requires assistance of medical trained technicians, we
would not have been inclined to do it on our own, which was once again, one of the reasons
for us to use hand tracking.

Many grasp type detection techniques, like Heumer et al. [HAWJ07] focus on detecting
only six grasp types, following the Schlesinger taxonomy of hand grasps. However, this taxo-
nomy is too simple to fulfil our application’s use in the kitchen environment. For example,
Grasp 19 Distal Type of GRASP Taxonomy is specified for using scissors, which we consi-
dered a commonly used grasp while cooking, such a grasp is rarely covered in other Grasp
Type Detection techniques.

3 Grasp Visualization

In this section, the generation of heatmaps on objects for both contacts and forces is dis-
cussed. This is necessary, for instance, to understand human grasping behaviour, i.e., to
recognize where and how objects are touched and held, or for robotic agent to learn how
to grasp objects. For this, some necessary tools, i.e. hand tracking and collision detection,
are needed. We are using the UnrealHaptics [RMW+21] framework with the Unreal Game
Engine. This allows the easy integration of hand tracking with a Cyberglove, providing us a
virtual representation of a hand. Additionally, UnrealHaptics allows custom collision detec-
tions. In our case, we utilize CollDet [Zac01], which uses an inner sphere tree to detect very
detailed collisions between hand and object. Using CollDet has the advantage of not only
providing contacts but forces as well.

3.1 Heatmaps

The approach in [RMW+21], checks the collision of the hand with the object in virtual reality
and colors the object at this point. Here a distinction is made between the fingers where a
different color is assigned to each finger. While the contact points are well represented and
give a detailed insight into where the object is touched, the identification of finger is not yet
optimal. This is obvious if the heatmap not only represents one but multiple grasps of the
same object. As can be seen in Fig. 1a, colors of the different fingers mix as soon as two
fingers touched the same spot so that it is not obvious which finger has touched this point.

(a)
(b)

Figure 1: (a) Heatmap from [RMW+21] with the issue of colours mixing. (b) Visualization
of the grid on the object used for the creation of heatmaps (zoom in red).

To optimize this approach, a new method for generating heatmaps was developed as
part of this work. The idea is to construct a grid on the object’s texture instead of object
geometry. Ideally, the grid size should be as small as one pixel of object’s texture. Figure 1b
shows grid with size as small as one pixel of object’s texture.

The grid is seen as an array of numbers, where each cell, i.e. each pixel, contains infor-
mation about how often it was touched by which finger. From this information, it is then
decided which is the dominant finger at that pixel, i.e. the finger that collided most often.
Finally, the pixel is colored accordingly, with a color assigned to each finger. Unaffected
points are not colored and are left black. This can be seen in Fig. 2. To find the point on
the surface of the object, a ray the size of the collided sphere is cast onto the surface. This
excludes the possibility of mixing colors and thus ensures clear identification of the fingers
as the heatmap in Fig. 2 clearly shows.

Figure 2: The hand grasping the object on the left, the texture for the Heatmap in the middle
and the final Heatmap on the right.

With this heatmap, it is now possible to analyze where different objects are touched and
how often they are touched. The colors represent each finger, making it easy to see how the
object was held.

3.2 Implementation: Forcemaps

Another important variable to understand human grasping behavior is the applied force
when lifting different objects. After all, one could destroy a milk carton with too much force

applied while lifting it. To represent the applied force, a forcemap was developed as part of
this work, showing at which point how much force had to be applied to the object.

The generation of the forcemap works similar to the previous heatmap with a grid whose
cells reflect the pixels and are colored accordingly. Here, strong forces are displayed in red
and weak forces in green, as shown in Fig. 3. Unaffected points are colored black. To enable
a transition of the colors, the colors are assigned in steps of 10% of the force. Thus, orange
and yellow represent a medium-strong force.

Figure 3: The hand grasping the object on the left, the texture for the forcemap in the middle
and the final forcemap on the right.

3.2.1 Force Calculation

To calculate the force applied to the object we represent the real hand with two virtual
hands. The first one is rendered and due to the collision detection cannot penetrate the
object. The second hand represents the actual position of the fingers but is not rendered.
The penetration depth of this hand is a measure for the applied force, i.e. larger penetrations
are equivalent to stronger forces. In order to calculate the applied force, the pair of colliding
spheres between object and hand in the inner sphere tree with their respective coordinates
and radius is needed. The penetration depth x is calculated using the radius r1, r2 and the
distance d with x = r1+r2−d

2
which is illustrated in Fig 4.

c1 c2

r1 r2

x
d

Figure 4: Illustration of the force calculation principle.

4 Grasp Type Detection

The grasp that needs to be applied depends heavily on the objects that should be picked up.
For performing automatic grasping, it is, therefore, useful to identify which kind of grasp is

in use for a certain kind of object. While a water bottle tends to be gripped with curved
fingers, we hold a breakfast board in an outstretched position (see Figure 5). In a future
scenario, this information could be used the other way around. Having learned what grasp
is applied for which object, a robot could grasp any object the appropriate way, avoiding it
to fall down or break.

Figure 5: Grasping a water bottle
would be different from grasping a
cutting board

The GRASP Taxonomy [LFNP14] provided an
overview of the hand grasps we wanted to detect wi-
thin the kitchen use. It contains 33 grasp types catego-
rized by thumb orientation i.e adducted or abducted.
In this paper, we further subdivided the grasps into
17 categories so they would be easier to work on as
grasps in every category are fairly close to each other.
Within a category the same type of grasp is depicted,
only the shapes and sizes of the objects vary. GRASP
Taxonomy also considers whether arm movement is
required performing the grasp [FRS+15]. One of the
primary reasons behind working on top of GRASP
Taxonomy was the number of details accounted for in
it. Aside from simple curvy or straight grasps, there is a high variation between fingers in
use. Additionally, very specific items, such as scissors and chopsticks, are also accounted for.
For applying our Grasp Type Detection in a kitchen environment later on this seems to fit
perfectly. Especially having the option to easily extend the grasp set when introducing new
objects, played a big role in choosing GRASP Taxonomy, because it is to be expected, that
our object set will grow in the future and grasps might change due to that.

The first step in our Grasp Type Detection is finding out which fingers are active mea-
ning which fingers are touching an object, the hand palm, or perhaps another finger, then
narrowing down to the group of possible grasps. For this purpose, we come up with two
approaches based on raycasting & collision detection.

4.1 Raycasting

The idea of raycasting is shooting rays out of certain points of the hand and detecting where
those rays hit. Therefore you can detect whether a finger is touching an object, the hand
palm or perhaps another finger. As shown in Figure 6 in our application we shoot 30 rays.
Each of the 5 fingers has the following 6 rays:

• 1 ray from each joints (upper, middle, base) towards the palm,

• 1 ray on the side (left, right) shooting sideways,

• 1 ray on the very tip of the finger shooting upwards.

The rays facing the palm are detecting whether a full finger is touching an object, the
rays on the sides detect whether an object lies between fingers and the rays on the tip are

used for differentiating between touching an object with the flat or pointed fingertip. These
rays are used in various functions, some of these functions are following:

• IsFingerNailTouching shoots a ray from the tip in the direction parallel to the finger.

• IsFingerRightSideTouching and IsFingerLeftSideTouching check if the object is tou-
ching the finger from right or left side of the finger, respectively.

• IsFingerFrontTouching checks if the object is touching the finger from the front (the
side facing the palm).

• IsFullFingerTouching casts three rays (from upper, middle and base joints) in the
direction away from the finger

• IsOnlyTipTouching casts three rays (from upper, middle and base joints) in the direc-
tion away from the finger. Additionally IsFingerNailTouching is called. Either upper
joint ray or IsFingerNailTouching have to return a hit in addition to middle and base
joints not returning a hit.

4.2 Collision Detection

In this approach, we chose Inner Sphere Trees [RW09] to perform collision detection. Beside
able to find which fingers are active, we could also get contact points, penetration depths
and minimal distance as well.

The idea behind Inner Sphere Trees is to fill objects (in our case, the fingers and the
kitchen item) densely using non-overlapping spheres and build a tree hierarchy on top of
it. To fill the objects with spheres, ProtoSphere [RW10] is used, which is a GPU-Assisted
algorithm that can pack a mesh with spheres.

Since detection which part of the finger is colliding with the object is vital for Grasp
Type Detection, we had had to break the fingers into three parts. These divisions occur at
the joints of the fingers (upper, middle, base) and hence, the mesh has been broken into
these parts as well. Although, for the purpose of our paper, we only need to fill in the upper
and the middle parts, as those are the only parts essential to the detection. A simplified
version of the spheres can be seen in Figure 6.

As soon as those objects overlap, a contact is recognized. A function called IsTouching is
called to check if a finger is actually touching the object. This function checks all available
methods to detect whether the finger is touching the object from any direction (including
the sides).

Rotation Angles Analysis The colliding fingers are already a good indicator for which
grasp could have been applied, but to allocate a grasp more accurately, also the finger rotation
angles need to be analysed. The input data for our detection comes from the motion capture
glove CyberGlove III, from which we got the 15 sensor points, the rotation angles of base,
middle and upper joint of each finger. In that way, the bone angles of the fingers can be
measured directly using a highly reliable detection [HAWJ07].

Figure 6: Left: Hand filled with Inner Sphere Trees. Right: Rays being cast from the nails,
sides and joints of the hand.

Even without using Machine Learning, we can systematically determine the rotation
values of certain grasps, by exploring thresholds from the finger positions. In the initial
position all finger joints are straight and share the value 0. When turning towards the palm
the numbers decreases to at most -100. Having those values as anchors, the values for other
functions can be derived of that. Fingers are touching the palm when the base and middle
joint are at -70.0 degrees or less and the upper joint would be alright, if it stayed straight. A
bone is straight within the threshold of -15 to 15. A finger is straight when it’s three bones
are straight. A thumb is adjacent to the fingers (adducted) if the base of the thumb has a
rotation angle of 20 degrees or more. If the distance between index and thumb is less than
0.3, they are touching, if it’s less than 5 it’s a rather small distance and also probably a
rather small object being touched and for values bigger than that but lower than 10 it would
be a rather big object. These thresholds can later be used for shortcutting the detection of
specific grasps.

4.3 Grasp Type Detection

Our algorithm is an interpretation of the GRASP taxonomy. In general, we group the grasps
by which fingers are in use and how similarly the hand is shaped. In contrast to the taxonomic
approach we disgard the thumb position as a cluster, as well as the hand’s opposition type.
Therefore, we don’t keep exactly the same groupings as the taxonomy, but most grasp
categories still remain collectively. While the taxonomy contained 17 grasp categories, our
algorithm distinguishes between 6 active finger combinations (see Appendix 7). The first step
of the Grasp Type Detection is finding which finger is touching the object using collision
detection. The decision tree in Appendix 7 is used for further discrimination due to the
earlier introduced collision detection or rotation angle analysing functions.

While for grasp 15 Fixed Hook it is enough to detect it’s unique finger combination
(everyone except the thumb), the more similar grasps need a more detailed differentiation.
To find grasp 22 Parallel Extension, all five fingers much be touching the object entirely. If
the index finger is not straight, then the straightness of all the other opposing fingers gets

detected. All straight fingers would then already indicate grasp 22, in contrast to grasp 17
Index Finger Extension, where middle, ring and pinky finger are facing towards the palm.

Application Output Within our application the output shows for each performed grasp
his number and term following the GRASP taxonomy, the category number we interpreted
out of that, it’s thumbs orientation as it was an important factor within the taxonomy and
lastly which fingers are touching the object, as the main classifier in our algorithm.

5 Discussion

Our work is based upon GRASP Taxonomy which became a widely used standard for the
detection of single hand grasps. By using this Taxonomy as the underlying concept of the
Grasp Type Detection, we make sure to build upon one of the most recognized works in this
area. The use of Heatmaps in both ways provides an easy and intuitive way to let the user
know where the object was touched and with what amount of force. Due to the difference in
color choice, both Heatmaps have a distinct look and can’t be easily confused.

The Heatmap as a result of our work provides a more approachable illustration of the
contact data. The object is covered in a pixel-wide grid and filled with an inner sphere tree
for collision detection. Each contact casts the shape of the finger on the grid and calculates
the dominant finger for each touched pixel of the grid. This allows us to clearly show which
finger was the most dominant in a general area. Pixels are then colored accordingly showing
which finger touched the object on that spot. The dominant finger also allows us to prohibit
the mixing of colors which results in a more meaningful heatmap.

This approach delivers a clear representation of the dominant grasp areas that is beneficial
for the concrete representation of the touched areas. An improved implementation based on
factors mentioned in the discussion would result in an even more meaningful Heatmap.
Following experiments would be helpful in this process as well as they would help to refine
the Heatmap. The approach which determines a dominant finger for each pixel is thereby a
new approach which results in a promising, supportive Heatmap.

The heatmap which was created for this paper is calculated using only the fingertips
meaning other finger parts are omitted from this calculation. Under these circumstances,
Heatmaps using the whole hand would most likely result in different Heatmaps. As this
hasn’t been thoroughly tested yet, it can’t be stated what a Heatmap with all finger parts
would look like. As our approach is tied to the shape of the individual object each new object
has to be individually prepared by filling it with an inner sphere tree, exchanging the given
texture with a black one and providing the pixel grid. These tasks could easily be automated
to save time and minimize the room for human errors.

With the previously mentioned forcemap we introduced a new way of indicating force in
a digital way. Not only the calculation but the visualization is a complete new approach. The
forcemap aims to be a helpful tool which indicates the amount of excessive force which was
applied to certain areas of the object. Similar to the heatmap the whole object is covered in

a pixel-wide grid. The force is then calculated by measuring the intersection of the spheres
that reside in the object and the hand. The penetration is the result of a calculation between
overlapping spheres from hand and object. This can then be grouped by percentages from
a small overlap to a near complete overlap. The calculated data will then be painted on the
area of the forcemap to indicate the provided force.

Our way of calculating the force by measuring the penetration depth has not been compa-
red with real grasps. It thereby just provides the way of calculating the penetration without
indicating a correlation to real grasps. This means that our work on the Forcemap can’t be
compared to a measurement of force like Newton.

Our grasp type detection could find use in multiple areas that have needed a way to
represent the hand but have struggled due to the complexity of the task. Our method provides
an intuitive way that can be run in real time with a reasonably sized dataset and aims to be
a one-does-all application. While the detections of related work from Guo et al. [GSF+17] or
Kakoty and Hazarika [KH11] focus on six grasps, ours can detect over 30 grasps types, making
it specific enough to handle any kitchen item with proper care. For discriminating between
the grasps raycasting paid off for detecting collision, in contrast to the inner sphere trees it
was not in need of heavy computation while still serving our purpose. For our application
the accuracy of the inner sphere trees has not been necessary, furthermore the intuitive
integration of more rays has not been served when adding further inner sphere tree colliders.

6 Conclusions & Future work

We have presented an automatic grasp type detection for single hand grasps based on a
decision tree and able to recognize all grasp types from GRASP taxonomy.

Our approach opens up several directions for future work. For instance, extending the
grasp type detection by stating what kind of object was interacted with. This can be done
simply by creating a database of possible objects, in the case of a limited study and app-
lication, or it can be achieved by checking the shape of collision detection volumes on the
object that is being touched. Also, more data should be collected for refining the grasping
algorithm and evaluating it extensively.

Moreover, future research could focus on generating heatmaps with all finger parts in
place. This would result in new heatmaps revealing further information about contact points.
The difference in meaningfulness between these new heatmaps and our approach could be
analyzed as well. Following experiments can additionally analyze how meaningful the heat-
maps become after multiple experiments.

Experiments with forcemap would have to be conducted to prove a significant importance
of the forcemap and test if the penetration depth is expressive and comparable with units
of measurement like Newton. Further insights lie in the comparison of the force application
when lifting the same objects in a virtual reality and the real world. Next steps would be a
study with different objects to get heatmaps that can be analyzed, compared and discussed.

Literatur

[FRS+15] Thomas Feix, Javier Romero, Heinz-Bodo Schmiedmayer, Aaron M Dollar, and
Danica Kragic. The grasp taxonomy of human grasp types. IEEE Transactions
on human-machine systems, 46(1):66–77, 2015.

[GSF+17] Di Guo, Fuchun Sun, Bin Fang, Chao Yang, and Ning Xi. Robotic grasping
using visual and tactile sensing. Information Sciences, 417:274–286, 2017.

[HAWJ07] G. Heumer, H. B. Amor, M. Weber, and B. Jung. Grasp recognition with
uncalibrated data gloves - a comparison of classification methods. In 2007 IEEE
Virtual Reality Conference, pages 19–26, 2007.

[KH11] N. M. Kakoty and S. M. Hazarika. Recognition of grasp types through principal
components of dwt based emg features. In 2011 IEEE International Conference
on Rehabilitation Robotics, pages 1–6, 2011.

[LFNP14] Jia Liu, Fangxiaoyu Feng, Yuzuko C Nakamura, and Nancy S Pollard. A taxo-
nomy of everyday grasps in action. In 2014 IEEE-RAS International Conference
on Humanoid Robots, pages 573–580. IEEE, 2014.

[LPK+18] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research, 37(4-
5):421–436, 2018.

[LZX+19] Hangxin Liu, Zhenliang Zhang, Xu Xie, Yixin Zhu, Yue Liu, Yongtian Wang,
and Song-Chun Zhu. High-fidelity grasping in virtual reality using a glove-based
system. In 2019 international conference on robotics and automation (icra),
pages 5180–5186. IEEE, 2019.

[NFG19] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen Grauman. Grounded
human-object interaction hotspots from video. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8688–8697, 2019.

[PM16] Thies Pfeiffer and Cem Memili. Model-based real-time visualization of realistic
three-dimensional heat maps for mobile eye tracking and eye tracking in virtual
reality. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking
Research & Applications, pages 95–102, 2016.

[RMW+21] Janis Roßkamp, Hermann Meißenhelter, Rene Weller, Marc Rüdel, Johannes
Ganser, and Gabriel Zachmann. UnrealHaptics: Plugins for Advanced VR In-
teractions in Modern Game Engines. Frontiers in Virtual Reality, 2:640470,
April 2021.

[RW09] Gabriel Zachmann Rene Weller. Inner sphere trees for proximity and penetration
queries. Robotics Science and Systems (RSS), 2009.

[RW10] Gabriel Zachmann Rene Weller. Protosphere: A gpu-assisted prototype guided
sphere packing algorithm for arbitrary objects. In ACM SIGGRAPH Asia, 2010.

[TGBT20] Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios Tzionas. Grab:
A dataset of whole-body human grasping of objects. In European Conference
on Computer Vision, pages 581–600. Springer, 2020.

[ULCP17] Florina Ungureanu, Robert Gabriel Lupu, Adrian Cadar, and Adrian Prodan.
Neuromarketing and visual attention study using eye tracking techniques. In
2017 21st international conference on system theory, control and computing
(ICSTCC), pages 553–557. IEEE, 2017.

[Zac01] Gabriel Zachmann. Optimizing the collision detection pipeline. In Procedings
of the First International Game Technology Conference (GTEC), 2001.

Appendix

Figure 7: Our decision tree for automatic grasp type detection base on GRASP Taxonomy
for kitchen use

The 27th International Conference on 3D Web Technology (Web3D ’22)
Evry-Courcouronnes, France, November 2–4, 2022

A Framework for Safe Execution of User-Uploaded Algorithms
Toni Tan

toni@cs.uni-bremen.de
University of Bremen

Germany

René Weller
weller@cs.uni-bremen.de
University of Bremen

Germany

Gabriel Zachmann
zach@cs.uni-bremen.de
University of Bremen

Germany

ABSTRACT
In recent years, a trend has existed for an open benchmark aiming
for reproducible and comparable benchmarking results. The best
reproducibility can be achieved when performing the benchmarks
in the same hard- and software environment. This can be offered as
a web service. One challenge of such a web service is the integration
of new algorithms into the existing benchmarking tool due to secu-
rity concerns. In this paper, we present a framework that allows the
safe execution of user-uploaded algorithms in such a benchmark-as-
a-service web tool. To guarantee security as well as reproducibility
and comparability of the service, we extend an existing system
architecture to allow the execution of user-uploaded algorithms
in a virtualization environment. Our results show that although
the results from the virtualization environment are slightly slower
by around 3.7% to 4.7% compared with the native environment,
the results are consistent across all scenarios with different algo-
rithms, object shapes, and object complexity. Moreover, we have
automated the entire process from turning on/off a virtual machine,
starting benchmark with intended parameters to communicating
with the backend server when the benchmark has finished. Our
implementation is based on Microsoft Hyper-V that allows us to
benchmark algorithms that use Single Instruction, Multiple Data
(SIMD) instruction sets as well as access to the Graphics Processing
Unit (GPU).

CCS CONCEPTS
• Computing methodologies→ Collision detection.

KEYWORDS
benchmark as web-service, open benchmark
ACM Reference Format:
Toni Tan, René Weller, and Gabriel Zachmann. 2022. A Framework for
Safe Execution of User-Uploaded Algorithms. In The 27th International
Conference on 3D Web Technology (Web3D ’22), November 2–4, 2022, Evry-
Courcouronnes, France. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3564533.3564560

1 INTRODUCTION
In a computer-based application like collision detection or object de-
tection, the benchmark is essential to measure the effectiveness and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9914-2/22/11. . . $15.00
https://doi.org/10.1145/3564533.3564560

efficiency of proposed algorithms. Unlike object detection, which
focuses on algorithms’ accuracy, collision detection, on the other
hand, focuses on both accuracy and performance. In object detec-
tion, only dataset and ground truth are needed for benchmarking,
which makes it relatively non-problematic when it comes to bench-
marking. On the other hand, since the existing benchmarking tools
for collision detection are usually available as a standalone pro-
gram [Trenkel et al. 2007][Woulfe and Manzke 2009][Wang et al.
2021][Weller et al. 2010], it needs to integrate the proposed algo-
rithms into existing benchmarking tools, which could be problem-
atic as the implementation, for instance, into bullet [Woulfe and
Manzke 2009] is not always easy. Besides that, we might need to
integrate existing algorithms that we want to compare with, as
in most cases, they are probably not integrated yet into existing
benchmarking tools. Re-implementing existing algorithms might
not always be easy as different optimization could influence the
performance. Besides that, the user will need to get used to the
benchmarking programs, which is not always easy due to the com-
plicated benchmark parameters. Not to mention the hardware con-
straints while benchmarking algorithms that use special hardware,
i.e., Advanced Vector Extensions (AVX-512).

An attempt to solve this is to offer benchmarking tools as web-
service that is based on the benchmark proposed by [Trenkel et al.
2007]. Such an online service was proposed in [Tan et al. 2020] and
can be accessed online at http://opencollbench.com. It allows users
to choose between a set of pre-defined geometries or even upload
their own 3D objects and compare the performance of different
built-in collision detection algorithms. The results can be visualized
in easy-to-understand diagrams.

In this paper, we extend the framework to allow users also to
upload their own collision detection libraries and benchmark them
against competitors directly and anonymously. However, this, on
the other hand, becomes a security concern due to running un-
known code. In order to guarantee the security of such a scenario,
we shift the execution of user-uploaded algorithms into a virtualiza-
tion environment. Additionally, we have implementedWebSocket
as a communication protocol to communicate with the Virtual Ma-
chine (VM) when the benchmark process is finished.

Moreover, the entire benchmarking process, from turning on/off
VM, starting benchmark with intended parameters, to communicat-
ing with the backend server, is automated within our framework.
Our implementation is based on Microsoft Hyper-V, which allows
us to create VM that support SIMD Instruction Sets and use GPU
passthrough to access the GPU of the host system directly. This
allows us to support algorithms that make use of SIMD Instruction
Sets and GPU, such as SIMDop [Tan et al. 2019].

Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Toni Tan, René Weller, and Gabriel Zachmann

2 RELATEDWORK
In computer-based applications, the process and goal of benchmark-
ing vary across fields, i.e., object detection compared algorithms
accuracy against ground truth annotated by a human [Tu et al.
2022]. Ray tracing compared the accuracy and running time by
benchmarking against a set of predefined scenarios, e.g., the Bench-
mark for Animated Ray Tracing (BART) [Lext et al. 2001]. The
proposed algorithms are evaluated against existing algorithms in
terms of accuracy and running time in collision detection.

Benchmarking tools are typically provided as standalone pro-
grams. This is sufficient in object detection or ray tracing due to
the simplicity of benchmarking results needed. On the other hand,
collision detection is more complicated since the algorithms run-
ning time could be influenced by object shapes, object complexity,
and even relative distance or rotation between objects. Usually,
authors define a specific scenario on their own to test their algo-
rithms [Otaduy and Lin 2003; van den Bergen 1998]. A comparison
between algorithms could yield different results under a different
scenario. There exist attempts to generalize the benchmarking pro-
cedure especially for rigid bodies collision detection [Diktas and
Sahiner 2008; Trenkel et al. 2007; Weller et al. 2010]. Moreover, in
some cases, authors do not make their proposed algorithms pub-
licly available. An attempt to reinvent the algorithms could yield
a different running time due to optimization. Not to mention the
availability of hardware like SIMD Instructions Sets or GPU could
make it impossible to benchmark algorithms like SIMDop [Tan et al.
2019].

An attempt to solve this is to offer benchmarking tool as web
service [Tan et al. 2020].

3 OUR FRAMEWORK
Running unknown user-uploaded algorithms will always pose a
risk, i.e., Remote Code Execution (RCE). Directly analyzing and val-
idating the code is not trivial, not to mention authors might not
want to disclose their algorithms in some cases. Hence, it does
make sense to run user-uploaded algorithms in case of doubt in
an environment where it can not cause any damage. This could be
done on another physical computer accessible over the network and
that does not have access to critical systems and does not contain
sensitive data. However, the fact that the machine is connected to
other computers in a network is already a risk. It is also challenging
to identify whether this system is compromised.

This is where the use of hardware virtualization comes in handy.
Here, access to the physical machine’s hardware is regulated by
a so-called hypervisor. This can be an Operating System (OS) that
runs natively on the hardware (Type 1), e.g., Microsoft Hyper-V,
VMWare ESXi or software that runs on an operating system and
simulates hardware access (Type 2), e.g., Microsoft Virtual PC, Ora-
cle Virtual Box, VMware Workstation. A virtual machine (VM) can
be started via the hypervisor, which operates completely isolated
from the underlying systems. In addition, a virtual network can be
configured with the hypervisor, to which only the host system and
the virtual operating system have access. This means the virtual
system has no access to external networks to which the host system
is connected. On top of that, many hypervisor implementations
offer a so-called Snapshot function that can save the state of the

virtual machine at a specific point in time and restore it if necessary.
This resets all data changed over the runtime, both on the virtual
storage medium and the data in the virtual main memory. Since the
backend server of OpenCollBench is running under windows, we
chose to use Microsoft Hyper-V to implement our framework. This
also has another advantage, as the virtualization API can be easily
accessed usingWindows PowerShell, i.e., getting the IP address of
VM, creating new VM, turning on/off VM, and resetting VM, which
makes it convenient for automating the benchmarking process in
VM.

In this paper, we extend the capabilities of OpenCollBench to
allow benchmarking of user-uploaded algorithms into a virtualiza-
tion environment. Currently, new algorithms must be integrated by
the administrator, which can be problematic in work-in-progress
developments or due to non-disclosure agreements.

With our framework, it is sufficient for users to compile and
upload their proposed algorithms as wrapper Dynamic-Link Library
(DLL) specified by OpenCollBench. This keeps the user-uploaded
algorithms confidential, and results are comparable with other
publicly available algorithms as well as easy-to-understand visual
diagrams provided by OpenCollBench.

3.1 Benchmarking in VM
In order to automate the process of running benchmarking tools in
VM, we have implemented an additional service to listen for an in-
coming connection from the backend server and, on request, to start
the benchmarking with the supplied parameters. The benchmark-
ing result will be sent back to the backend server when finished.
Since the benchmarking can take several minutes, a typical Hyper-
text Transfer Protocol (HTTP) connections would time out without
a response from the server for such a long time. Web sockets [Mel-
nikov and Fette 2011] are an ideal solution to this problem. They
make it possible to establish and maintain a bidirectional connec-
tion between a client, in this case, the backend server, and a server.
This is done via an initial handshake, which is still carried out using
an HTTP-compatible protocol. After that, all data is transmitted in
a binary protocol based on Transmission Control Protocol (TCP).

In order to enable the WebSocket, which was started in the
backend server, to communicate with the VM, it needs the Inter-
net Protocol (IP) address of the VM, which can be queried using a
PowerShell command (See A.1).

To ensure that the server is always running when the VM is
started, a checkpoint was created with Hyper-V during operation.
The VM is then always reset to this before it is started if necessary.
This is done using a PowerShell script that is called from the back-
end server (See A.2). The caller thread then waits until the VM has
started and the script terminates.

Currently, only 1 VM would be allowed to run at one time. This
guarantees comparability and prevents malicious actors from over-
loading the benchmarking machine, i.e., by uploading malicious
algorithms simultaneously (more or less) from different clients. In
addition, the VM is always reset back to its initial state before start-
ing a new benchmark job. This step prevents any system changes
by either OS updates or malicious algorithms.

A Framework for Safe Execution of User-Uploaded Algorithms Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Virtual Machine

Static Collision
Benchmarking Suite

WebSocket Server

Back end (native OS)

Benchmark
results

Benchmark
parameters

Hyper-V
Start / stop VM

Request Handler

Benchmark
parameters

Benchmark
results

3d Heatmap
Generation Pipeline

Exporter

Front end

User

Benchmark
results

3d heatmap +
Benchmark results

object +
Benchmark parameters

3d heatmap

Object +
Benchmark parameters

Figure 1: System Overview of our proposed framework,
which extends the capability of openCollBench to bench-
mark user-uploaded algorithms in a secure virtualization
environment

3.2 GPU Passthrough
Direct access to the host system’s GPU is entirely feasible using
Hyper-V and a full-fledged Windows VM. To do this, a so-called
GPU passthrough must be configured under Hyper-V. The VM is
given exclusive access to the GPU since the host system does not
virtualize it.

For the configuration, the storage location of the desired graphics
card must first be determined. To do this, the hardware can be
selected via the Windows device manager and the property storage
location paths can be selected under the Details tab. The storage
location can be found in the first line of the text field. The command
A.3 can be used to disconnect the graphics card from the host system
via PowerShell.

However, the host system’s GPU may stop working at this step
if the host system only has one card available. To then assign the
GPU to the VM, another command A.4 is used in PowerShell.

The graphics card should then be found in the VM’s device
manager, enabling a CUDA installation, thus able to run algorithms
that make use of GPU computation.

4 RESULTS
We have implemented our framework based on Microsoft Hyper-
V™. The automation and additional services have been implemented
using PowerShell and node.js. As a result, we extended the capability
of OpenCollBench to allow the execution of user-uploaded algo-
rithms securely. Figure 1 shows the architecture of the extended
system.

In the new architecture, the benchmarking execution was de-
coupled from the operation of the backend server. This ensures,
among other things, that the CPU access of this process is not in-
terrupted when there is a high load in the backend, which means
the benchmarking results will stay consistent.

In order to take a closer look at the influence of the VM when
benchmarking user-uploaded algorithms, we compared the results
from VM with the native system. Figure 3 shows a comparison of

(a) (b)

(c) (d)

Figure 2: The objects we used in our timings: (a) hand, (b)
pipes, (c) happy buddha, and (d) castle.

running time for benchmarks executed in native and virtualiza-
tion environments for both object Castle (Figure 2d) and Happy
Buddha (Figure 2c) with up to 120k polygons. Each object in our
benchmark (See Figure 2) consists of up to 200k configurations. As
a result, each benchmark takes up to 20 minutes to finish, with the
average collision check between 0.7 to 6.7 milliseconds. The results
from the virtualization environment are slightly higher, which is
expected due to the virtualization layer. However, it remains con-
sistent with delta between 3.7% to 4.7% across different algorithms,
object shapes, and object complexity. Figure 2 shows objects we
used to measure the effectiveness of benchmarking in VM. Between
several benchmarks runs under the same parameters, there could
be a slight deviation between their running time. In the native en-
vironment, the deviation is typically less than 0.1%. This is also the
case in the virtualization environment.

It is well known that the windows operating system comes with
lots of apps pre-installed. This could affect the running time dur-
ing the benchmark. Hence, we also measured the influence of the
number of core a system hat towards algorithms running time.
Figure 4 shows the comparison of running times for object Pipes
(Figure 2b) with up to 120k polygons using DopTree algorithms
under the native and virtualization environment with one core, two
cores, and three cores allocated. The results are as expected since
DopTree only makes use of one core. Hence adding more core to
the virtualization environment does not improve collision running
time.

5 CONCLUSIONS AND FUTUREWORK
We have presented a benchmarking framework for the secure execu-
tion of user-uploaded algorithms in the virtualization environment.
The goal is to allow web-based benchmarking tools to execute
user-uploaded algorithms and, at the same time, provide a security
guarantee while running unknown code. Our implementation is
done on top of existing web-based benchmarking tools, namely
OpenCollBench. Additionally, we provided automation for running

Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Toni Tan, René Weller, and Gabriel Zachmann

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

0.5

1

1.5

2

polygon

tim
e
/m

ili
se
c

native
vm

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

0.5

1

1.5

2

polygon

tim
e
/m

ili
se
c

native
vm

Figure 3: Average collision query time for the object Castle
and happy buddha in native and virtualization environment.
The delta are very similar for all objects.

benchmarking tools in the virtualization environment within our
framework.

Our approach also offers interesting avenues for future work: for
instance, by implementing the server endpoint as a REST endpoint,
other services could also use the benchmarking server for example,
to evaluate the proposed algorithm within a continuous integration
pipeline when building an application. In this sense, a plugin for
integrated development environment (IDE) such as Visual Studio
would also be conceivable that allows the user to directly assess
the effects of his changes to algorithms during development.

ACKNOWLEDGMENTS
The research reported in this paper has been (partially) supported
by the German Research Foundation DFG, as part of Collabora-
tive Research Center (Sonderforschungsbereich) 1320 “EASE - Ev-
eryday Activity Science and Engineering”, University of Bremen

0 0.2 0.4 0.6 0.8 1 1.2

·105
0

2

4

6

polygon

tim
e
/m

ili
se
c

native
vm - 1 core
vm - 2 cores
vm - 3 cores

Figure 4: Average collision query time for the object Pipes in
native and virtualization environment using 1 core, 2 cores,
and 3 cores.

(http://www.ease-crc.org/). The research was conducted in subpro-
ject(s) <R03> <A knowledge representation and reasoning frame-
work for robot prospection in everyday activity>.

REFERENCES
Engin Deniz Diktas and Ali Vahit Sahiner. 2008. A Benchmarking Framework for

Static Collision Detection. In Theory and Practice of Computer Graphics, Ik Soo
Lim and Wen Tang (Eds.). The Eurographics Association. https://doi.org/10.2312/
LocalChapterEvents/TPCG/TPCG08/107-113

J. Lext, U. Assarsson, and T. Moller. 2001. A Benchmark for Animated Ray Tracing.
IEEE Computer Graphics and Applications 21, 2 (2001).

Alexey Melnikov and Ian Fette. 2011. The WebSocket Protocol. RFC 6455. https:
//doi.org/10.17487/RFC6455

Miguel A. Otaduy and Ming C. Lin. 2003. CLODs: Dual Hierarchies for Multiresolu-
tion Collision Detection. In Eurographics Symposium on Geometry Processing, Leif
Kobbelt, Peter Schroeder, and Hugues Hoppe (Eds.). The Eurographics Association.
https://doi.org/10.2312/SGP/SGP03/094-101

Toni Tan, René Weller, and Gabriel Zachmann. 2019. SIMDop: SIMD optimized Bound-
ing Volume Hierarchies for Collision Detection. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Macau, China, 7256–7263.
https://doi.org/10.1109/IROS40897.2019.8968492

Toni Tan, ReneWeller, andGabriel Zachmann. 2020. OpenCollBench - Benchmarking of
Collision Detection & Proximity Queries as a Web-Service. In The 25th International
Conference on 3D Web Technology (Virtual Event, Republic of Korea) (Web3D ’20).
Association for Computing Machinery, New York, NY, USA, Article 9, 9 pages.
https://doi.org/10.1145/3424616.3424712

Sven Trenkel, René Weller, and Gabriel Zachmann. 2007. A Benchmarking Suite for
Static Collision Detection Algorithms. In International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (WSCG), Václav Skala
(Ed.). Union Agency, Plzen, Czech Republic.

Zhengzheng Tu, Yan Ma, Zhun Li, Chenglong Li, Jieming Xu, and Yongtao Liu. 2022.
RGBT Salient Object Detection: A Large-scale Dataset and Benchmark. IEEE
Transactions on Multimedia (2022), 1–1. https://doi.org/10.1109/TMM.2022.3171688

Gino van den Bergen. 1998. Efficient Collision Detection of Complex Deformable
Models Using AABB Trees. J. Graph. Tools 2, 4 (jan 1998), 1–13. https://doi.org/10.
1080/10867651.1997.10487480

BolunWang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021. A Large-Scale Benchmark and an Inclusion-Based Algorithm for
Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021),
16 pages. https://doi.org/10.1145/3460775

Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zachmann, and
Carsten Preusche. 2010. A Benchmarking Suite for 6-DOF Real Time Collision
Response Algorithms. In Proceedings of the 17th ACM Symposium on Virtual Reality
Software and Technology (Hong Kong) (VRST ’10). Association for Computing

A Framework for Safe Execution of User-Uploaded Algorithms Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Machinery, New York, NY, USA, 63–70. https://doi.org/10.1145/1889863.1889874
Muiris Woulfe and Michael Manzke. 2009. A Framework for Benchmarking Interactive

Collision Detection. In Proceedings of the 25th Spring Conference on Computer
Graphics (Budmerice, Slovakia) (SCCG ’09). Association for Computing Machinery,
New York, NY, USA, 205–212. https://doi.org/10.1145/1980462.1980501

A APPENDIX: POWERSHELL SCRIPT
A.1 Get IP Address of VM

1 get-vm -Name VMName | select -ExpandProperty
networkadapters | select ipaddresses

A.2 Turning On/Off VM
1 param(
2 [string] $vmName ,
3 [string] $op
4)
5
6 $checkpoint = 'uploadTest '
7
8 if($op -eq 'start '){

9 Restore-VMSnapshot -VMName $vmName -Name
$checkpoint -Confirm:$false

10 Start-VM -Name $vmName
11 while ((get-vm -Name $vmName).state -ne '

Running ') {
12 Write-Output "Waiting for $VMName to run"
13 start-sleep -s 5
14 }
15 } elseif ($op -eq 'stop') {
16 Stop-VM -Name $vmName
17 }

A.3 Disconnect GPU From Host
1 Dismount-VMHostAssignableDevice -force -

LocationPath [LocationPath]

A.4 Assign GPU to VM
1 Add-VMAssignableDevice -LocationPath [locationPath

] -VMName [VMName]

NaivPhys4RP - Towards Human-like Robot Perception
“Physical Reasoning based on Embodied Probabilistic Simulation”

Franklin Kenghagho K.1, Michael Neumann1, Patrick Mania1, Toni Tan2,
Feroz Siddiky A.1, René Weller2, Gabriel Zachmann2 and Michael Beetz1

Belief

��

��

��

Sensor Signals

World Ontology
(Tasks , Objects, Agents, State)

External World

Would the bottle
stay stable after

releasing it?

How to release
it so that it

stays stable?

��+� . . .

. . .

. . .

��+�

Motor Signals

��

Context

Sensor Physics

Robot Mind

Object
Physics

Imagine

Fig. 1: Beyond static scenes, sensory information, and what-, where-questions. Commonsense and especially intuitive physics,
also coined as dark matter of perception, is a key for perception in dynamic and human-centered scenes. Perception as inner
realistic world construction that anticipates and explains the world state as well as observations in an explainable manner,
with reasonable computational resources. We propose a white-box and causal generative model of perception in this paper.

Abstract— Perception in complex environments especially
dynamic and human-centered ones goes beyond classical tasks
such as classification usually known as the what- and where-
object-questions from sensor data, and poses at least three
challenges that are missed by most and not properly addressed
by some actual robot perception systems. Note that sensors
are extrinsically (e.g., clutter, embodiedness-due noise, delayed
processing) and intrinsically (e.g., depth of transparent objects)
very limited, resulting in a lack of or high-entropy data, that
can only be difficultly compressed during learning, difficultly
explained or intensively processed during interpretation. (a)
Therefore, the perception system should rather reason about the
causes that produce such effects (how/why-happen-questions).
(b) It should reason about the consequences (effects) of agent-
object and object-object interactions in order to anticipate
(what-happen-questions) the (e.g., undesired) world state and
then enable successful action on time. (c) Finally, it should
explain its outputs for safety (meta why/how-happen-questions).
This paper introduces a novel white-box and causal generative
model of robot perception (NaivPhys4RP) that emulates human

*This work was not supported by any organization
1 with Institute for Artificial Intelligence, Mathematics and Computer Sci-

ence, University of Bremen, Germany fkenghag@uni-bremen.de
2is with Computer Graphics Research Group, Mathematics and Computer

Science, University of Bremen, Germany toni@uni-bremen.de

perception by capturing the Big Five aspects (FPCIU)1 of
human commonsense, recently established, that invisibly (dark)
drive our observational data and allow us to overcome the
above problems. However, NaivPhys4RP particularly focuses
on the aspect of physics, which ultimately and constructively
determines the world state.

I. INTRODUCTION

Manipulation/action in human-centered environments re-
quires perception systems to inform about the state of the
world. However, the actual perception systems are struggling
against the extreme dynamicity of such environments as
well as the safety required. On the one hand, (a) sensor
information are very limited. With extrinsic and intrinsic
limitations such as occlusion, delayed processing, missing or
poor depth for smooth and glass objects, attempts to solely
rely on these sensory information lead to a situation where
compression while learning, interpretation and processing
speed are no more efficient due to lack of or higher entropy
in the data (e.g., hard pose estimation) [1]. On the other

1Functionality, Physics, Causality, Intention, Utility

2022 IEEE-RAS 21th International Conference on Humanoid Robots (Humanoids)

November 28-30, 2022. Ginowan, Japan.

979-8-3503-0978-2/22/$31.00 ©2022 IEEE 815

hand, (b) these systems can only difficultly anticipate
(undesired) states of the environment given (a). Imagine
the robot holding a plate containing a bowl and trying to
open the drawer such as depicted by Figure 2.1, despite the
fact that the robot camera is focused on the drawer, it should
still be aware of the state of the bowl. Another scenario is
the case of a robot trying to pour some milk from a bottle
into a mug (see Figure 2.3).

Fig. 2: Physical reasoning for perception in dynamic scenes

Notice that success depends on the robot’s understanding
of the milk’s fluid dynamics and how to control it by manipu-
lating the bottle in order to ensure that the milk will neither
fall out of the mug, the mug will not spill, nor the mug
will be overfilled (Frame 3). On frame 2, the robot should
ensure that the blue milk will not fall after releasing it, which
desired state does not only depend on the table’s physical
relief but also on some bottle’s physical parameters such as
the shape, volume, mass, content and height [10]. Visual
servoing has been an attempt to catch this scene dynamicity,
however it is not only just reactive rather than anticipative but
not robust to sensory limitations mentioned above. Finally,
(c) robotics in human-centered environments should also
ensure safety and a step towards this goal is making the
robots understand what they are perceiving and doing, in
order words our models should not only be explainable
but explainable based on causality rather than associativ-
ity unlike most recent developments on explainability [10].
Though Deep Learning (DL) has shown great prowess on
some perceptual classification tasks, there are more and more
evidence that simply trying to compress huge amount of
data, especially when the data entropy becomes high, fail to
catch understanding. Slight modifications of only few pixels
in images cause radical changes in results or a DL-based
model telling that a train has been detected in the plate [1].
Given these issues, we ask ourselves how biological agents,
at least humans, overcome them. In this regard, there are at
least two observations. Firstly, (1) Physics constructively and
ultimately determines the world state. Secondly, (2) there are
more and more evidences, in contrast to David Marr’s view
of perception, that perception mostly goes from the inside
out, where a mental intuitive physics engine continuously
generates, simulates and maintains models of the world,
which are then updated using sensory information [10, 8,
4]. Such a perception theory is illustrated by Figure 1.

In this paper, we contribute in addressing the three issues
mentioned above (a-c) by:
• proposing a complete, practical, and modular archi-

tecture of perception systems, coined as NaivPhys4RP

(Naive Physics for Robot Perception), that leverages
the physics that manipulated scene objects as well as the
agent’s sensory organs undergo to anticipate and explain
the state and observation of realistic worlds in an explain-
able manner with reasonable computational resources.

• providing a proof of concept for NaivPhys4RP by
demonstrating it on different challenging scenarios, namely
object-related (transparency, occlusion), task-related (i.e.,
pose estimation, stability check) and domain-related
(kitchen, medical laboratory).

• Showing that NaivPhys4RP substantially considers the
Big Fives requirements FPCIU (Functionality, Physics,
Causality, Intent, Utility)[10] for achieving human-level
perception recently established.

II. RELATED WORK

Despite the increasingly intensive research on how biolog-
ical agents, at least humans, do intuitively grasp the phys-
ical laws governing the state of the physical world around
them from limited sensory information and how they apply
such knowledge, commonly referred in the literature to as
commonsense, intuitive, naive or folks physics, to anticipate
the state or interpret observations, the results remain on
the one hand abstract (e.g., higher-level hypotheses/findings)
from the Psychology community [10] and primitive (e.g.,
2D-, simplistic and unrealistic worlds, partial theories (e.g.,
disembodiedness)) from the community for computational
sciences on the other hand [3] . This being said, we will
mostly focus on the core computational theories underlying
these research works as well as the two observations (1-2).

Embodied Simulation. Based on evidences, (Hesslow,
2002) [4] constructed a theory of conscious thought as
embodied mental simulation, where the brain can simulate
an action in an overt manner (i.e., without realization in real
world) and simulate the perception of that action’s effects
usually referred to as Mind Eye, Ear, etc. Depending on
the action’s effects, the agent might decide to simulate the
action in a covert manner, where the action is actually
performed in the physical world. That action’s effects are
then perceived through the physical sensor organ (e.g., eye)
and the cycle restarts. Note that, it is also possible to start
the loop with a simulated perception from the mind eye (i.e.,
imagination). It is argued that the theory provides a way to
the supportive interactions between motor, sensory, cognitive
functions and the internal representations of the world, a way
to anticipation a.k.a. prospection and emphasizes the essence
of anticipation in cognition. (Cassimatis et al., 2004) empha-
sizes the advantages of the simulation theory of cognition
and show how it constitutes a potential solution to many
problems encountered in robotics.

Intuitive Physics. There have been more and more evi-
dences that human cognition, yet at earlier months of life, can
understand the physics governing the behavior of objects in
the physical world and then use this knowledge to anticipate
physical changes (i.e., object fall, object pose), which then
enables successful and smooth action in realtime. Notice
that this happens without prior education in physics or

816

knowledge of the physical parameters of the world such as
mass, friction, which are not only intractable and inexplicable
for uneducated people in Physics but would not explain
the smoothness and realtimeness of actions. In this regard,
most research works have been supporting the hypothesis of
a common physics engine that roughly infers the physical
parameters (e.g., friction, mass) of the world from sensory
information and then uses them as inputs to a forward
simulation through the engine in order to anticipate events
and states. Moreover, it has been shown that deviations in
common physical reasoning could go back at least to the
extrinsic (e.g., inaccurate physical parameters) and intrinsic
(e.g., unobservable parameters) uncertainty of the physical
phenomena, which parameters could be refined over time
for more accurate reasoning. Researchers, especially Joshua
Tenenbaum and his colleagues have considerably argued on
how intuitive physics is essential for perception from limited
sensory information (e.g., observing a car moving, and after
it passes behind an occluding wall, we can still predict when
it will appear at the other extremity of the wall) and have
termed it as dark matter of perception in the sense that
it is not directly graspable from sensory information but
significantly contributes in generating these information [10].
However, Davis and his colleagues objected to the simulation
theory for intuitive physics, claiming on the one hand the
intractable computational resources required and on the other
hand the failure of the simulation theory to the conjunction-
fallacy effect. Recently, (Bass et al., 2022)[2] replied to
Davis’s objection with a theory of partial simulation. In
sum, these works on intuitive physics stresses the physical,

probabilistic, partial and emergent nature of the simulation
theory of Hesslow.
Perception as Controlled Hallucination. (Anil Seth, 2018)
[8] argues on the limitations of sensory information and
flaws in David Marr’s standard theory of perception (i.e.,
bottom-up information processing) and regarding this issue
he elaborated a theory of perception based on evidences,
where the brain, so-called bayesian, continuously generates,
simulates expectations of the world state (i.e., hallucinations)
and updates this expectations with the few available sensory
information (i.e., control). This dominant top-down view
of perception was already argued by (Ralf Moeller, 1996),
defining perception as the process of anticipating sensory
consequences of actions .

Imagination-capable Belief State (ICBS). Finally, we
(Mania et al., 2021) [6] recently proposed a very rich inner
representation of the world, also known as semantic digital
twin as it aims at replicating the real world in photo-realistic
and physics-faithful virtual environments (i.e., game engines)
grounded in the world ontology for more semantics. Then,
we showed how such a representation could be used to vali-
date and refine the outputs of a traditional perception system.
In this paper, we continue this work with regard of the above
theories by enlarging the capabilities of these mental world
representations to embodied probabilistic simulations and
provide an architecture of perception systems, intrinsically
based on such simulations and other aspects of commonsense
such as the process context, that can perform physical
reasoning to cope with the problems (a-c).

III. ARCHITECTURE

Forward Embodied Probabilistic
simulation

�Ɂ
�ȼȿ���Ɂ

�ȼȿ�

Rendering

Forward simulation - Rendering (FsR)

Inverse Simulation (IS)

External World

Self-supervised Forward Neural
Learning

World
Ontology

Task. Objects,
Agents, States

State Augmentation

 Filtered Imagination

�������๯��

�Ɂ+�
�Ɇȿ�

�Ɂ+�
�Ɇȿ�

Knowledge Transfer

�Ɂ+�
�Ɇȿ� �

Self-supervised Inverse Neural
Learning

Direct Inversion

Prediction Filtering

�Ɂ+�
�Ɇȿ�

�Ƀ
�Ɇȿ���ɇ

�Ɇȿ�

�Ɉ
�ȿ���ɉ

�ȿ�

�������+�

�Ɍ+�
�ȼȿ� ��Ɍ

�ȼȿ�

�Ʉ

Mental Simulation-based Physical Reasoning-enabled Perception

���+���������+�� ���˥�+��:

Formalization

Legend:
xor = : and = , or = ;
ii= ith Imagination, fi= ith Filtration, pi= ith Prediction

Informal
Context
Stream

�Ɉ
�ȿȿ���ɉ

�ȿȿ�

��������������+��

������

��+�

ExplanationAnticipation

Fig. 3: The robot observations Zt and actions Ut−1 are tightly coupled through a sufficiently rich inner model of the world Xt that allows
through a forward simulation and rendering module (FsR) to anticipate the world state Xt+1 (X (pi)

t+1) and its observations Zt+1 (Z(pi)
t+1),

then to explain the world observation Zt+1 (X (f i)
t+1) and its state Xt+1 (X (f i)

t , U (f i)
t) through an inverse simulation module (IS). Xt emerges

overtime through a complementary and white interaction loop between IS and FsR, where IS constructively infers the causes whose
consequences through FsR match the observed or intended consequences.

817

A. Problem formalization

In regard to the above theories, we formalize the problem
addressed by NaivPhys4RP in four steps. (i) We model the
world state, as shown by Figure 1, as a Situated (i.e., take
place in a context) Partially-Observable (i.e., only partial
sensor data) Hidden (i.e., not directly accessible information)
Markov Process (i.e., state dependency) (SPOHMP) that
evolves through the physics that scene entities (e.g., objects,
robots, sensors) undergo. (ii) We model the hidden state a.k.a.
belief of the SPOHMP as ICBS described earlier. (iii) Then,
we regard perception as taskable through queries [10, 5]
and these perceptual queries are clustered into anticipatory
(i.e., consequences given causes) and explanatory queries
(i.e., causes given consequences), that are abstracted as
bayesian/markovian inference tasks. However, note that an
actual accurate and rich belief of the world state is the
informational source for answering these questions. Such a
belief is continuously filtered over time through emulation of
the SPOHMP. (iv) Finally, we efficiently implement the four
main operators of the rao-blackwellized particle filter [7],
however modified to five operators, which is a generic, prac-
tical and constructive approach to simultaneously emulate
the SPOHMP and address the bayesian inference tasks just
mentioned (markov-blanketed), through embodied, physics-
faithful, photo-realistic, probabilistic, partial and ontology-
grounded simulations. This formalization is summarized by
the equations (1) below:





XXX∗
t ∼∼∼ PPP(((XXXt |||UUU0:t−1,,,ZZZ0:t ,,,CCC0:t))) , actual belief

XXX∗
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,, [[[CCCt+1]]]))) , state anticipation

XXX∗
t+1,,,UUU

∗
t ∼∼∼ PPP(((XXXt+1,,,UUUt |||UUUt+1,,,CCCt:t+1,,,XXXt ,,,XXXt+2))) , state explanation

ZZZ∗
t+1 ∼∼∼ PPP(((ZZZt+1|||XXXt+1))) , observation anticipation

XXX∗
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,,ZZZt+1,,,CCCt+1))) , observation explanation

(1)
• X , is the world’s hidden state (e.g., a digital twin)
• Z, is the object/world observation (e.g., rgbd images)
• U , is the motion control (e.g., joint values, forces)
• C, is the process context (e.g., object + task knowledge)
Following are the five main operators of the modified rao-
blackwellized particle filter (mRBFP):

• Belief initialization, X (i)
0 ∼ P(X0|C0)

amortized initialization, X (i)
0 ∼ P(X0|C0,Z0)

• Belief prediction, X̃ (i)
t+1 ∼ P(X̃t+1|Xt ,Ut)

• Belief augmentation, X (i)
t+1 ∼ P(Xt+1|X̃t+1,Ct+1)

amortized augmentation, X (i)
t+1 ∼ P(Xt+1|X̃t+1,Ct+1,Zt+1)

• Belief weighting, W (i)
t+1 ≈ P(Zt+1|Xt+1)

• Belief filtering, X (i)
t+1 ∼ W (i)

t+1
∑W

Note that i, t, [.] and ∼ respectively denote the particle index,
the time index, optional priors and the argmax probabilistic
sampling. Though the variable U is not sampled by the above
operators of a mRBPF, we show how the third equation in (1)
can be solved using the general principles of these operators.
Finally, the architecture on Figure 3 essentially computes
these operators to solve the inference tasks in (1).

B. Ontology-Grounded Physico-Realistic Belief State (Xt)

An Imagination-Capable Belief State (ICBS) goes beyond
usual semantic scene graphs (objects’ description and rela-
tions among objects) and incorporates the scene geometry
(e.g., articulated 3D models), scene physics (e.g., gravity,
friction, mass, forces, viscosity, waves), scene agents (e.g.,
operating robots’ motorics and sensorics), scene ontology
(i.e., semantics). The ontology is a formal description of
fundamental and common truths about task-, agent-, object
and state-related concepts, their properties and relationships
among them in the scene. Depending on the particular scene
under study, the ontology can be enriched with typical
knowledge. It is also worth noting that state-related concepts
that are unusual in most ontology definitions model in Naiv-
Phys4RP a higher-level semantics of the effects of physics
(e.g., through action) on the world. For a possibly lossless
representation and reliable simulation of the belief, the
latter is directly represented in a photo-realistic and physics-
faithful game engine, grounded in a rich scene ontology, and
interfaces are provided to assert, modify, simulate and query
it.

Fig. 4: Belief (left), real world (right), world ontology (top).

C. Forward Simulation - Rendering (FsR)

1) Anticipation: This FsR module, as reported in Figure
3’s caption, is mainly responsible for anticipating the ob-
servations Z(pi)

t+1 and the states X (pi)
t+1 as consequences of the

causes X (f i)
t and U (f i)

t . Note that the superscripts pi and
f i respectively denote the prediction p and the filtering f
of particle i. Given our realistic mental simulations, these
inference tasks are performed straight-forward as shown by
the resolution equations (2) below:{

XXX (pi)
t+1 ≈≈≈ SSSiiimmmuuulllaaatttiiiooonnnλs(((XXX

(f i)
t ,,,UUU (f i)

t))) , state

ZZZ(pi)
t+1 ≈≈≈ RRReeennndddeeerrriiinnngggλr(((XXX

(pi)
t+1))) , observation

(2)
The accuracy of these operations in (2) lies in the param-

eters λs and λr and we achieve it in two steps: targeting of
realisticness (section III-C.2) and integration of uncertainty
about physics (section III-C.3). For achieving a reasonable
time complexity for the set of particles during inference, we
rely as described below, on many cues such as parallelism,

818

neural accelerators, Rao-Blackwellization and Partiality (sec-
tion III-C.4).

2) Embodied Realistic Simulation: In the project RobCog
(Robot Cognition: robcog.org) , as illustrated by Figure
4 and 5, we demonstrated how a photo-realistic and physics-
faithful virtualization of everyday manipulation scenes (e.g.,
kitchens, medical labs) in the game engine Unreal Engine
(UE) can be achieved, grounded in a large scene ontology
(KnowRob-SOMA: knowrob.org) and used to perform
human demonstrations of manipulation activities through
a realistic human avatar so that rich datasets (NEEMs:
Narrative-Enabled Episodic Memories) are automatically
collected for machine learning purposes. The project DAO
(Deep Action Observer)2 extends RobCog by observing
humans in activity and projecting their actions and motions
onto programmable human avatars in the virtual world (see
Figure 5). The project URoboSim (Unreal Robot Simula-
tor: embodied-ai.org/papers/URoboSim.pdf), as
illustrated by Figure 1 and 5, extends RobCog by developing
virtual robot agents with sensing capabilities that can mirror
what a real robot is doing or demonstrate what the real robot
will be doing.

Fig. 5: RobCog (bottom-left), DAO (top-left), URoboSIM
(real world in right and belief in left).

3) Uncertain Physics: Despite our ambition to target a re-
alistic robot belief in appearance and physics, a perfect simu-
lation remains challenging due to uncertainty about physical
parameters like friction, mass, or object position in the world.
In the belief Xt , uncertainty is partially considered in mRBPF
as many belief particles are simulated, weighted, and then
sampled based on their weights. However, this could require
many belief particles to reach the right physical parameters,
especially for continuous physical quantities. Collision and
forces are fundamental in estimating the physical dynamics
of objects in simulations. Therefore, to reduce the number of
particles needed, we propose embedding uncertainty directly
into object geometry, precisely, the underlying acceleration
data structure. Within the scope of this paper, we applied
the idea on top of Inner Sphere Tree (IST) [9]; nevertheless,
it applies to other algorithms as well. As an example (see
Figure 6), imagine the robot in Figure 5 trying to throw a
blue milk bottle in the dustbin. In this case, the input is no
more a single mass value of the object before its free-fall

2dropbox.com/s/60fweieljn9pbky/deep-action- observer.pdf?dl=0

but rather a probabilistic distribution of its mass, friction, or
object position. Likewise, the output will be a probabilistic
distribution of its location when it finishes the fall. This
approach considerably reduces the number of belief particles
representing such distribution.

Fig. 6: (left) Elementary forces during a single simulation
step between thrown bottle (blue) and dustbin (red), and
(right) probabilistic distribution of bottle’s location after
simulation.

4) Temporal Efficiency: In this section, the cues we rely
on to accelerate FsR on the set of belief particles are
presented. (i) Rao-blackwellisation: Uncertain physical simu-
lation is regarded as an emulation of the analytical estimation
of probabilistic distributions of some continuous variables
in Xt , reducing the number of belief particles needed for
emulating the SPOHMP. (ii) Parallel FsR : We demonstrated
in a Master thesis how, thank to cloud computing, FsR could
be parallelized over the set of belief particles as shown
by Figure 7. (iii) Partial simulation: SPOHMP is intrin-

Fig. 7: Accelerating FsR through parallelism.

sically partially-observable and this is taken into account
during the emulation as Xt only get sampled incrementally
through the augmentation operator of mRBPF. (iv) Self-
trained neural accelerators: In [5], we demonstrated how
a perception system can efficiently train on auto-generated
data (e.g., NEEMs) from embodied and situated simulation
to infer advanced semantic graphs of the scene. Instead of
proceeding through procedural operator of the game engine,
neural operators (λs and λr) trained from NEEMs could be
integrated in game engines or operate beside them, as shown
by the violet arrows on Figure 3. (v) Prediction as straight-
forward simulation: Finally, this is another major advantage
of our approach over traditional symbolic and qualitative
approaches which do not only require a huge gymnastics
to sample from multidimensional probabilistic distributions,
but also sample states that are not physically plausible within
a certain context.

819

D. FsR-based Inverse Simulation (IS)

1) Explanation: This module is mainly responsible for
processing explanatory questions such as presented in (1), in
a constructive manner based on FsR, that makes it white and
therefore interpretable and explainable, since FsR is eihter.
Intuitively, the goal is to generate states X (f i)

t+1 that explain
observations Zt+1 and state-action couples (X (f i)

t ,U (f i)
t) that

explain desired states Xt+1 and for achieving this, the remain-
ing four main operators of mRBPF have to be computed.

2) (Amortized) Belief Initialization: It is intractable to
merely sample these particles from the initial space of states.
As humans rely on intuitive physics as a domain of common-
sense to understand the physics that the world surrounding
them undergoes, they do likely leverage commonsense about
their operating scenes also referred to as context to formulate
high-quality expectations about the scene state as far as the
nature of objects and their natural (e.g., spatial) configura-
tions are concerned in order to achieve estimation of the
world state from limited sensory information. We model such
a cognitive function in three core steps.
(i) Context formalization: As you can see from the archi-
tectural figures 3 and 1, the context that conceptually char-
acterizes the scenes the robot operates in is either vaguely
provided to the system under any communication modality
such as text, audio, or even formally provided and directly
stored within a shared memory. In the former case, The
goal of the formalization step will then be to circumscribe a
sufficiently rich field of concepts and relations among those
concepts that underlie the target scene. Let assume that the
most common input modality for context is textual, then our
framework PRAC3 (Probabilistic Action Cores) can be used
to formalize such a vague specification, such as illustrated
by Figure 8.

Fig. 8: Context formalization.

(ii) Context-specific imagination: Once the context has been
formalized, possible states of the world can be imagined.

Fig. 9: Context-specific imagination of world state.

3http://www.actioncores.org/

As shown by Figure 9, we demonstrated in [5] how situ-
ated and embodied datasets for perception systems could be
generated from context-specific imagination. For preparing
the breakfast, there is a need for cereal which is in the cereal
box, a bowl and a spoon which can be and is usually inside
the bowl.
(iii) Amortization: Despite the considerable reduction of the
world state space through context-specific imagination, still
there remains a bit of vagueness for instance in terms of
number of objects and concrete spatial configurations. In
order to amortize this combinatorial explosion, we employ
a greedy direct (unconscious) perception approach of the
scene, neurally trained on imagined datasets, to compress
the state space. Then, the optimistic results of the neural
learner are filtered based on the imagination (e.g., if knife
detected then likely spoon because coffee drinking). We
developed, RobotVQA (Robot Visual Question Answering)
[5] for supporting the taskable and cognitive perception
system RoboSherlock4. Notice that this step is realized by the
direct inversion and filtered imagination modules on Figure
3.

3) (Amortized) Belief Augmentation: Notice that the be-
lief initialization is only based on partial observations and
the initialization is therefore only partial. Then, forward
simulating from such a partial initialization is not enough
to achieve convergence of belief particles towards the world
state. For this reason, a belief augmentation is performed
after each prediction X (pi)

t+1 where identical operations as in
the initialization step are used based on the actual observation
Zt+1 and context Ct+1, and the results are then aggregated
to the prediction for enriching it. At the belief initialization,
there is no aggregation because the prediction is empty.

4) Belief Weighting: The weights of belief particles are
W (i)

t+1 computed by the straight-forward operation below:

{
DDD(i)

t+1 ≈≈≈ DDDiiissstttaaannnccceeeλd
(((ZZZ(pi)

t+1,,,ZZZt+1))) , actual

WWW (i)
t+1 ≈≈≈ DDD(i)

t+1 +++WWW (i)
t , cumulative

(3)
Intuitively, D(i)

t+1 measures how close to the real partial
observation Zt+1 the observation Z(pi)

t+1 of the realistic ren-
dering of the predicted belief X (pi)

t+1 is (see Figure 4). For
all the observations up to t +1 (i.e., total observations), the
cumulative distance is expressed by W (i)

t+1.
5) Belief Filtering: Finally, the belief particle are filtered

through a random sampling with replacement according to

their weights from the set of belief particles: X (i)
t+1 ∼ W (i)

t+1
∑W .

This ensures the convergences of the belief towards the real
world state.

6) State Explanation: We highlighted earlier in this sec-
tion that though the native main operators of a mRBPF do
not support the explanation of states described as XXX∗

t+1,,,UUU
∗
t ∼∼∼

PPP(((XXXt+1,,,UUUt |||UUUt+1,,,CCCt:t+1,,,XXXt ,,,XXXt+2))), their general principles
can be employed to address the problem. Literally, given

4http://robosherlock.org/, https://github.com/robosherlock

820

the actual belief Xt , we are looking for an action U∗
t within

a context Ct that would transform Xt into a state Xt+1 within
a context Ct+1 so that by applying the action Ut+1 one could
reach the target state Xt+2 (e.g., how should I hold the milk
bottle so that if I release it on the table, it will not fall). Notice
foremost that this problem can be approximately broken
into three problems according to rao-blackwellization namely
(p1) UUU (k)

t ∼∼∼ PPP(((UUUt |||CCCt))), (p2) XXX (k)
t+1 ∼∼∼ PPP(((XXXt+1|||UUUt ,,,XXXt ,,,CCCt+1)))

and (p3) WWW (k) ≈≈≈ PPP(((XXXt+2|||UUUt+1,,,XXXt+1,,,CCCt+1))). While (p2) and
(p3) have already been solved by the FsR and Distance
functions above, (p1) can be solved by sampling Ut according
to the context Ct and the whole problem by filtering the
U∗

t based on how good they turn Xt into the desired Xt+2.
Notice the steps of a mRBPF except that U is the target
instead of X . And since this work is about physical reason-
ing based on mental embodied simulations for perception,
addressing the estimation of U to know about the state, does
not only considerable goes beyond state estimation (e.g.,
action & motion planning required, U as joint states is not
meaningful), but also emphasizes how perception, motorics
and cognitive functions are strongly intertwined. In order
to sample meaningful control commands U , we rely on
CRAM (Cognitive Robot Abstract Machine)5, an established
cognitive architecture, that samples U from a bag of generic
primitive action plans (see Figure 10), then contextualize it
using the world ontology C and the world state X to finally
produce joint states that can be directly realized by the virtual
robots.

Fig. 10: Underspecified primitive action plans.

7) Temporal Efficiency: We leverage the following cues
in order to achieve a reasonable time complexity for IS. (i)
FsR’s efficiency: IS is either a constructive approach based
on FsR. (ii) Amortization: The use of self-trained neural
accelerators for reducing the number of belief particles has
been presented. (iii) Faster filtering: the belief particles are
filtered based on a straight-forward computation of their
importance weights. (iv) Faster convergence: The belief
particles tend to converge quickly to the real world state since
only few imaginary states are physically plausible before and
after simulating.

IV. NAIVPHYS4RP AND THE BIG FIVES FPCIU
In a recent journal article [10], Tenenbaum and his col-

leagues identified five core aspects (FPCIU) of human com-
monsense, hierarchically organized, namely Functionality,
Physics, Intent, Causality, and Utility to consider in order
to hope human-level perception in Artificial Intelligence.
(i) Causality: As the basis for understanding, it is character-
ized by the elicitation of cause-effect relationships for the

5http://www.cram-system.org/

sake of explaining and anticipating phenomena. On the one
hand, NaivPhys4RP inherently relies on physical simulation
which itself relies on the integration of physical causality
(i.e., laws of physics). Beyond physical causality, the context
C encodes other forms of causality such as the functional
causality (e.g., Milk preparation causes usage of certain
products).
(ii) Physics: NaivPhys4RP obviously achieve commonsense
physics through its ability to track the physical causality.
(iii) Functionality: Most objects in human-centered environ-
ments are functional and these functions are very decisive
in experiencing (e.g., categorizing) the world around us
though not directly observable from sensory information.
NaivPhys4RP achieves this through functional causality.
(iv) Intent: in NaivPhys4RP, the agents’s actions are modeled
by the layer U even if in the current formalization, only
the actions of the operating agent are explicitly represented.
DAO can help in tracking and integrating other agents’ ac-
tions. Moreover, the layer C (see Figure 8) partially captures
the agents’ intentions however can be made more explicit
with an intent layer on top of U .
(v) Utility: humans act rationally by making choices that
maximize their utility function (e.g., survival, travel cost,
operation duration, success). NEEMs collected from Naiv-
Phys4RP can be used for the learning of the agent’s pref-
erences such as scene objects, their spatial dispositions, the
agent poses for grasping and perceiving different objects.

V. EXPERIMENTATION

As a proof of concept, we demonstrate NaivPhys4RP
in the following few challenging scenarios. We provide
more information about the experiments in the demo video
attached to this paper.
(i) 6D-Pose of In-hand Objects: Robots are usually unaware
of the pose of objects they hold, which is critical for
meaningful manipulation.

Fig. 11: NaivPhys4RP estimates in-hand poses.

(ii) 6D-Pose of Transparent & Smooth Objects: Certain
objects exhibit a poor depth from optical depth cameras due
to absorption, retransmission or specular rather than scattered
reflection of emitted light rays. Figure 12 illustrates how

821

NaivPhys4RP overcome the issue and estimate the pose of
such objects.

Fig. 12: NaivPhys4RP estimates poses from poor depth.

(iii) Object’s Semantic Stability: How to place the milk
bottle so that it does not fall?

Fig. 13: NaivPhys4RP explains future desired state of world.

(iv) Generalizability: TraceBot:
Finally, we demonstrated how the approach is generaliz-

able and can be applied to more complex, especially mission-
critical applications such as TraceBot, a project that robotizes
the process of medical sterility testing. Figure 14 shows how
NaivPhys4RP can localize subtle tool parts and mirror the
robot failures (www.tracebot.eu).

VI. CONCLUSIONS
We proposed in this paper a practical framework Naiv-

Phys4RP with a proof of concept for scaling robot perception

towards complex environments such as dynamic and human-
centered scenes (i.e., motion, limited sensory information,
safety). To emulate human perception, NaivPhys4RP es-

Fig. 14: NaivPhys4RP in TraceBot.

sentially relies on realistic, embodied, physics-faithful and
partial simulations grounded in the world ontology. In do-
ing this, NaivPhys4RP substantially leverages commonsense
knowledge about the world and foremost intuitive physics.
In the future, we aim at a stable implementation of Naiv-
Phys4RP with a focus on integrating the core components,
but also on a systematic and quantitative evaluation and
finally on an explicit integration of the FPCIU such as
described in section IV.

ACKNOWLEDGMENT

This scientific work is partially funded by the projects
DFG EASE CRC 1320, EU TraceBot (grant agreement No
101017089), and BMBF ILIAS (grant no. 01DR19001B).

REFERENCES

[1] Pieter Adriaans. “Learning as Data Compression”. In:
2007.

[2] Ilona Bass et al. “Partial mental simulation explains
fallacies in physical reasoning”. In: (2022).

[3] Jiafei Duan et al. A Survey on Machine Learning
Approaches for Modelling Intuitive Physics. 2022.

[4] Germund Hesslow. “Hesslow, G. Conscious thought
as simulation of behaviour and perception.” In: Trends
in cognitive sciences (2002).

[5] Franklin Kenghagho Kenfack et al. “RobotVQA — A
Scene-Graph- and Deep-Learning-based Visual Ques-
tion Answering System for Robot Manipulation”. In:
2020.

[6] Patrick Mania et al. “Imagination-Enabled Robot Per-
ception”. In: 2021.

[7] Kevin Murphy and Stuart Russell. “Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks”.
In: 2001.

[8] Anil K. Seth. “Consciousness: The last 50 years
(and the next)”. In: Brain and Neuroscience Advances
(2018).

[9] Rene Weller and Gabriel Zachmann. “Inner sphere
trees for proximity and penetration queries.” In: 2009.

[10] Yixin Zhu et al. “Dark, Beyond Deep: A Paradigm
Shift to Cognitive AI with Humanlike Common
Sense”. In: Engineering (2020).

822

View publication stats

	Dedication
	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Acronyms

	1 Introduction
	1.1 Thesis Outline

	2 Use of Simulation for Robot Planning
	2.1 Simulation-Based Internal Models for Robots
	2.2 Motion Planning
	2.2.1 Low Dimension Spaces
	2.2.2 High Dimension Spaces
	2.2.3 Computational Bottleneck

	2.3 Envisioning Outcome of Generated Plans
	2.3.1 Uncertainty in Simulation

	3 SIMD Optimized Bounding Volume Hierarchies
	3.1 SIMD Recap
	3.2 Implementation Strategies
	3.3 BVH Construction Based On Batch Neural Gas Clustering Algorithms
	3.4 SIMD Based Simultaneous BVH Traversal
	3.5 Results
	3.6 Extension To Continuous Collision Detection
	3.6.1 Inner Sphere Tree
	3.6.2 BVH Construction
	3.6.3 Results

	3.7 Conclusion and Future Work

	4 Memory Efficient Bounding Volume Hierarchies
	4.1 Memory Efficient Doptree
	4.1.1 Optimization
	4.1.2 Results

	4.2 Memory-Efficient Boxtree
	4.2.1 Optimization
	4.2.2 Optimized Structure
	4.2.3 Results

	4.3 Conclusion and Future Work

	5 Benchmarking as Online Service
	5.1 Open Benchmarking for Reproducible and Comparable Results
	5.2 Benchmarking for CD & PQ Algorithms
	5.2.1 Web-Based Benchmarking Service
	5.2.2 Heatmap Visualization
	5.2.3 Safe Execution of User-Uploaded Algorithms

	5.3 Conclusion and Future Work

	6 Uncertainty in Simulation-Based Robot Planning
	6.1 Inner Sphere Tree for Geometry With Uncertain Properties
	6.2 Physics Simulation With Uncertain Properties
	6.3 Conclusion and Future Work

	7 Applications
	7.1 Collision Detecion For Grasp Type Detection

	8 Discussion and Conclusion
	8.1 Limitations and Future Work
	8.1.1 Simulation of Deformable Components
	8.1.2 Proper Handling of Uncertainty

	Fundamental Publications

	Fundamental Publications
	F 1 SIMDop: SIMD optimized Bounding Volume Hierarchies for Collision Detection
	F 2 NaivPhys4RP - Towards Human-like Robot Perception “Physical Reasoning based on Embodied Probabilistic Simulation”
	F 3 OpenCollBench - Benchmarking of Collision Detection & Proximity Queries as a Web-Service
	F 4 A Framework for Safe Execution of User-Uploaded Algorithms
	F 5 SIMD optimized Bounding Volume Hierarchies for Collision Detection

	Supportive Publications
	S 1 Grasping for reality-How can we improve the digital representation of human grasp behaviour?
	Appendix

	Appendix
	A 1 Intrinsics Code for SIMD-Based Simultaneous BVH Traversal
	A 1.1 1 vs 16
	A 1.2 4 vs 4

	A 2 16-Bit to 32-Bit Floating Point Conversion

